Non-Thermal and Thermal Physical Procedures—Optimistic Solutions in the Winemaking Industry
Abstract
:1. Introduction
2. The Use of Non-Thermal Techniques in Winemaking Optimization
2.1. Ultrasound Technique
2.2. Cold Plasma Technology
2.3. Pulse Electric Fields Treatment
2.4. High-Pressure Processing
Intensity (MPa) | Time (min) | Temperature (°C) | Samples | Main Results | References |
---|---|---|---|---|---|
500 | 5 | 4 | white wines red wines |
| [54] |
100–350 | 0–30 | 25 | low-alcohol red wines |
| [55] |
350 | 10 | 8 | red wine |
| [56] |
600 | 5 | - | white and red wines |
| [50] |
3. The Influence of Thermal Technologies in Wine Quality
3.1. Microwave Application
3.2. Pre-Fermentative Low Temperature Treatments
4. Key Results and Considerations
Author Contributions
Funding
Conflicts of Interest
References
- Aneja, K.R.; Dhiman, R.; Aggarwal, N.K.; Kumar, V.; Kaur, M. Microbes associated with freshly prepared juices of citrus and carrots. Int. J. Food Sci. 2014, 2014, 408085. [Google Scholar] [CrossRef]
- Sainz-García, E.; López-Alfaro, I.; Múgica-Vidal, R.; López, R.; Escribano-Viana, R.; Portu, J.; Alba-Elías, F.; González-Arenzana, L. Effect of the atmospheric pressure cold plasma treatment on Tempranillo red wine quality in batch and flow systems. Beverages 2019, 5, 50. [Google Scholar] [CrossRef]
- Muñoz García, R.; Oliver-Simancas, R.; Arévalo-Villena, M.; Martínez-Lapuente, L.; Ayestarán, B.; Marchante-Cuevas, L.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Use of microwave maceration in red winemaking: Effect on fermentation and chemical composition of red wines. Molecules 2022, 27, 3018. [Google Scholar] [CrossRef] [PubMed]
- Natrella, G.; Noviello, M.; Trani, A.; Faccia, M.; Gambacorta, G. The effect of ultrasound treatment in winemaking on the volatile compounds of Aglianico, Nero di Troia, and Primitivo red wines. Foods 2023, 12, 648. [Google Scholar] [CrossRef]
- Naviglio, D.; Formato, A.; Scaglione, G.; Montesano, D.; Pellegrino, A.; Villecco, F.; Gallo, M. Study of the grape cryo-maceration process at different temperatures. Foods 2018, 7, 107. [Google Scholar] [CrossRef] [PubMed]
- Saremnezhad, S.; Soltani, M.; Faraji, A.; Hayaloglu, A.A. Chemical changes of food constituents during cold plasma processing: A review. Food Res. Int. 2021, 147, 110552. [Google Scholar] [CrossRef]
- Lin, Y.; Pangloli, P.; Meng, X.; Dia, V.P. Effect of heating on the digestibility of isolated hempseed (Cannabis sativa L.) protein and bioactivity of its pepsin-pancreatin digests. Food Chem. 2020, 314, 126198. [Google Scholar] [CrossRef]
- Thirumdas, R. Exploitation of cold plasma technology for enhancement of seed germination. ARTOAJ 2018, 13, 25–29. [Google Scholar] [CrossRef]
- Bermudez-Aguirre, D. Advances in Cold Plasma Applications for Food Safety and Preservation, 1st ed.; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Kumar, Y.; Marangon, M.; Marangon, C.M. The application of non-thermal technologies for wine processing, preservation, and quality enhancement. Beverages 2023, 9, 30. [Google Scholar] [CrossRef]
- Ozturk, B.; Anli, E. Pulsed electric fields (PEF) applications on wine production: A review. Bio Web Conf. 2017, 9, 02008. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, T.; Zhang, Y.; Zhang, A.; Gai, L.; Niu, D. Potential applications of pulsed electric field in the fermented wine industry. Front. Nutr. 2022, 9, 1048632. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.; Parpinello, G.; Versari, A. Recent advances and applications of pulsed electric fields (PEF) to improve polyphenol extraction and color release during red winemaking. Beverages 2018, 4, 18. [Google Scholar] [CrossRef]
