Urban Vulnerability Assessment of Sea Level Rise in Singapore through the World Avatar
Abstract
:1. Introduction
2. Background
2.1. Sea Level Rise
2.2. The World Avatar
3. Methodology
3.1. Data Sources
3.2. Sea Level Rise Model
3.3. Computational Resources
3.4. Ontology Development
3.5. Agents
3.5.1. OSM Agent
- Equivalent buildings in the KG and the OSM dataset are matched through comparison of the building footprints from the two datasets [56].
- After a match is found, the agent extracts OSM tags that describe the usage (e.g., office and gym) and address information from the OSM data.
- The agent creates ontological instances of the extracted usage and address information in the KG.
- The newly created instances are then linked to the corresponding instantiated building in the KG, enriching the KG with usage and address information from OSM.
3.5.2. Building Floor Agent
Give me the address of buildings. (Query from Listing A1)
3.5.3. GFA Agent
Give me the number of floors and footprint area of buildings. (Query from Listing A3)
3.5.4. Cost Agent
Give me the usages and GFA of buildings. (Query from Listing A4)
3.5.5. Sea Level Impact Agent
4. Use Case
4.1. Impact Assessment and Integrated Spatial Planning
4.2. Data Analysis via Queries
What is the total cost of the affected buildings based on the SSP5-8.5 low-confidence scenario at the 95th percentage quantile in the year 2150?
Listing 1. SPARQL query to obtain IRI of the SSP5-8.5 low-confidence scenario. |
|
Listing 2. SPARQL query for summing construction costs. |
|
bldg:Building obe:hasEstimatedConstructionCost om:Cost.
5. Strengths and Limitations of The World Avatar
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GeoSPARQL | Geographic Query Language for RDF Data |
GML | Geography Markup Language |
IRI | Internationalised Resource Identifier |
KG | Knowledge Graph |
OBDA | Ontology-Based Data Access |
OSM | OpenStreetMap |
RDF | Resource Description Framework |
SPARQL | SPARQL Protocol and RDF Query Language |
SQL | Structured Query Language |
TWA | The World Avatar |
Appendix A
Appendix A.1. Namespaces
Appendix A.2. SPARQL Queries
Listing A1. SPARQL query to obtain the addresses of buildings. |
|
Listing A2. SPARQL query to obtain the number of floors. |
|
Listing A3. SPARQL query to obtain data required to calculate GFA. |
|
Listing A4. SPARQL query to obtain building usage and GFA. |
|
References
- Nicholls, R.J.; Cazenave, A. Sea-Level Rise and Its Impact on Coastal Zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.; Barnett, J.; Fincher, R.; Hurlimann, A.; Mortreux, C.; Waters, E. The social values at risk from sea-level rise. Environ. Impact Assess. Rev. 2013, 41, 45–52. [Google Scholar] [CrossRef]
- Reimann, L.; Vafeidis, A.T.; Brown, S.; Hinkel, J.; Tol, R.S. Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise. Nat. Commun. 2018, 9, 4161. [Google Scholar] [CrossRef]
- Department of Statistics Singapore. Population. 2023. Available online: https://www.singstat.gov.sg/find-data/search-by-theme/population/population-and-population-structure/latest-data (accessed on 1 July 2024).
- Palmer, M.; McInnes, K.; Chattopadhyay, M. Supplementary Information Report Number 3—Key Factors for Sea Level Rise in the Singapore Region. 2015. Available online: https://ccrs.weather.gov.sg/wp-content/uploads/2015/07/V2_Supp_Report_3_Factors_Sea_Level_Rise.pdf (accessed on 1 July 2024).
