How Immersed Are You? State of the Art of the Neurophysiological Characterization of Embodiment in Mixed Reality for Out-of-the-Lab Applications
Abstract
:1. Introduction
2. Material Selection
3. Experimental Protocols Design
Comparison between Different Virtual Environments
- The physical environments, consisting of the representation of the experimental environment in RL. Among the considered scientific contributions, this experimental environment was considered as the gold standard for the embodiment assessment in MR.
- The photographic environment, consisting of the bidimensional representation of the selected experimental environment. This condition was designed by Juan Luis Higuera-Trujillo and colleagues [46] for evaluating the sense of presence grade within a bidimensional digitalized environment.
- The 360-degree environment, consisting of the tridimensional representation of the selected experimental environment. Again, this condition was proposed by Juan Luis Higuera-Trujillo and colleagues [46] and Marin-Morales and colleagues [47] for assessing embodiment in the static tridimensional environment, which was hypothesized to lead to an increase of the sense of presence with respect to the static bidimensional representation.
- The VR environment, consisting of the virtual and interactive representation of the selected experimental environment. This condition was selected by the totality of the considered scientific works.
- The AR environment, consisting of the integration of digital elements, typical of VR environments, with physical elements, typical of the RL environment. Such a condition was included in the experimental design of the large majority of the considered scientific papers within the present review [5,12,27,43,44,47,48,49].
4. Mixed Reality Instrumentation Selection
5. Measurement and Parameters Selection
5.1. Subjective Measurements
5.2. Behavioural Measurements
6. Neurophysiological Characterization of Embodiment in Mixed Reality
6.1. Equipment Selection for Neurophysiological Signals Collection
6.2. Neurophysiological Measurements
6.3. Neural Correlates of Embodiment in Mixed Reality
6.4. Cardiac and Electrodermal Correlates of the Embodiment in Mixed Reality
7. Discussion
Limitations and Future Trends
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shaytura, S.; Olenev, L.; Nedelkin, A.; Ordov, K.; Minitaeva, A.; Guzhina, G. Mixed Reality in Education and Science. In Proceedings of the 2021 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency, SUMMA 2021, Lipetsk, Russian, 10–12 November 2021; pp. 667–673. [Google Scholar] [CrossRef]
- Hughes, C.E.; Stapleton, C.B.; Hughes, D.E.; Smith, E.M. Mixed reality in education, entertainment, and training. IEEE Comput. Graph. Appl. 2005, 25, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.K.; Moshrefi, S.; Fuertes, V.; Veeravagu, L.; Nazerali, R.; Lin, S.J. What Is Your Reality? Virtual, Augmented, and Mixed Reality in Plastic Surgery Training, Education, and Practice. Plast. Reconstr. Surg. 2021, 147, 505–511. [Google Scholar] [CrossRef]
- Viglialoro, R.M.; Condino, S.; Turini, G.; Carbone, M.; Ferrari, V.; Gesi, M. Augmented Reality, Mixed Reality, and Hybrid Approach in Healthcare Simulation: A Systematic Review. Appl. Sci. 2021, 11, 2338. [Google Scholar] [CrossRef]
- Gerup, J.; Soerensen, C.B.; Dieckmann, P. Augmented reality and mixed reality for healthcare education beyond surgery: An integrative review. Int. J. Med. Educ. 2020, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Beck, D.; Allison, C.; Morgado, L.; Pirker, J.; Khosmood, F.; Richter, J.; Gütl, C. (Eds.) Immersive Learning Research Network. In Proceedings of the Third International Conference (iLRN 2017), Coimbra, Portugal, 26–29 June 2017; Springer: Berlin/Heidelberg, Germany, 2017; p. 725. [Google Scholar] [CrossRef]