- Shahbaz, H.M.; Kim, J.U.; Kim, S.; Park, J. Advances in nonthermal processing technologies for enhanced microbiological safety and quality of fresh fruit and juice products. In Handbook of Food Bioengineering, Food Processing for Increased Quality and Consumption; Academic Press: Cambridge, MA, USA, 2018; pp. 179–217. [Google Scholar] [CrossRef]
- Lisanti, M.T.; Blaiotta, G.; Nioi, C.; Moio, L. Alternative methods to SO2 for microbiological stabilization of wine. CRFSFS 2019, 18, 455–479. [Google Scholar] [CrossRef]
- Lukić, K.; Brnčić, M.; Ćurko, N.; Tomašević, M.; Tušek, A.J.; Ganić, K.K. Quality characteristics of white wine: The short- and long-term impact of high power ultrasound processing. Ultrason. Sonochem. 2020, 68, 105194. [Google Scholar] [CrossRef]
- OIV. International Code of Oenological Practices; OIV: Paris, France, 2022. [Google Scholar]
- Bozalongo, R.; Carillo, J.D.; Torroba, M.A.F.; Tena, M.T. Analysis of French and American oak chips with different toasting degrees by headspace solid-phase microextraction-gas chromatography-mass spectrometry. J. Chromatogr. A 2017, 1173, 10–17. [Google Scholar] [CrossRef]
- Muñoz, R.; Viveros, N.; Bevilacqua, A.; Pérez, M.S.V.; Arévalo-Villena, M. Effects of ultrasound treatments on wine microorganisms. Ultrason. Sonochem. 2021, 79, 105775. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Patras, A.; Brunton, N.P.; Cullen, P.J.; O’Donnell, C.P. Effect of ultrasound processing on anthocyanins and color of red grape juice. Ultrason. Sonochem. 2010, 17, 598–604. [Google Scholar] [CrossRef]
- Gavahian, M.; Chu, R.; Ratchaneesiripap, P. An ultrasound-assisted extraction system to accelerate production of Mhiskey, a rice spirit-based product, inside oak barrel: Total phenolics, color, and energy consumption. J. Food Process Eng. 2021, 45, e13861. [Google Scholar] [CrossRef]
- Natolino, A.; Celotti, E. Ultrasound treatment of red wine: Effect on polyphenols, mathematical modeling, and scale-up considerations. LWT 2022, 154, 112843. [Google Scholar] [CrossRef]
- Tarțian, A.C.; Cotea, V.V.; Niculaua, M.; Zamfir, C.I.; Colibaba, C.L.; Moroșanu, A.M. The influence of the different techniques of maceration on the aromatic and phenolic profile of the Busuioaca de Bohotin wine. Bio Web Conf. 2017, 9, 02032. [Google Scholar] [CrossRef]
- Palma, M.; Barroso, C.G. Ultrasound-assisted extraction and determination of tartaric and malic acids from grapes and winemaking by-products. Anal. Chim. Acta 2002, 458, 119–130. [Google Scholar] [CrossRef]
- Dujmic, F.; Gani, K.K.; Uri, D.; Karlovi, S.; Bosiljkov, T.; Jeek, D.; Vidrih, R.; Hribar, J.; Zlati, E.; Prusina, T. Non-thermal ultrasonic extraction of polyphenolic compounds from red wine lees. Foods 2020, 9, 472. [Google Scholar] [CrossRef]
- Bautista-Ortín, A.B.; Jiménez-Martínez, M.D.; Jurado, R.; Iniesta, J.A.; Terrades, S.; Andrés, A.; Gomez-Plaza, E. Application of high-power ultrasounds during red wine vinification. Int. J. Food Sci. Technol. 2017, 52, 1314–1323. [Google Scholar] [CrossRef]