- Mcleod, E.; Poulter, B.; Hinkel, J.; Reyes, E.; Salm, R. Sea-level rise impact models and environmental conservation: A review of models and their applications. Ocean. Coast. Manag. 2010, 53, 507–517. [Google Scholar] [CrossRef]
- de Moel, H.; Jongman, B.; Kreibich, H.; Merz, B.; Penning-Rowsell, E.; Ward, P.J. Flood risk assessments at different spatial scales. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 865–890. [Google Scholar] [CrossRef]
- Nundloll, V.; Lamb, R.; Hankin, B.; Blair, G. A semantic approach to enable data integration for the domain of flood risk management. Environ. Chall. 2021, 3, 100064. [Google Scholar] [CrossRef]
- Hil, G. Better management through measurement: Integrating archaeological site features into a GIS-based erosion and sea level rise impact assessment—Blueskin Bay, New Zealand. J. Isl. Coast. Archaeol. 2020, 15, 104–126. [Google Scholar] [CrossRef]
- Janowicz, K.; Hitzler, P.; Li, W.; Rehberger, D.; Schildhauer, M.; Zhu, R.; Shimizu, C.; Fisher, C.; Cai, L.; Mai, G.; et al. Know, Know Where, KnowWhereGraph: A densely connected, cross-domain knowledge graph and geo-enrichment service stack for applications in environmental intelligence. AI Mag. 2022, 43, 30–39. [Google Scholar] [CrossRef]
- Sterr, H.; Klein, R.; Reese, S. Climate Change and Coastal Zones: An Overview of the State of the Art on Regional and Local Vulnerability Assessment; Fondazione Eni Enrico Mattei: Milano, Italy, 2000. [Google Scholar] [CrossRef]
- Neumann, J.E.; Hudgens, D.E.; Herter, J.; Martinich, J. Assessing Sea-Level Rise Impacts: A GIS-Based Framework and Application to Coastal New Jersey. Coast. Manag. 2010, 38, 433–455. [Google Scholar] [CrossRef]
- Shukla, J.B.; Arora, M.S.; Verma, M.; Misra, A.K.; Takeuchi, Y. The Impact of Sea Level Rise Due to Global Warming on the Coastal Population Dynamics: A Modeling Study. Earth Syst. Environ. 2021, 5, 909–926. [Google Scholar] [CrossRef]
- Ng, W.S.; Mendelsohn, R. The impact of sea level rise on Singapore. Environ. Dev. Econ. 2005, 10, 201–215. [Google Scholar] [CrossRef]
- Akroyd, J.; Mosbach, S.; Bhave, A.; Kraft, M. Universal Digital Twin—A Dynamic Knowledge Graph. Data-Centric Eng. 2021, 2, e14. [Google Scholar] [CrossRef]
- Lim, M.Q.; Wang, X.; Inderwildi, O.; Kraft, M. The World Avatar—A World Model for Facilitating Interoperability. In Intelligent Decarbonisation; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 39–53. [Google Scholar] [CrossRef]
- Cazenave, A.; Cozannet, G.L. Sea level rise and its coastal impacts. Earth’s Future 2014, 2, 15–34. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Centre for Climate Research Singapore. Singapore’s Third National Climate Change Study (V3). 2023. Available online: https://www.mss-int.sg/docs/default-source/v3_reports/v3-stakeholder-report_20240306.pdf (accessed on 1 July 2024).
- Azevedo de Almeida, B.; Mostafavi, A. Resilience of infrastructure systems to sea-level rise in coastal areas: Impacts, adaptation measures, and implementation challenges. Sustainability 2016, 8, 1115. [Google Scholar] [CrossRef]
- Hauer, M.E.; Fussell, E.; Mueller, V.; Burkett, M.; Call, M.; Abel, K.; McLeman, R.; Wrathall, D. Sea-level rise and human migration. Nat. Rev. Earth Environ. 2020, 1, 28–39. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Clarke, J.; Ranasinghe, R.; Reimann, L.; Khalaf, N.; Duong, T.M.; Ouweneel, B.; Sabour, S.; Iles, C.E.; Trisos, C.H.; et al. African heritage sites threatened as sea-level rise accelerates. Nat. Clim. Chang. 2022, 12, 256–262. [Google Scholar] [CrossRef]
- Li, Y.; Jia, X.; Liu, Z.; Zhao, L.; Sheng, P.; Storozum, M.J. The potential impact of rising sea levels on China’s coastal cultural heritage: A GIS risk assessment. Antiquity 2022, 96, 406–421. [Google Scholar] [CrossRef]
- Feenstra, J.F. Handbook on Methods for Climate Change Impact Assessment and Adaptation Strategies; United Nations Environment Programme: Nairobi, Kenya, 1998. [Google Scholar]
- Chan, F.K.S.; Chuah, C.J.; Ziegler, A.; Dąbrowski, M.; Varis, O. Towards resilient flood risk management for Asian coastal cities: Lessons learned from Hong Kong and Singapore. J. Clean. Prod. 2018, 187, 576–589. [Google Scholar] [CrossRef]
- Kopp, R.E.; Gilmore, E.A.; Little, C.M.; Lorenzo-Trueba, J.; Ramenzoni, V.C.; Sweet, W.V. Usable science for managing the risks of sea-level rise. Earth’s Future 2019, 7, 1235–1269. [Google Scholar] [CrossRef]
- Bongarts Lebbe, T.; Rey-Valette, H.; Chaumillon, É.; Camus, G.; Almar, R.; Cazenave, A.; Claudet, J.; Rocle, N.; Meur-Ferec, C.; Viard, F.; et al. Designing coastal adaptation strategies to tackle sea level rise. Front. Mar. Sci. 2021, 8, 740602. [Google Scholar] [CrossRef]
- OpenStreetMap contributors. Planet Dump Retrieved from https://planet.osm.org. 2017. Available online: https://www.openstreetmap.org (accessed on 1 July 2024).