- Borghini, G.; Bandini, A.; Orlandi, S.; Di Flumeri, G.; Arico, P.; Sciaraffa, N.; Ronca, V.; Bonelli, S.; Ragosta, M.; Tomasello, P.; et al. Stress Assessment by Combining Neurophysiological Signals and Radio Communications of Air Traffic Controllers. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Montréal, QC, Canada, 20–24 July 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 851–854. [Google Scholar] [CrossRef]
- Aricò, P.; Borghini, G.; Di Flumeri, G.; Colosimo, A.; Pozzi, S.; Babiloni, F. A passive brain-computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks. Prog. Brain Res. 2016, 228, 295–328. [Google Scholar] [CrossRef] [PubMed]
- Lanzotti, A.; Vanacore, A.; Tarallo, A.; Nathan-Roberts, D.; Coccorese, D.; Minopoli, V.; Carbone, F.; D’angelo, R.; Grasso, C.; Di Gironimo, G.; et al. Interactive tools for safety 4.0: Virtual ergonomics and serious games in real working contexts. Ergonomics 2020, 63, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Cross, J.; Boag-Hodgson, C.; Ryley, T.; Mavin, T.J.; Potter, L.E. Using Extended Reality in Flight Simulators: A Literature Review. IEEE Trans. Vis. Comput. Graph. 2023, 29, 3961–3975. [Google Scholar] [CrossRef]
- Kaplan, A.D.; Cruit, J.; Endsley, M.; Beers, S.M.; Sawyer, B.D.; Hancock, P.A. The Effects of Virtual Reality, Augmented Reality, and Mixed Reality as Training Enhancement Methods: A Meta-Analysis. Hum. Factors 2021, 63, 706–726. [Google Scholar] [CrossRef]
- Fussell, S.G.; Truong, D. Preliminary Results of a Study Investigating Aviation Student’s Intentions to use Virtual Reality for Flight Training. Int. J. Aviat. Aeronaut. Aerosp. 2020, 7, 2. [Google Scholar] [CrossRef]
- Schaffernak, H.; Moesl, B.; Vorraber, W.; Holy, M.; Herzog, E.-M.; Novak, R.; Koglbauer, I.V. Novel Mixed Reality Use Cases for Pilot Training. Educ. Sci. 2022, 12, 345. [Google Scholar] [CrossRef]
- Naranjo, J.E.; Sanchez, D.G.; Robalino-Lopez, A.; Robalino-Lopez, P.; Alarcon-Ortiz, A.; Garcia, M.V. A Scoping Review on Virtual Reality-Based Industrial Training. Appl. Sci. 2020, 10, 8224. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Kang, S.C.; Al-Hussein, M. Virtual reality applications for the built environment: Research trends and opportunities. Autom. Constr. 2020, 118, 103311. [Google Scholar] [CrossRef]
- Pedram, S.; Palmisano, S.; Skarbez, R.; Perez, P.; Farrelly, M. Investigating the process of mine rescuers’ safety training with immersive virtual reality: A structural equation modelling approach. Comput. Educ. 2020, 153, 103891. [Google Scholar] [CrossRef]
- Xie, B.; Liu, H.; Alghofaili, R.; Zhang, Y.; Jiang, Y.; Lobo, F.D.; Li, C.; Li, W.; Huang, H.; Akdere, M.; et al. A Review on Virtual Reality Skill Training Applications. Front. Virtual Real. 2021, 2, 645153. [Google Scholar] [CrossRef]
- Caporusso, N.; Biasi, L.; Cinquepalmi, G.; Bevilacqua, V. An Immersive Environment for Experiential Training and Remote Control in Hazardous Industrial Tasks. Adv. Intell. Syst. Comput. 2019, 795, 88–97. [Google Scholar] [CrossRef]
- Duff, M.; Chen, Y.; Cheng, L.; Liu, S.-M.; Blake, P.; Wolf, S.L.; Rikakis, T. Adaptive mixed reality rehabilitation improves quality of reaching movements more than traditional reaching therapy following stroke. Neurorehabilit. Neural Repair 2013, 27, 306–315. [Google Scholar] [CrossRef]
- Tada, K.; Sorimachi, Y.; Kutsuzawa, K.; Owaki, D.; Hayashibe, M. Integrated Quantitative Evaluation of Spatial Cognition and Motor Function with HoloLens Mixed Reality. Sensors 2024, 24, 528. [Google Scholar] [CrossRef]
- Pillai, A.; Sunny, M.S.H.; Shahria, M.T.; Banik, N.; Rahman, M.H. Gamification of Upper Limb Rehabilitation in Mixed-Reality Environment. Appl. Sci. 2022, 12, 12260. [Google Scholar] [CrossRef]
- Mosna, P.; Lenzi, S.E.; Lazzarini, S.; Gobbo, M.; Angelini, M.; Buraschi, R.; Negrini, S.; Destro, M.F.; Avanzini, P.; Rizzolatti, G.; et al. An Integrated Rehabilitation Platform Based on Action Observation Therapy, Mixed Reality and Wearable Technologies. Biosyst. Biorobotics 2022, 28, 239–244. [Google Scholar] [CrossRef]