- Luchian, C.E.; Focea, E.C.; Scutarașu, E.C.; Motrescu, I.; Vlase, A.M.; Vlase, L.; Colibaba, L.C.; Cotea, V. Oak aging and ultrasound treatment for improving the sensory profile of Sauvignon Blanc wines. In Recent Advances in Technology Research and Education; Ono, Y., Kondoh, J., Eds.; LNNS; Inter-Academia: 2023; Springer: Berlin/Heidelberg, Germany, 2024; volume 939, pp. 104–121. [Google Scholar] [CrossRef]
- Mărgean, A.; Pădureanu, V. The influence of ultrasound treatment on must fermentation process. Bull. Transilv. Univ. 2018, 11, 127–132. [Google Scholar]
- Ruiz-Rodríguez, A.; Carrera, C.; Palma, M.; Barroso, C.G. Ultrasonic treatments during the alcoholic fermentation of red wines: Effects on “Syrah” wines. Vitis: J. Grapevine Res. 2019, 58, 83–88. [Google Scholar] [CrossRef]
- Gracin, L.; Križanović, S.; Jambrak, A.R.; Tomašević, M.; Kelšin, K.; Lukić, K.; Ganić, K.K. Monitoring the influence of high power ultrasound treatment and thermosonication on inactivation of Brettanomyces bruxellensis in red wine. Croat. J. Food Technol. Biotechnol. Nutr. 2017, 12, 107–112. [Google Scholar]
- Xie, Q.; Tang, Y.; Wu, X.; Luo, Q.; Zhang, W.; Liu, H.; Fang, Y.; Ju, Y. Combined ultrasound and low temperature pretreatment improve the content of anthocyanins, phenols and volatile substance of Merlot red wine. Ultrason. Sonochem. 2023, 100, 106636. [Google Scholar] [CrossRef] [PubMed]
- Focea, E.C.; Luchian, C.E.; Colibaba, L.C.; Scutarașu, E.C.; Popîrdă, A.; Focea, M.C.; Niculaua, M.; Cotea, V. Application of ultrasounds to improve oak aging of white wines. Bio Web Conf. 2022, 56, 02021. [Google Scholar] [CrossRef]
- Celotti, E.; Stante, S.; Ferraretto, P.; Román, T.; Nicolini, G.; Natolino, A. High power ultrasound treatments of red young wines: Effect on anthocyanins and phenolic stability indices. Foods 2020, 9, 1344. [Google Scholar] [CrossRef]
- Ignat, G.; Balan, G.; Sandu, I.; Costuleanu, C.L.; Tudose Sandu-Ville, Ș. Study of phenolic compounds in Merlot red wines obtained by different technologies. Rev. Chim. 2016, 64, 1560–1565. [Google Scholar]
- Zhang, Q.; Zheng, H.; Lin, J.; Nie, G.; Fan, X.; García-Martin, J.F. The state-of-art research of the application of ultrasound to winemaking: A critical review. Ultrason. Sonochem. 2023, 95, 106384. [Google Scholar] [CrossRef]
- Bai, Y.; Chen, J.; Yang, Y.; Guo, L.; Zhang, C. Degradation of organophosphorus pesticide induced by oxygen plasma: Effects of operating parameters and reaction mechanisms. Chemosphere 2010, 81, 408–414. [Google Scholar] [CrossRef]
- Reddy, M.K.; Mahammadunnisa, S.; Subrahmanyam, C. Catalytic non-thermal plasma reactor for mineralization of endosulfan in aqueous medium: A green approach for the treatment of pesticide contaminated water. Chem. Eng. J. 2014, 238, 157–163. [Google Scholar] [CrossRef]
- Toyokawa, Y.; Yagyu, Y.; Yamashiro, R.; Ninomya, K. Roller conveyer system for the reduction of pesticides using non-thermal gas plasma—A potential food safety control measure? Food Control 2018, 87, 211–217. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, S.; Dang, J.; Wang, S.; Liu, Z.; Fang, J.; Han, P.; Zhang, J. Reduction of phoxim pesticide residues from grapes by atmospheric pressure non-thermal air plasma activated water. J. Hazard. Mater. 2019, 377, 98–105. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Keener, K.M. Cold plasma: Background, applications and current trends. Curr. Opin. Food Sci. 2017, 16, 49–52. [Google Scholar] [CrossRef]
