Breast Ultrasound Computer-Aided Diagnosis System Based on Mass Irregularity Features in Frequency Domain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ultrasound Image Acquisition and Data Collection
2.2. Fundamental Operational Framework of Breast Ultrasound CAD
2.3. BI-RADS Categories
2.4. Lesion Detection and Contour Extraction
2.4.1. Detection of Lesion Areas Using Morphological Information of the Lesion
2.4.2. Lesion Contour Extraction Using the Canny Algorithm
2.5. Tumor Malignancy Determination Using BI-RADS Category Information
2.6. Mass Irregularity Feature Extraction
2.7. Correlation-Based Feature Selection Approach
2.8. Support Vector Machine (SVM) Classifier
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Cancer Society. Cancer Facts & Figures 2024; American Cancer Society: Atlanta, GA, USA, 2024. [Google Scholar]
- Huang, Q.; Ding, H.; Effatparvar, M. Breast Cancer Diagnosis Based on Hybrid SqueezeNet and Improved Chef-Based Optimizer. Expert Syst. Appl. 2024, 237, 121470. [Google Scholar] [CrossRef]
- Marmot, M.G.; Altman, D.G.; Cameron, D.A.; Dewar, J.A.; Thompson, S.G.; Wilcox, M. The Benefits and Harms of Breast Cancer Screening: An Independent Review. Br. J. Cancer 2013, 108, 2205–2240. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Legood, R.; Sadique, Z.; dos-Santos-Silva, I.; Yang, L. Cost–Effectiveness of Risk-Based Breast Cancer Screening Programme, China. Bull. World Health Organ. 2018, 96, 568. [Google Scholar] [CrossRef] [PubMed]
- Pomerantz, B.J. Imaging and Interventional Radiology for Cancer Management. Surg. Clin. N. Am. 2020, 100, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Bevers, T.B.; Helvie, M.; Bonaccio, E.; Calhoun, K.E.; Daly, M.B.; Farrar, W.B.; Garber, J.E.; Gray, R.; Greenberg, C.C.; Greenup, R.; et al. Breast Cancer Screening and Diagnosis, Version 3.2018, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2018, 16, 1362–1389. [Google Scholar] [CrossRef]
- Coleman, C. Early Detection and Screening for Breast Cancer. Semin. Oncol. Nurs. 2017, 33, 141–155. [Google Scholar] [CrossRef]
- Maitra, I.K.; Nag, S.; Bandyopadhyay, S.K. Technique for Preprocessing of Digital Mammogram. Comput. Methods Programs Biomed. 2012, 107, 175–188. [Google Scholar] [CrossRef]
- Pace, L.E. False-Positive Results of Mammography Screening in the Era of Digital Breast Tomosynthesis. JAMA Netw. Open 2022, 5, e222445. [Google Scholar] [CrossRef]
- Guo, Z.; Xie, J.; Wan, Y.; Zhang, M.; Qiao, L.; Yu, J.; Chen, S.; Li, B.; Yao, Y. A Review of the Current State of the Computer-Aided Diagnosis (CAD) Systems for Breast Cancer Diagnosis. Open Life Sci. 2022, 17, 1600–1611. [Google Scholar] [CrossRef]
- Ding, W.; Fan, Z.; Xu, Y.; Wei, C.; Li, Z.; Lin, Y.; Ruan, G. Magnetic Resonance Imaging in Screening Women at High Risk of Breast Cancer: A Meta-Analysis. Medicine 2023, 102, e33146. [Google Scholar] [CrossRef]
- Chiarelli, A.M.; Blackmore, K.M.; Muradali, D.; Done, S.J.; Majpruz, V.; Weerasinghe, A.; Mirea, L.; Eisen, A.; Rabeneck, L.; Warner, E. Performance Measures of Magnetic Resonance Imaging Plus Mammography in the High Risk Ontario Breast Screening Program. J. Natl. Cancer Inst. 2020, 112, 136–144. [Google Scholar] [CrossRef]