- Asadzadeh, A.; Samad-Soltani, T.; Salahzadeh, Z.; Rezaei-Hachesu, P. Effectiveness of virtual reality-based exercise therapy in rehabilitation: A scoping review. Inform. Med. Unlocked 2021, 24, 100562. [Google Scholar] [CrossRef]
- Arcuri, F.; Porcaro, C.; Ciancarelli, I.; Tonin, P.; Cerasa, A. Electrophysiological Correlates of Virtual-Reality Applications in the Rehabilitation Setting: New Perspectives for Stroke Patients. Electronics 2021, 10, 836. [Google Scholar] [CrossRef]
- Marucci, M.; Di Flumeri, G.; Borghini, G.; Sciaraffa, N.; Scandola, M.; Pavone, E.F.; Babiloni, F.; Betti, V.; Aricò, P. The impact of multisensory integration and perceptual load in virtual reality settings on performance, workload and presence. Sci. Rep. 2021, 11, 4831. [Google Scholar] [CrossRef] [PubMed]
- Krugliak, A.; Clarke, A. Towards real-world neuroscience using mobile EEG and augmented reality. Sci. Rep. 2022, 12, 2291. [Google Scholar] [CrossRef] [PubMed]
- Porssut, T.; Iwane, F.; Chavarriaga, R.; Blanke, O.; Millán, J.d.R.; Boulic, R.; Herbelin, B. EEG signature of breaks in embodiment in VR. PLoS ONE 2023, 18, e0282967. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.; Jeong, H. Unveiling gender differences: A mixed reality multitasking exploration. Front. Virtual Real. 2023, 4, 1308133. [Google Scholar] [CrossRef]
- Kim, S.; Ryu, J.H.; Choi, Y.; Kang, Y.S.; Li, H.; Kim, K. Eye-contact game using mixed reality for the treatment of children with attention deficit hyperactivity disorder. IEEE Access 2020, 8, 45996–46006. [Google Scholar] [CrossRef]
- Manivannan, S.; Al-Amri, M.; Postans, M.; Westacott, L.J.; Gray, W.; Zaben, M. The Effectiveness of Virtual Reality Interventions for Improvement of Neurocognitive Performance after Traumatic Brain Injury: A Systematic Review. J. Head Trauma Rehabil. 2019, 34, E52–E65. [Google Scholar] [CrossRef]
- Diemer, J.; Alpers, G.W.; Peperkorn, H.M.; Shiban, Y.; Mühlberger, A. The impact of perception and presence on emotional reactions: A review of research in virtual reality. Front. Psychol. 2015, 6, 26. [Google Scholar] [CrossRef]
- Pavone, E.F.; Tieri, G.; Rizza, G.; Tidoni, E.; Grisoni, L.; Aglioti, S.M. Embodying others in immersive virtual reality: Electro-cortical signatures of monitoring the errors in the actions of an avatar seen from a first-person perspective. J. Neurosci. 2016, 36, 268–279. [Google Scholar] [CrossRef]
- Juliano, J.M.; Spicer, R.P.; Vourvopoulos, A.; Lefebvre, S.; Jann, K.; Ard, T.; Santarnecchi, E.; Krum, D.M.; Liew, S.-L. Embodiment is related to better performance on a brain–computer interface in immersive virtual reality: A pilot study. Sensors 2020, 20, 1204. [Google Scholar] [CrossRef]
- Witmer, B.G.; Singer, M.J. Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence Teleoperators Virtual Environ. 1998, 7, 225–240. [Google Scholar] [CrossRef]
- Blanke, O.; Mohr, C. Out-of-body experience, heautoscopy, autoscopic hallucination of neurological origin Implications for neurocognitive mechanisms of corporeal awareness and self-consciousness. Brain Res. Brain Res. Rev. 2005, 50, 184–199. [Google Scholar] [CrossRef] [PubMed]
- Ehrsson, H.H. The experimental induction of out-of-body experiences. Science 2007, 317, 1048. [Google Scholar] [CrossRef] [PubMed]
- Ionta, S.; Heydrich, L.; Lenggenhager, B.; Mouthon, M.; Fornari, E.; Chapuis, D.; Gassert, R.; Blanke, O. Multisensory Mechanisms in Temporo-Parietal Cortex Support Self-Location and First-Person Perspective. Neuron 2011, 70, 363–374. [Google Scholar] [CrossRef]
- Schöne, B.; Kisker, J.; Lange, L.; Gruber, T.; Sylvester, S.; Osinsky, R. The reality of virtual reality. Front. Psychol. 2023, 14, 1093014. [Google Scholar] [CrossRef]