- Huzum, R.; Nastuta, A.V. Helium atmospheric pressure plasma jet source treatment of white grapes juice for winemaking. Appl. Sci. 2021, 11, 8498. [Google Scholar] [CrossRef]
- Guo, J.; Huang, K.; Wang, X.; Lyu, C.; Yang, N.; Li, Y.; Wang, J. Inactivation of yeast on grapes by plasma-activated water and its effects on quality attributes. J. Food Prot. 2017, 80, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Niedźwiedź, I.; Simeonov, V.; Waśko, A.; Polak-Berecka, M. Comparison of the effect of cold plasma with conventional preservation methods on red wine quality using chemometrics analysis. Molecules 2022, 27, 7048. [Google Scholar] [CrossRef]
- Silva, F.V.M.; Borgo, R.; Guanziroli, A.; Ricardo-Da-Silva, J.M.; Aguiar-Macedo, M.; Redondo, L.M. Pilot Scale Continuous Pulsed Electric Fields Treatments for Vinification and Stabilization of Arinto and Moscatel Graúdo (Vitis vinifera L.) White Grape Varieties: Effects on Sensory and Physico-Chemical Quality of Wines. Beverages 2024, 10, 6. [Google Scholar] [CrossRef]
- Toulaki, A.K.; Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Bozinou, E.; Roufas, K.; Mantanis, G.I.; Dourtoglou, V.G.; Lalas, S.I. Investigation of Xinomavro red wine aging with various wood chips using pulsed electric field. Beverages 2024, 10, 13. [Google Scholar] [CrossRef]
- Puértolas, E.; López, N.; Condón, S.; Álvarez, I.; Raso, J. Potential applications of PEF to improve red wine quality. Trends Food Sci. Technol. 2010, 21, 247–255. [Google Scholar] [CrossRef]
- Evrendilek, G.A. Pulsed electric field processing of red wine: Effect on wine quality and microbial inactivation. Beverages 2022, 8, 78. [Google Scholar] [CrossRef]
- Comuzzo, P.; Marconi, M.; Zanella, G.; Querzè, M. Pulsed electric field processing of white grapes (cv. Garganega): Effects on wine composition and volatile compounds. Food Chem. 2018, 264, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Ntourtoglou, G.; Drosou, F.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Dourtoglou, V.G.; Elhakem, A.; Sami, R.; Ashour, A.A.; Shafie, A.; et al. Combination of pulsed electric field and ultrasound in the extraction of polyphenols and volatile compounds from grape stems. Appl. Sci. 2022, 12, 6219. [Google Scholar] [CrossRef]
- Van Wyk, S.; Hong, L.; Silva, F.V.M. Non-thermal high pressure processing, pulsed electric fields and ultrasound preservation of five different table wines. Beverages 2021, 7, 69. [Google Scholar] [CrossRef]
- Van Wyk, S.; Farid, M.M.; Silva, F.V. SO2, high pressure processing and pulsed electric field treatments of red wine: Effect on sensory, Brettanomyces inactivation and other quality parameters during one year storage. Innov. Food Sci. Emerg. Technol. 2018, 48, 204–211. [Google Scholar] [CrossRef]
- Silva, F.V.M.; Van Wyk, S. Emerging Non-Thermal technologies as alternative to SO2 for the production of wine. Foods 2021, 10, 2175. [Google Scholar] [CrossRef]
- Van Wyk, S.; Silva, F.V. High pressure inactivation of Brettanomyces bruxellensis in red wine. Food Microbiol. 2017, 63, 199–204. [Google Scholar] [CrossRef]
- Santos, M.C.; Nunes, C.; Saraiva, J.A.; Coimbra, M.A. Chemical and physical methodologies for the replacement/reduction of sulfur dioxide use during winemaking: Review of their potentialities and limitations. Eur. Food Res. Technol. 2012, 234, 1–12. [Google Scholar] [CrossRef]
- Mok, C.; Song, K.-T.; Park, Y.-S.; Lim, S.; Ruan, R.; Chen, P. High hydrostatic pressure pasteurization of red wine. J. Food Sci. 2006, 71, M265–M269. [Google Scholar] [CrossRef]