- Government Technology Agency of Singapore. Singapore’s Open Data Portal. 2024. Available online: https://data.gov.sg/ (accessed on 1 July 2024).
- Hinkel, J.; Klein, R.J. Integrating knowledge to assess coastal vulnerability to sea-level rise: The development of the DIVA tool. Glob. Environ. Chang. 2009, 19, 384–395. [Google Scholar] [CrossRef]
- W3C. SPARQL 1.1 Query Language. 2013. Available online: https://www.w3.org/TR/sparql11-query/ (accessed on 1 July 2024).
- Kraft, M.; Mosbach, S. The future of computational modelling in reaction engineering. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2010, 368, 3633–3644. [Google Scholar] [CrossRef]
- Blazegraph. Blazegraph. 2020. Available online: https://blazegraph.com (accessed on 1 July 2024).
- Eclipse Foundation. Eclipse RDF4J. 2024. Available online: https://rdf4j.org/ (accessed on 1 July 2024).
- Xiao, G.; Lanti, D.; Kontchakov, R.; Komla-Ebri, S.; Güzel-Kalaycı, E.; Ding, L.; Corman, J.; Cogrel, B.; Calvanese, D.; Botoeva, E. The virtual knowledge graph system ontop. In The Semantic Web—ISWC 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 259–277. [Google Scholar] [CrossRef]
- Hofmeister, M.; Lee, K.F.; Tsai, Y.K.; Müller, M.; Nagarajan, K.; Mosbach, S.; Akroyd, J.; Kraft, M. Dynamic control of district heating networks with integrated emission modelling: A dynamic knowledge graph approach. Energy AI 2024, 17, 100376. [Google Scholar] [CrossRef]
- Kondinski, A.; Menon, A.; Nurkowski, D.; Farazi, F.; Mosbach, S.; Akroyd, J.; Kraft, M. Automated Rational Design of Metal–Organic Polyhedra. J. Am. Chem. Soc. 2022, 144, 11713–11728. [Google Scholar] [CrossRef]
- Tiecke, T.G.; Liu, X.; Zhang, A.; Gros, A.; Li, N.; Yetman, G.; Kilic, T.; Murray, S.; Blankespoor, B.; Prydz, E.B.; et al. Mapping the world population one building at a time. arXiv 2017, arXiv:1712.05839. [Google Scholar] [CrossRef]
- McMichael, C.; Dasgupta, S.; Ayeb-Karlsson, S.; Kelman, I. A review of estimating population exposure to sea-level rise and the relevance for migration. Environ. Res. Lett. 2020, 15, 123005. [Google Scholar] [CrossRef]
- Farr, T.G.; Kobrick, M. Shuttle Radar Topography Mission produces a wealth of data. Eos Trans. Am. Geophys. Union 2000, 81, 583–585. [Google Scholar] [CrossRef]
- Wendi, D.; Liong, S.Y.; Sun, Y.; doan, C.D. An innovative approach to improve SRTM DEM using multispectral imagery and artificial neural network. J. Adv. Model. Earth Syst. 2016, 8, 691–702. [Google Scholar] [CrossRef]
- Gesch, D.B. Analysis of lidar elevation data for improved identification and delineation of lands vulnerable to sea-level rise. J. Coast. Res. 2009, 10053, 49–58. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center. Mapping Coastal Inundation Primer; Technical report; National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center: Washington, DC, USA, 2012. [Google Scholar]
- Shaw, T.A.; Li, T.; Ng, T.; Cahill, N.; Chua, S.; Majewski, J.M.; Nathan, Y.; Garner, G.G.; Kopp, R.E.; Hanebuth, T.J.; et al. Deglacial perspectives of future sea level for Singapore. Commun. Earth Environ. 2023, 4, 204. [Google Scholar] [CrossRef]
- Calvanese, D.; Cogrel, B.; Komla-Ebri, S.; Kontchakov, R.; Lanti, D.; Rezk, M.; Rodriguez-Muro, M.; Xiao, G. Ontop: Answering SPARQL queries over relational databases. Semant. Web 2017, 8, 471–487. [Google Scholar] [CrossRef]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Roberts, D.C.; Masson-Delmotte, V.; Zhai, P.; Tignor, M.; Poloczanska, E.; Weyer, N. The Ocean and Cryosphere in a Changing Climate. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Cambridge University Press: Cambridge, UK, 2019; p. 1155. [Google Scholar] [CrossRef]
- Government of Canada. Representative Concentration Pathways. 2018. Available online: https://climate-scenarios.canada.ca/?page=scen-rcp (accessed on 1 July 2024).