- Di Flumeri, G.; Aricò, P.; Borghini, G.; Sciaraffa, N.; Di Florio, A.; Babiloni, F. The Dry Revolution: Evaluation of Three Different EEG Dry Electrode Types in Terms of Signal Spectral Features, Mental States Classification and Usability. Sensors 2019, 19, 1365. [Google Scholar] [CrossRef]
- Borghini, G.; Ronca, V.; Vozzi, A.; Aricò, P.; Di Flumeri, G.; Babiloni, F. Monitoring performance of professional and occupational operators. In Handbook of Clinical Neurology; Elsevier B.V.: Amsterdam, The Netherlands, 2020; Volume 168, pp. 199–205. [Google Scholar] [CrossRef]
- Ronca, V.; Di Flumeri, G.; Vozzi, A.; Giorgi, A.; Arico, P.; Sciaraffa, N.; Babiloni, F.; Borghini, G. Validation of an EEG-based Neurometric for online monitoring and detection of mental drowsiness while driving. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 3714–3717. [Google Scholar] [CrossRef]
- Ding, L.; He, J.; Yao, L.; Zhuang, J.; Chen, S.; Wang, H.; Jiang, N.; Jia, J. Mirror Visual Feedback Combining Vibrotactile Stimulation Promotes Embodiment Perception: An Electroencephalogram (EEG) Pilot Study. Front. Bioeng. Biotechnol. 2020, 8, 553270. [Google Scholar] [CrossRef]
- Kisker, J.; Gruber, T.; Schöne, B. Behavioral realism and lifelike psychophysiological responses in virtual reality by the example of a height exposure. Psychol. Res. 2021, 85, 68–81. [Google Scholar] [CrossRef]
- Kisker, J.; Lange, L.; Flinkenflügel, K.; Kaup, M.; Labersweiler, N.; Tetenborg, F.; Ott, P.; Gundler, C.; Gruber, T.; Osinsky, R.; et al. Authentic Fear Responses in Virtual Reality: A Mobile EEG Study on Affective, Behavioral and Electrophysiological Correlates of Fear. Front. Virtual Real. 2021, 2, 716318. [Google Scholar] [CrossRef]
- Yeo, S.S.; Kwon, J.W.; Park, S.Y. EEG-based analysis of various sensory stimulation effects to reduce visually induced motion sickness in virtual reality. Sci. Rep. 2022, 12, 18043. [Google Scholar] [CrossRef]
- Higuera-Trujillo, J.L.; Maldonado, J.L.-T.; Millán, C.L. Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360° Panoramas, and Virtual Reality. Appl. Ergon. 2017, 65, 398–409. [Google Scholar] [CrossRef] [PubMed]
- Marín-Morales, J.; Higuera-Trujillo, J.L.; Guixeres, J.; Llinares, C.; Alcañiz, M.; Valenza, G. Heart rate variability analysis for the assessment of immersive emotional arousal using virtual reality: Comparing real and virtual scenarios. PLoS ONE 2021, 16, e0254098. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Kemmerer, S.K.; Riecke, L.; De Gelder, B. Early threat perception is independent of later cognitive and behavioral control. A virtual reality-EEG-ECG study. Cereb. Cortex 2023, 33, 8748–8758. [Google Scholar] [CrossRef] [PubMed]
- Kanayama, N.; Hara, M.; Kimura, K. Virtual reality alters cortical oscillations related to visuo-tactile integration during rubber hand illusion. Sci. Rep. 2021, 11, 1436. [Google Scholar] [CrossRef] [PubMed]
- Slobounov, S.M.; Ray, W.; Johnson, B.; Slobounov, E.; Newell, K.M. Modulation of cortical activity in 2D versus 3D virtual reality environments: An EEG study. Int. J. Psychophysiol. 2015, 95, 254–260. [Google Scholar] [CrossRef]
- Huang, W.; Roscoe, R.D.; Johnson-Glenberg, M.C.; Craig, S.D. Motivation, engagement, and performance across multiple virtual reality sessions and levels of immersion. J. Comput. Assist. Learn. 2021, 37, 745–758. [Google Scholar] [CrossRef]
- Arico, P.; Borghini, G.; Di Flumeri, G.; Sciaraffa, N.; Babiloni, F. Passive BCI beyond the lab: Current trends and future directions. Physiol. Meas. 2018, 39, 08TR02. [Google Scholar] [CrossRef]
- Aricó, P.; Borghini, G.; Di Flumeri, G.; Sciaraffa, N.; Colosimo, A.; Babiloni, F. Passive BCI in operational environments: Insights, recent advances, and future trends. IEEE Trans. Biomed. Eng. 2017, 64, 1431–1436. [Google Scholar] [CrossRef]
- Alchalabi, B. A Brain-Computer Interface for Navigation in Virtual Reality. 2013. Available online: https://papyrus.bib.umontreal.ca/xmlui/handle/1866/9999 (accessed on 17 May 2024).