- Christofi, S.; Malliaris, D.; Katsaros, G.; Panagou, E.; Kallithraka, S. Limit SO2 Content of wines by applying high hydrostatic pressure. Innov. Food Sci. Emerg. Technol. 2020, 62, 102342. [Google Scholar] [CrossRef]
- Dumitriu, D.; Cotea, V.; Moraru, I.; Niculaua, M.; Nechita, C.B.; Colibaba, C.; Vararu, F. Comparative study on the influence of macerations technology on the red wines phenolic compound. J. Hortic. USAMV Iași 2013, 56, 325–330. [Google Scholar]
- Georgescu, O.; Cotea, V.; Zamfir, C.; Colibaba, C.; Gherghină, N.; Moraru, I. Comparative study of red Băbească neagră wines from Nicoreşti vineyard obtained through classical technology of maceration fermentation and through innovative maceration technologies. J. Hortic. USAMV Iași 2010, 53, 431–436. [Google Scholar]
- Tudose Sandu-Ville, Ș.; Cotea, V.V.; Colibaba, C.; Buburuzanu, C.; Georgescu, O.; Niculaua, M. Study of phenolic compounds in Cabernet Sauvignon red wines obtained in Iaşi vineyard by six different maceration-fermentation techniques. J. Hortic. USAMV Iași 2010, 53, 63–69. [Google Scholar]
- Colibaba, L.C.; Cotea, V.V.; Nechita, B.; Lăcureanu, G.; Tudose Sandu-Ville, Ș. Studies on the influence of maceration techniques on Tămâioasă românească wine’s free terpenic compounds. J. Hortic. USAMV Iași 2010, 53, 359–364. [Google Scholar]
- Yuan, J.F.; Lai, Y.T.; Chen, Z.Y.; Song, H.X.; Zhang, J.; Wang, D.H.; Gong, M.G.; Sun, J.R. Microwave irradiation: Effects on the change of colour characteristics and main phenolic compounds of Cabernet Gernischt dry red wine during storage. Foods 2022, 11, 1778. [Google Scholar] [CrossRef] [PubMed]
- Carew, A.L.; Sparrow, A.M.; Curtin, C.D.; Close, D.C.; Dambergs, R.G. Microwave maceration of Pinot noir grape must: Sanitation and extraction effects and wine phenolics outcomes. Food Bioprocess Technol. 2014, 7, 954–963. [Google Scholar] [CrossRef]
- Casassa, L.; Sari, S.; Bolcato, E.; Fanzone, M. Microwave-assisted extraction applied to merlot grapes with contrasting maturity levels: Effects on phenolic chemistry and wine color. Fermentation 2019, 5, 15. [Google Scholar] [CrossRef]
- Pérez-Porras, P.; Gómez-Plaza, E.; Muñoz García, R.; Díaz-Maroto, M.C.; Moreno-Olivares, J.D.; Bautista-Ortín, A.B. Prefermentative grape microwave treatment as a tool for increasing red wine phenolic content and reduce maceration time. Appl. Sci. 2022, 12, 8164. [Google Scholar] [CrossRef]
- Yuan, J.F.; Wang, T.T.; Chen, Z.Y.; Wang, D.H.; Gong, M.G.; Li, P.Y. Microwave irradiation: Impacts on physicochemical properties of red wine. CyTA J. Food 2020, 18, 281–290. [Google Scholar] [CrossRef]
- Mihnea, M.; José, M.L.G.S.; Velasco-López, M.T.; Rivero-Pérez, M.D.; Ortega-Herás, M.; Pérez-Magariño, S. Effect of pre-fermentative strategies on the composition of Prieto Picudo (Vitis vinifera) red wines. OAlib 2016, 3, e3197. [Google Scholar] [CrossRef]
- Kechagia, D.; Paraskevopoulos, Y.; Symeou, E.; Galiotou-Panayotou, M.; Kotseridis, Y. Influence of prefermentative treatments to the major volatile compounds of Assyrtiko wines. J. Agric. Food Chem. 2008, 56, 4555–4563. [Google Scholar] [CrossRef]
- Cai, J.; Zhu, B.; Wang, Y.; Lu, L.; Lan, Y.; Reeves, M.J.; Duan, C. Influence of pre-fermentation cold maceration treatment on aroma compounds of Cabernet Sauvignon wines fermented in different industrial scale fermenters. Food Chem. 2014, 154, 217–229. [Google Scholar] [CrossRef]