- Armanious, K.; Jiang, C.; Fischer, M.; Küstner, T.; Hepp, T.; Nikolaou, K.; Gatidis, S.; Yang, B. MedGAN: Medical Image Translation Using GANs. Comput. Med. Imaging Graph. 2020, 79, 101684. [Google Scholar] [CrossRef] [PubMed]
- Sood, R.; Rositch, A.F.; Shakoor, D.; Ambinder, E.; Pool, K.-L.; Pollack, E.; Mollura, D.J.; Mullen, L.A.; Harvey, S.C. Ultrasound for Breast Cancer Detection Globally: A Systematic Review and Meta-Analysis. J. Glob. Oncol. 2019, 5, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Moinuddin, M.; Khan, S.; Alsaggaf, A.U.; Abdulaal, M.J.; Al-Saggaf, U.M.; Ye, J.C. Medical Ultrasound Image Speckle Reduction and Resolution Enhancement Using Texture Compensated Multi-Resolution Convolution Neural Network. Front. Physiol. 2022, 13, 961571. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, J. Ultrasound Image Denoising Using Generative Adversarial Networks with Residual Dense Connectivity and Weighted Joint Loss. PeerJ Comput. Sci. 2022, 8, e873. [Google Scholar] [CrossRef] [PubMed]
- Cammarasana, S.; Nicolardi, P.; Patanè, G. Real-Time Denoising of Ultrasound Images Based on Deep Learning. Med. Biol. Eng. Comput. 2022, 60, 2229–2244. [Google Scholar] [CrossRef]
- Cao, Z.; Duan, L.; Yang, G.; Yue, T.; Chen, Q. An Experimental Study on Breast Lesion Detection and Classification from Ultrasound Images Using Deep Learning Architectures. BMC Med. Imaging 2019, 19, 51. [Google Scholar] [CrossRef]
- AlZoubi, A.; Lu, F.; Zhu, Y.; Ying, T.; Ahmed, M.; Du, H. Classification of Breast Lesions in Ultrasound Images Using Deep Convolutional Neural Networks: Transfer Learning Versus Automatic Architecture Design. Med. Biol. Eng. Comput. 2024, 62, 135–149. [Google Scholar] [CrossRef]
- Gu, Y.; Xu, W.; Lin, B.; An, X.; Tian, J.; Ran, H.; Ren, W.; Chang, C.; Yuan, J.; Kang, C.; et al. Deep Learning Based on Ultrasound Images Assists Breast Lesion Diagnosis in China: A Multicenter Diagnostic Study. Insights Imaging 2022, 13, 124. [Google Scholar] [CrossRef]
- Sirjani, N.; Oghli, M.G.; Tarzamni, M.K.; Gity, M.; Shabanzadeh, A.; Ghaderi, P.; Shiri, I.; Akhavan, A.; Faraji, M.; Taghipour, M. A Novel Deep Learning Model for Breast Lesion Classification Using Ultrasound Images: A Multicenter Data Evaluation. Phys. Med. 2023, 107, 102560. [Google Scholar] [CrossRef]
- Liang, S.; Rangayyan, R.M.; Desautels, J.E.L. Application of Shape Analysis to Mammographic Calcifications. IEEE Trans. Med. Imaging 1994, 13, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.F.; Wu, W.J.; Moon, W.K.; Chen, D.-R. Automatic Ultrasound Segmentation and Morphology Based Diagnosis of Solid Breast Tumors. Breast Cancer Res. Treat. 2005, 89, 179–185. [Google Scholar] [CrossRef]
- Chen, C.M.; Chou, Y.H.; Han, K.C.; Hung, G.S.; Tiu, C.M.; Chiou, H.J.; Chiou, S.Y. Breast Lesions on Sonograms: Computer-Aided Diagnosis with Nearly Setting-Independent Features and Artificial Neural Networks. Radiology 2003, 226, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.C.; Chang, R.F.; Moon, W.K.; Chou, Y.H.; Huang, C.S. Breast Ultrasound Computer-Aided Diagnosis Using BI-RADS Features. Acad. Radiol. 2007, 14, 928–939. [Google Scholar] [CrossRef] [PubMed]
- American College of Radiology. Breast Imaging Reporting and Data System, 4th ed.; American College of Radiology: Reston, VA, USA, 2003. [Google Scholar]