- Garau, M.; Slater, M.; Pertaub, D.-P.; Razzaque, S. The Responses of People to Virtual Humans in an Immersive Virtual Environment. Presence Teleoperators Virtual Environ. 2005, 14, 104–116. [Google Scholar] [CrossRef]
- Waltemate, T.; Gall, D.; Roth, D.; Botsch, M.; Latoschik, M.E. The impact of avatar personalization and immersion on virtual body ownership, presence, and emotional response. IEEE Trans. Vis. Comput. Graph. 2018, 24, 1643–1652. [Google Scholar] [CrossRef]
- Choi, J.W.; Kwon, H.; Choi, J.; Kaongoen, N.; Hwang, C.; Kim, M.; Kim, B.H.; Jo, S. Neural Applications Using Immersive Virtual Reality: A Review on EEG Studies. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1645–1658. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, A.; Kajal, D.S.; Patrono, A.; Hegner, Y.L.; Zampini, M.; Schwarz, C.; Braun, C. A Tactile Virtual Reality for the Study of Active Somatosensation. Front. Integr. Neurosci. 2020, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Romero-Soto, F.O.; Ibarra-Zárate, D.I.; Alonso-Valerdi, L.M. Comparative Analysis of Alpha Power Spectral Density in Real and Virtual Environments. IFMBE Proc. 2020, 75, 156–163. [Google Scholar] [CrossRef]
- González-Franco, M.; Peck, T.C.; Rodríguez-Fornells, A.; Slater, M. A threat to a virtual hand elicits motor cortex activation. Exp. Brain Res. 2014, 232, 875–887. [Google Scholar] [CrossRef] [PubMed]
- Bahavan, T.T.N.; Navaratnarajah, S.; Owinda, D.; Akalanka, I.; Peiris, R.; De Silva, A. Towards an objective measurement of presence, place illusion, and plausibility illusion in virtual reality using electroencephalography. Virtual Real. 2023, 27, 2649–2664. [Google Scholar] [CrossRef]
- Barteit, S.; Lanfermann, L.; Bärnighausen, T.; Neuhann, F.; Beiersmann, C. Augmented, Mixed, and Virtual Reality-Based Head-Mounted Devices for Medical Education: Systematic Review. JMIR Serious Games 2021, 9, e29080. [Google Scholar] [CrossRef]
- Cater, K.; Chalmers, A.; Ledda, P. Selective quality rendering by exploiting human inattentional blindness. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, Hong Kong, China, 11–13 November 2002; pp. 17–24. [Google Scholar] [CrossRef]
- Virtual Reality: Do Not Augment Realism, Augment Relevance. Available online: https://www.researchgate.net/publication/285852320_Virtual_reality_Do_not_augment_realism_augment_relevance (accessed on 17 May 2024).
- Bailey, J.O.; Bailenson, J.N.; Casasanto, D. When does virtual embodiment change our minds? Presence Teleoperators Virtual Environ. 2016, 25, 222–233. [Google Scholar] [CrossRef]
- Banakou, D.; Slater, M. Embodiment in a virtual body that speaks produces agency over the speaking but does not necessarily influence subsequent real speaking. Sci. Rep. 2017, 7, 14227. [Google Scholar] [CrossRef]
- Slater, M.; Usoh, M.; Steed, A. Depth of Presence in Virtual Environments. Presence Teleoperators Virtual Environ. 1994, 3, 130–144. [Google Scholar] [CrossRef]
- Regenbrecht, H.; Schubert, T. Measuring Presence in Augmented Reality Environments: Design and a First Test of a Questionnaire. 2021. Available online: https://arxiv.org/abs/2103.02831v1 (accessed on 17 May 2024).
