Special Issue on Advances in Wood Processing Technology
An Overview of Published Articles
Funding
Acknowledgments
Conflicts of Interest
References
- Hoadley, R.B. Understanding Wood: A Craftsman’s Guide to Wood Technology; Taunton Press: Newtown, CT, USA; Publishers Group West [distributor]: Emeryville, CA, USA, 2000; ISBN 978-1-56158-358-4. [Google Scholar]
- Kwidziński, Z.; Bednarz, J.; Pędzik, M.; Sankiewicz, Ł.; Szarowski, P.; Knitowski, B.; Rogoziński, T. Innovative Line for Door Production TechnoPORTA—Technological and Economic Aspects of Application of Wood-Based Materials. Appl. Sci. 2021, 11, 4502. [Google Scholar] [CrossRef]
- Braccesi, L.; Monsignori, M.; Nesi, P. Monitoring and Optimizing Industrial Production Processes. In Proceedings of the Proceedings of the Ninth IEEE International Conference on Engineering of Complex Computer Systems, Florence, Italy, 16 April 2004; pp. 213–222. [Google Scholar]
- Sydor, M.; Pinkowski, G.; Kučerka, M.; Kminiak, R.; Antov, P.; Rogoziński, T. Indentation Hardness and Elastic Recovery of Some Hardwood Species. Appl. Sci. 2022, 12, 5049. [Google Scholar] [CrossRef]
- Warcholinski, B.; Gilewicz, A. Surface Engineering of Woodworking Tools, a Review. Appl. Sci. 2022, 12, 10389. [Google Scholar] [CrossRef]
- Ružiak, I.; Igaz, R.; Kubovský, I.; Gajtanska, M.; Jankech, A. Prediction of the Effect of CO2 Laser Cutting Conditions on Spruce Wood Cut Characteristics Using an Artificial Neural Network. Appl. Sci. 2022, 12, 11355. [Google Scholar] [CrossRef]
- Kubovský, I.; Kačík, F.; Reinprecht, L. The Impact of UV Radiation on the Change of Colour and Composition of the Surface of Lime Wood Treated with a CO2 Laser. J. Photochem. Photobiol. A Chem. 2016, 322–323, 60–66. [Google Scholar] [CrossRef]
- Kúdela, J.; Kubovský, I.; Andrejko, M. Surface Properties of Beech Wood after CO2 Laser Engraving. Coatings 2020, 10, 77. [Google Scholar] [CrossRef]
- Fukuta, S.; Nomura, M.; Ikeda, T.; Yoshizawa, M.; Yamasaki, M.; Sasaki, Y. UV Laser Machining of Wood. Eur. J. Wood Prod. 2016, 74, 261–267. [Google Scholar] [CrossRef]
- Eltawahni, H.A.; Olabi, A.G.; Benyounis, K.Y. Investigating the CO2 Laser Cutting Parameters of MDF Wood Composite Material. Opt. Laser Technol. 2011, 43, 648–659. [Google Scholar] [CrossRef]
- Kwidziński, Z.; Hanincová, L.; Tyma, E.; Bednarz, J.; Sankiewicz, Ł.; Knitowski, B.; Pędzik, M.; Procházka, J.; Rogoziński, T. The Efficiency of Edge Banding Module in a Mass Customized Line for Wooden Doors Production. Appl. Sci. 2022, 12, 12510. [Google Scholar] [CrossRef]
- Koleda, P.; Koleda, P.; Hrčková, M.; Júda, M.; Hortobágyi, Á. Experimental Granulometric Characterization of Wood Particles from CNC Machining of Chipboard. Appl. Sci. 2023, 13, 5484. [Google Scholar] [CrossRef]
- Hortobágyi, Á.; Koleda, P.; Koleda, P.; Kminiak, R. Effect of Milling Parameters on Amplitude Spectrum of Vibrations during Milling Materials Based on Wood. Appl. Sci. 2023, 13, 5061. [Google Scholar] [CrossRef]
- Asilturk, I. On-Line Surface Roughness Recognition System by Vibration Monitoring in CNC Turning Using Adaptive Neuro-Fuzzy Inference System (ANFIS). Int. J. Phys. Sci. 2011, 6, 5353–5360. [Google Scholar] [CrossRef]
- García Plaza, E.; Núñez López, P.J.; Beamud González, E.M. Efficiency of Vibration Signal Feature Extraction for Surface Finish Monitoring in CNC Machining. J. Manuf. Process. 2019, 44, 145–157. [Google Scholar] [CrossRef]
- Suleimana, A.; Peixoto, B.C.; Branco, J.M.; Camões, A. Experimental Evaluation of Glulam Made from Portuguese Eucalyptus. Appl. Sci. 2023, 13, 6866. [Google Scholar] [CrossRef]
- Beram, A. Enhancing Surface Characteristics and Combustion Behavior of Black Poplar Wood through Varied Impregnation Techniques. Appl. Sci. 2023, 13, 11482. [Google Scholar] [CrossRef]
- Rostampour-Haftkhani, A.; Abdoli, F.; Arabi, M.; Nasir, V.; Rashidi, M. Effect of Wood Densification and GFRP Reinforcement on the Embedment Strength of Poplar CLT. Appl. Sci. 2023, 13, 12249. [Google Scholar] [CrossRef]
- Sydor, M.; Rogoziński, T.; Stuper-Szablewska, K.; Starczewski, K. The Accuracy of Holes Drilled in the Side Surface of Plywood. BioRes 2019, 15, 117–129. [Google Scholar] [CrossRef]
- Chavenetidou, M.; Kamperidou, V. Impact of Wood Structure Variability on the Surface Roughness of Chestnut Wood. Appl. Sci. 2024, 14, 6326. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kučerka, M.; Očkajová, A.; Kminiak, R. Special Issue on Advances in Wood Processing Technology. Appl. Sci. 2024, 14, 7863. https://doi.org/10.3390/app14177863
Kučerka M, Očkajová A, Kminiak R. Special Issue on Advances in Wood Processing Technology. Applied Sciences. 2024; 14(17):7863. https://doi.org/10.3390/app14177863
Chicago/Turabian StyleKučerka, Martin, Alena Očkajová, and Richard Kminiak. 2024. "Special Issue on Advances in Wood Processing Technology" Applied Sciences 14, no. 17: 7863. https://doi.org/10.3390/app14177863
APA StyleKučerka, M., Očkajová, A., & Kminiak, R. (2024). Special Issue on Advances in Wood Processing Technology. Applied Sciences, 14(17), 7863. https://doi.org/10.3390/app14177863