- Shan, J.; Alam, S.K.; Garra, B.; Zhang, Y.; Ahmed, T. Computer-Aided Diagnosis for Breast Ultrasound Using Computerized BI-RADS Features and Machine Learning Methods. Ultrasound Med. Biol. 2016, 42, 980–988. [Google Scholar] [CrossRef]
- Fleury, E.; Marcomini, K. Performance of Machine Learning Software to Classify Breast Lesions Using BI-RADS Radiomic Features on Ultrasound Images. Eur. Radiol. Exp. 2019, 3, 34. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.W.; Chen, Y.R.; Ko, C.C.; Lin, W.Y.; Lin, K.P. A Novel Computer-Aided Diagnosis System for Breast Ultrasound Images Based on BI-RADS Categories. Appl. Sci. 2020, 10, 1830. [Google Scholar] [CrossRef]
- Baker, J.A.; Kornguth, P.J.; Lo, J.Y.; Williford, M.E.; Floyd, C.E., Jr. Breast Cancer: Prediction with Artificial Neural Network Based on BI-RADS Standardized Lexicon. Radiology 1995, 196, 817–822. [Google Scholar] [CrossRef]
- Lo, J.Y.; Baker, J.A.; Kornguth, P.J.; Iglehart, J.D.; Floyd, C.E., Jr. Predicting breast cancer invasion with artificial neural networks on the basis of mammographic features. Radiology 1997, 203, 159–163. [Google Scholar] [CrossRef]
- Baker, J.A.; Kornguth, P.J.; Lo, J.Y.; Floyd, C.E., Jr. Artificial neural network: Improving the quality of breast biopsy recommendations. Radiology 1996, 198, 131–135. [Google Scholar] [CrossRef]
- Huang, Y.L. Computer-Aided Diagnosis Using Neural Networks and Support Vector Machines for Breast Ultrasonography. J. Med. Ultrasound 2009, 17, 17–24. [Google Scholar] [CrossRef]
- Nascimento, C.D.L.; Silva, S.D.D.S.; Silva, T.A.D.; Pereira, W.C.D.A.; Costa, M.G.F.; Costa Filho, C.F.F. Breast Tumor Classification in Ultrasound Images Using Support Vector Machines and Neural Networks. Res. Biomed. Eng. 2016, 32, 283–292. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, R.; Kumar, R. A Comparative Analysis of Machine Learning Algorithms for Breast Cancer Detection and Identification of Key Predictive Features. Trait. Du Signal 2024, 41, 127. [Google Scholar] [CrossRef]
- Chatterjee, D.; Ghosh, P. Comparative Analysis of Machine Learning Algorithms for Breast Cancer Classification: SVM Outperforms XGBoost, CNN, RNN, and Others. bioRxiv 2024, 41, 127–140. [Google Scholar] [CrossRef]
- Mendelson, E.B.; Böhm-Velez, M.; Berg, W.A.; Whitman, G.J.; Feldman, M.I.; Madjar, H.; Rizzatto, G.; Baker, J.A.; Zuley, M.; Stavros, A.T.; et al. ACR BI-RADS Ultrasound. In ACR BI-RADS Atlas, Breast Imaging Reporting and Data System; American College of Radiology: Reston, VA, USA, 2013. [Google Scholar]
- Belongie, S.; Malik, J.; Puzicha, J. Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 509–521. [Google Scholar] [CrossRef]
- Stone, M. Cross-validatory choice and assessment of statistical predictors. J. R. Stat. Soc. B 1974, 36, 111–147. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D. CSwin-PNet: A CNN-Swin Transformer Combined Pyramid Network for Breast Lesion Segmentation in Ultrasound Images. Expert Syst. Appl. 2023, 213, 119024. [Google Scholar] [CrossRef]
- Sun, S.; Cao, Z.; Liao, D.; Lv, R. A Magnified Adaptive Feature Pyramid Network for Automatic Microaneurysms Detection. Comput. Biol. Med. 2021, 139, 105000. [Google Scholar] [CrossRef]