- Bradley, M.M.; Lang, P.J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef]
- Marteau, T.M.; Bekker, H. The development of a six-item short-form of the state scale of the Spielberger State—Trait Anxiety Inventory (STAI). Br. J. Clin. Psychol. 1992, 31, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Berger, B.G.; Motl, R.W. Exercise and mood: A selective review and synthesis of research employing the profile of mood states. J. Appl. Sport. Psychol. 2000, 12, 69–92. [Google Scholar] [CrossRef]
- Heimberg, R.G.; Hope, D.A.; Rapee, R.M.; Bruch, M.A. The validity of the social avoidance and distress scale and the fear of negative evaluation scale with social phobic patients. Behav. Res. Ther. 1988, 26, 407–410. [Google Scholar] [CrossRef]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. Adv. Psychol. 1988, 52, 139–183. [Google Scholar] [CrossRef]
- Ronca, V.; Uflaz, E.; Turan, O.; Bantan, H.; MacKinnon, S.N.; Lommi, A.; Pozzi, S.; Kurt, R.E.; Arslan, O.; Kurt, Y.B.; et al. Neurophysiological Assessment of An Innovative Maritime Safety System in Terms of Ship Operators’ Mental Workload, Stress, and Attention in the Full Mission Bridge Simulator. Brain Sci. 2023, 13, 1319. [Google Scholar] [CrossRef] [PubMed]
- Ronca, V.; Brambati, F.; Napoletano, L.; Marx, C.; Trösterer, S.; Vozzi, A.; Aricò, P.; Giorgi, A.; Capotorto, R.; Borghini, G.; et al. A Novel EEG-Based Assessment of Distraction in Simulated Driving under Different Road and Traffic Conditions. Brain Sci. 2024, 14, 193. [Google Scholar] [CrossRef]
- Di Flumeri, G.; Borghini, G.; Aricò, P.; Colosimo, A.; Pozzi, S.; Bonelli, S.; Golfetti, A.; Kong, W.; Babiloni, F. On the Use of Cognitive Neurometric Indexes in Aeronautic and Air Traffic Management Environments; Blankertz, B., Jacucci, G., Gamberini, L., Spagnolli, A., Freeman, J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 9359, pp. 45–56. [Google Scholar]
- Di Flumeri, G.; Ronca, V.; Giorgi, A.; Vozzi, A.; Aricò, P.; Sciaraffa, N.; Zeng, H.; Dai, G.; Kong, W.; Babiloni, F.; et al. EEG-Based Index for Timely Detecting User’s Drowsiness Occurrence in Automotive Applications. Front. Hum. Neurosci. 2022, 16, 866118. [Google Scholar] [CrossRef]
- Ronca, V.; Martinez-Levy, A.C.; Vozzi, A.; Giorgi, A.; Aricò, P.; Capotorto, R.; Borghini, G.; Babiloni, F.; Di Flumeri, G. Wearable Technologies for Electrodermal and Cardiac Activity Measurements: A Comparison between Fitbit Sense, Empatica E4 and Shimmer GSR3+. Sensors 2023, 23, 5847. [Google Scholar] [CrossRef]
- Borghini, G.; Di Flumeri, G.; Aricò, P.; Sciaraffa, N.; Bonelli, S.; Ragosta, M.; Tomasello, P.; Drogoul, F.; Turhan, U.; Acikel, B.; et al. A multimodal and signals fusion approach for assessing the impact of stressful events on Air Traffic Controllers. Sci. Rep. 2020, 10, 8600. [Google Scholar] [CrossRef]
- Giorgi, A.; Ronca, V.; Vozzi, A.; Sciaraffa, N.; di Florio, A.; Tamborra, L.; Simonetti, I.; Aricò, P.; Di Flumeri, G.; Rossi, D.; et al. Wearable Technologies for Mental Workload, Stress, and Emotional State Assessment during Working-Like Tasks: A Comparison with Laboratory Technologies. Sensors 2021, 21, 2332. [Google Scholar] [CrossRef]
- Zhu, L.; Spachos, P.; Gregori, S. Multimodal Physiological Signals and Machine Learning for Stress Detection by Wearable Devices. In Proceedings of the 2022 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2022, Messina, Italy, 22–24 June 2022. [Google Scholar] [CrossRef]