- Mastrandrea, M.D.; Field, C.B.; Stocker, T.F.; Edenhofer, O.; Ebi, K.L.; Frame, D.J.; Held, H.; Kriegler, E.; Mach, K.J.; Matschoss, P.R.; et al. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties; Technical report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2010. [Google Scholar] [CrossRef]
- Colpaert, P.; Abelshausen, B.; Rojas Meléndez, J.; Delva, H.; Verborgh, R. Republishing OpenStreetMap’s Roads as Linked Routable Tiles; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 13–17. [Google Scholar] [CrossRef]
- Silvennoinen, H.; Chadzynski, A.; Farazi, F.; Grišiūtė, A.; Shi, Z.; von Richthofen, A.; Cairns, S.; Kraft, M.; Raubal, M.; Herthogs, P. A semantic web approach to land use regulations in urban planning: The OntoZoning ontology of zones, land uses and programmes for Singapore. J. Urban Manag. 2023, 12, 151–167. [Google Scholar] [CrossRef]
- Shi, Z.; Silvennoinen, H.; Chadzynski, A.; von Richthofen, A.; Kraft, M.; Cairns, S.; Herthogs, P. Defining archetypes of mixed-use developments using Google Maps API data. Environ. Plan. Urban Anal. City Sci. 2023, 50, 1607–1623. [Google Scholar] [CrossRef]
- Hofmeister, M.; Bai, J.; Brownbridge, G.P.E.; Mosbach, S.; Lee, K.F.; Farazi, F.; Hillman, M.; Agarwal, M.; Ganguly, S.; Akroyd, J.; et al. Semantic agent framework for automated flood assessment using dynamic knowledge graphs. Data-Centric Eng. 2024, 5, e14. [Google Scholar] [CrossRef]
- Ding, L.; Xiao, G.; Pano, A.; Fumagalli, M.; Chen, D.; Feng, Y.; Calvanese, D.; Fan, H.; Meng, L. Integrating 3D city data through knowledge graphs. Geo-Spat. Inf. Sci. 2024, 0, 1–20. [Google Scholar] [CrossRef]
- Yao, Z.; Nagel, C.; Kunde, F.; Hudra, G.; Willkomm, P.; Donaubauer, A.; Adolphi, T.; Kolbe, T.H. 3DCityDB-a 3D geodatabase solution for the management, analysis, and visualization of semantic 3D city models based on CityGML. Open Geospat. Data Softw. Stand. 2018, 3, 5. [Google Scholar] [CrossRef]
- Phua, S.Z.; Hofmeister, M.; Tsai, Y.K.; Peppard, O.; Lee, K.F.; Courtney, S.; Mosbach, S.; Akroyd, J.; Kraft, M. Fostering urban resilience and accessibility in cities: A dynamic knowledge graph approach. Sustain. Cities Soc. 2024, 113, 105708. [Google Scholar] [CrossRef]
- HDB (Housing and Development Board). HDB Property Information. 2024. Available online: https://beta.data.gov.sg/collections/150/view (accessed on 1 July 2024).
- Intuit, Fuzzy-Matcher. 2024. Available online: https://github.com/intuit/fuzzy-matcher (accessed on 1 July 2024).
- Urban Redevelopment Authority (URA). Available online: https://www.ura.gov.sg/Corporate/Guidelines/Development-Control/gross-floor-area/GFA/Introduction (accessed on 1 July 2024).
- Asia Infrastructure Solutions, Construction Cost Review 4Q2023. 2024. Available online: https://www.asiainfrasolutions.com/wp-content/uploads/2024/04/AIS-Construction-Cost-Review-4Q2023.pdf (accessed on 1 July 2024).