- Alam, M.S.; Wang, D.; Sowmya, A. AMFP-net: Adaptive Multi-Scale Feature Pyramid Network for Diagnosis of Pneumoconiosis from Chest X-Ray Images. Artif. Intell. Med. 2024, 154, 102917. [Google Scholar] [CrossRef]
Attribute | Details |
---|---|
Total Number of Images | 5252 |
Time Frame | 2006–2012 |
Number of Benign Cases | 2745 |
Number of Malignant Cases | 2507 |
Mean Age of Patients (Benign Tumors) | 45 years |
Age Range of Patients (Benign Tumors) | 11–81 years |
Mean Age of Patients (Malignant Tumors) | 49 years |
Age Range of Patients (Malignant Tumors) | 24–86 years |
Ultrasound Imaging Device | Philips ATL iU22 |
Image Resolution | 1024 × 768 pixels |
Spatial Resolution | 0.23 mm per pixel |
Frequency Range | 5–12 MHz |
Feature No. | Feature Name |
---|---|
1~8 | Spatial gray-level dependence matrix (SGLD) |
9~16 | Fourier with shape context |
17~20 | Fourier with centroid distance (magnitude) |
21~24 | Fourier with centroid distance (phase) |
25 | Intensity in the mass area |
26 | Gradient magnitude in the mass area |
27 | Orientation |
28 | Depth–width ratio |
29~30 | Distance between mass shape and best fit ellipse |
31 | The average gray changes between tissue area and mass area |
32 | The average gray changes between posterior and mass area |
33~34 | The histogram changes between tissue and mass |
35 | Comparison of the gray value of left, post, and right under lesion |
36 | The number of lobulate areas |
37 | The number of protuberances |
38 | The number of depressions |
39 | Lobulation index |
42~43 | Elliptic-normalized circumference |
Performance Indices | Formula |
---|---|
Accuracy | (TP + TN)/(TP + TN + FP + FN) |
Sensitivity | TP/(TP + FN) |
Specificity | TN/(TN + FP) |
Positive Predictive Value (PPV) | TP/(TP + FP) |
Negative Predictive Value (NPV) | TN/(TN + FN) |
Feature Set | Number of Features | Accuracy (%) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) |
---|---|---|---|---|---|---|
Proposed Features | 43 | 92.91 | 89.94 | 91.38 | 90.29 | 91.45 |
SGLD (F1) | 8 | 88.42 | 87.89 | 69.24 | 72.33 | 71.95 |
Depth–Width Ratio (F2) | 1 | 89.32 | 65.97 | 91.28 | 70.39 | 68.87 |
Number of Depressions (F3) | 1 | 89.52 | 54.28 | 90.24 | 77.87 | 75.27 |
Orientation (F4) | 1 | 58.29 | 57.22 | 55.56 | 54.17 | 55.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nairuz, T.; Lee, D.; Lee, J.-H. Breast Ultrasound Computer-Aided Diagnosis System Based on Mass Irregularity Features in Frequency Domain. Appl. Sci. 2024, 14, 8003. https://doi.org/10.3390/app14178003
Nairuz T, Lee D, Lee J-H. Breast Ultrasound Computer-Aided Diagnosis System Based on Mass Irregularity Features in Frequency Domain. Applied Sciences. 2024; 14(17):8003. https://doi.org/10.3390/app14178003
Chicago/Turabian StyleNairuz, Tahsin, Deokwoo Lee, and Jong-Ha Lee. 2024. "Breast Ultrasound Computer-Aided Diagnosis System Based on Mass Irregularity Features in Frequency Domain" Applied Sciences 14, no. 17: 8003. https://doi.org/10.3390/app14178003
APA StyleNairuz, T., Lee, D., & Lee, J.-H. (2024). Breast Ultrasound Computer-Aided Diagnosis System Based on Mass Irregularity Features in Frequency Domain. Applied Sciences, 14(17), 8003. https://doi.org/10.3390/app14178003