- Gómez-Míguez, M.J.; González-Miret, M.L.; Hernanz, D.; Fernández, M.Á.; Vicario, I.M.; Heredia, F.J. Effects of prefermentative skin contact conditions on colour and phenolic content of white wines. J. Food Eng. 2007, 78, 238–245. [Google Scholar] [CrossRef]
Analyzed Varieties | Origin | Winemaking Phase | Duration (min) | Frequences (KHz) | Amplitudes (%) | Analyzed Parameters | Results | References |
---|---|---|---|---|---|---|---|---|
Cabernet Sauvignon | Italy (Veneto) | maturation | 2, 6, 10 | 26 | 30, 60, 90 | total polyphenol content | no significant changes | [22] |
anthocyanins content | ||||||||
flavan-3-ols content | ||||||||
condensed tannins | ||||||||
polymerized pigments index | ||||||||
Busuioacă de Bohotin | Romania | maceration | 30 | 35 | - | total acidity | lower value | [23] |
pH | no significant effect | |||||||
alcoholic strength | no significant effect | |||||||
total polyphenol content | decreasing value | |||||||
volatile compound extraction | increased proportions of the main volatile compounds | |||||||
Corvino and Corvinone | Italy | aging phase | 1,3,5 | 41–81 | anthocyanins | preserving anthocyanin content, improved color stability | [19] | |
flavan-3-ol | decreasing when amplitude is increased from 41 to 81% | |||||||
condensed tannins | decreasing when amplitude is increased | |||||||
Fetească regală | Romania | aging with different types of oak fragments using ultrasounds vs. the conventional aging method | 15 | 35 | - | sensory analysis | similar results in a shorter time (15 min vs. 20 days) | [32] |
physicochemical properties | no significant difference | |||||||
Sauvignon blanc wines | Romania | aging with different types of oak fragments | 15 | 35 | - | phenolic compounds | significant differences in improving phenolic and aroma profiles in a shorter time (15 min vs. 20 days) | [27] |
sensory characteristics | ||||||||
Merlot | Romania | Maceration–fermentation phase ultrasounds vs. rotating tank maceration | 15 | 35 | - | anthocyanins levels | twice lower values compared to maceration in rotating tanks | [34] |
Intensity (W) | Time | Sample | Results | References |
---|---|---|---|---|
1150 | 1, 2 | red wine (Pinot noir) |
| [62] |
1200 | 10 | red wine (Merlot) |
| [63] |
700 | 12 | red wine (Cabernet Sauvignon) |
| [64] |
500 | 5, 10, 15, 20 | red wine |
| [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luchian, C.E.; Scutarașu, E.C.; Colibaba, L.C.; Motrescu, I.; Cotea, V.V. Non-Thermal and Thermal Physical Procedures—Optimistic Solutions in the Winemaking Industry. Appl. Sci. 2024, 14, 7537. https://doi.org/10.3390/app14177537
Luchian CE, Scutarașu EC, Colibaba LC, Motrescu I, Cotea VV. Non-Thermal and Thermal Physical Procedures—Optimistic Solutions in the Winemaking Industry. Applied Sciences. 2024; 14(17):7537. https://doi.org/10.3390/app14177537
Chicago/Turabian StyleLuchian, Camelia Elena, Elena Cristina Scutarașu, Lucia Cintia Colibaba, Iuliana Motrescu, and Valeriu V. Cotea. 2024. "Non-Thermal and Thermal Physical Procedures—Optimistic Solutions in the Winemaking Industry" Applied Sciences 14, no. 17: 7537. https://doi.org/10.3390/app14177537
APA StyleLuchian, C. E., Scutarașu, E. C., Colibaba, L. C., Motrescu, I., & Cotea, V. V. (2024). Non-Thermal and Thermal Physical Procedures—Optimistic Solutions in the Winemaking Industry. Applied Sciences, 14(17), 7537. https://doi.org/10.3390/app14177537