- Cea, L.; Costabile, P. Flood risk in urban areas: Modelling, management and adaptation to climate change. A review. Hydrology 2022, 9, 50. [Google Scholar] [CrossRef]
- Ran, J.; Nedovic-Budic, Z. Integrating spatial planning and flood risk management: A new conceptual framework for the spatially integrated policy infrastructure. Comput. Environ. Urban Syst. 2016, 57, 68–79. [Google Scholar] [CrossRef]
- Rijgersberg, H.; Van Assem, M.; Top, J. Ontology of Units of Measure. 2024. Available online: https://github.com/HajoRijgersberg/OM (accessed on 1 July 2024).
- Tran, D.; Pascazio, L.; Akroyd, J.; Mosbach, S.; Kraft, M. Leveraging Text-to-Text Pretrained Language Models for Question Answering in Chemistry. ACS Omega 2024, 9, 13883–13896. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Nurkowski, D.; Mosbach, S.; Akroyd, J.; Kraft, M. Question Answering System for Chemistry. J. Chem. Inf. Model. 2021, 61, 3868–3880. [Google Scholar] [CrossRef]
- Bai, J.; Lee, K.F.; Hofmeister, M.; Mosbach, S.; Akroyd, J.; Kraft, M. A derived information framework for a dynamic knowledge graph and its application to smart cities. Future Gener. Comput. Syst. 2024, 152, 112–126. [Google Scholar] [CrossRef]
- Wang, X.; Meng, X.; Long, Y. Projecting 1 km-grid population distributions from 2020 to 2100 globally under shared socioeconomic pathways. Sci. Data 2022, 9, 563. [Google Scholar] [CrossRef] [PubMed]
Agent | Data Required | Data Added to KG |
---|---|---|
OSM agent | Building footprints from OSM and KG | Building usage, usage share, and address |
Building floor agent | Building address | Number of floors |
GFA agent | Building footprint area and number of floors | GFA |
Cost agent | GFA, building usage and usage share | Construction cost |
Sea level impact agent | Elevation, locations of objects of interest, sea level rise | Linkage between sea level rise scenarios with vulnerable objects |
Building | StreetNumber | StreetName |
---|---|---|
Building1 1 | 671C | Jurong West Street 65 |
Building2 | 9 | Changi North Way |
Building3 | 50 | Nanyang Avenue |
Building4 | 48 | Springleaf Garden |
Building | Floor | Area |
---|---|---|
Building1 | 29 | 1000 |
Building2 | 28 | 3000 |
Category | Cost per GFA |
---|---|
Office | 5575 |
Commercial | 5690 |
Industrial | 2090 |
Building | Usage | UsageShare | gfa |
---|---|---|---|
Building1 | obe:EatingEstablishment | 0.7 | 110,000 |
Building1 | obe:Office | 0.3 | 110,000 |
Building2 | obe:IndustrialFacility | 1 | 120,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phua, S.Z.; Lee, K.F.; Tsai, Y.-K.; Ganguly, S.; Yan, J.; Mosbach, S.; Ng, T.; Moise, A.; Horton, B.P.; Kraft, M. Urban Vulnerability Assessment of Sea Level Rise in Singapore through the World Avatar. Appl. Sci. 2024, 14, 7815. https://doi.org/10.3390/app14177815
Phua SZ, Lee KF, Tsai Y-K, Ganguly S, Yan J, Mosbach S, Ng T, Moise A, Horton BP, Kraft M. Urban Vulnerability Assessment of Sea Level Rise in Singapore through the World Avatar. Applied Sciences. 2024; 14(17):7815. https://doi.org/10.3390/app14177815
Chicago/Turabian StylePhua, Shin Zert, Kok Foong Lee, Yi-Kai Tsai, Srishti Ganguly, Jingya Yan, Sebastian Mosbach, Trina Ng, Aurel Moise, Benjamin P. Horton, and Markus Kraft. 2024. "Urban Vulnerability Assessment of Sea Level Rise in Singapore through the World Avatar" Applied Sciences 14, no. 17: 7815. https://doi.org/10.3390/app14177815
APA StylePhua, S. Z., Lee, K. F., Tsai, Y. -K., Ganguly, S., Yan, J., Mosbach, S., Ng, T., Moise, A., Horton, B. P., & Kraft, M. (2024). Urban Vulnerability Assessment of Sea Level Rise in Singapore through the World Avatar. Applied Sciences, 14(17), 7815. https://doi.org/10.3390/app14177815