- Zontone, P.; Affanni, A.; Bernardini, R.; Piras, A.; Rinaldo, R. Stress Detection Through Electrodermal Activity (EDA) and Electrocardiogram (ECG) Analysis in Car Drivers. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), Coruña, Spain, 2–6 September 2019. [Google Scholar] [CrossRef]
- Bach, D.R. A head-to-head comparison of SCRalyze and Ledalab, two model-based methods for skin conductance analysis. Biol. Psychol. 2014, 103, 63–68. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, C.; Pradhan, N.; Redpath, C.; Adler, A. Validation of the Empatica E4 wristband. In Proceedings of the 2016 IEEE EMBS International Student Conference: Expanding the Boundaries of Biomedical Engineering and Healthcare, ISC 2016, Ottawa, Canada, 29–31 May 2016; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Dey, A.; Phoon, J.; Saha, S.; Dobbins, C.; Billinghurst, M. Neurophysiological Effects of Presence in Calm Virtual Environments. In Proceedings of the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, VRW 2020, Atlanta, GA, USA, 22–26 March 2020; pp. 745–746. [Google Scholar] [CrossRef]
- Arico, P.; Borghini, G.; Di Flumeri, G.; Bonelli, S.; Golfetti, A.; Graziani, I.; Pozzi, S.; Imbert, J.-P.; Granger, G.; Benhacene, R.; et al. Human Factors and Neurophysiological Metrics in Air Traffic Control: A Critical Review. Human Factors and Neurophysiological Metrics in Air Traffic Control: A Critical Review. IEEE Rev. Biomed. Eng. 2017, 10, 250–263. [Google Scholar] [CrossRef] [PubMed]
- Parasuraman, R.; Hancock, P. Adaptive control of mental workload. In Stress, Workload, and Fatigue; Taylor & Francis: Abingdon, UK, 2001; pp. 305–320. [Google Scholar]
- Ronca, V.; Rossi, D.; Di Florio, A.; Di Flumeri, G.; Aricò, P.; Sciaraffa, N.; Vozzi, A.; Babiloni, F.; Borghini, G. Contactless Physiological Assessment of Mental Workload During Teleworking-like Task. In Communications in Computer and Information Science; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2020; pp. 76–86. [Google Scholar] [CrossRef]
- Borghini, G.; Arico, P.; Di Flumeri, G.; Sciaraffa, N.; Di Florio, A.; Ronca, V.; Giorgi, A.; Mezzadri, L.; Gasparini, R.; Tartaglino, R.; et al. Real-time Pilot Crew’s Mental Workload and Arousal Assessment during Simulated Flights for Training Evaluation: A Case Study. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 3568–3571. [Google Scholar] [CrossRef]
- Menghini, L.; Gianfranchi, E.; Cellini, N.; Patron, E.; Tagliabue, M.; Sarlo, M. Stressing the accuracy: Wrist-worn wearable sensor validation over different conditions. Psychophysiology 2019, 56, e13441. [Google Scholar] [CrossRef] [PubMed]
- Setz, C.; Arnrich, B.; Schumm, J.; La Marca, R.; Tröster, G.; Ehlert, U. Discriminating stress from cognitive load using a wearable eda device. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 410–417. [Google Scholar] [CrossRef]
- Kilteni, K.; Groten, R.; Slater, M. The Sense of Embodiment in Virtual Reality. Presence Teleoperators Virtual Environ. 2012, 21, 373–387. [Google Scholar] [CrossRef]
- Genay, A.; Lecuyer, A.; Hachet, M. Being an Avatar ‘for Real’: A Survey on Virtual Embodiment in Augmented Reality. IEEE Trans. Vis. Comput. Graph. 2022, 28, 5071–5090. [Google Scholar] [CrossRef]
- Flavián, C.; Ibáñez-Sánchez, S.; Orús, C. Impacts of technological embodiment through virtual reality on potential guests’ emotions and engagement. J. Hosp. Mark. Manag. 2021, 30, 1–20. [Google Scholar] [CrossRef]
- Borghini, G.; Arico, P.; Di Flumeri, G.; Sciaraffa, N.; Ronca, V.; Vozzi, A.; Babiloni, F. Assessment of Athletes’ Attitude: Physiological Evaluation via Wearable Sensors during Grappling Competitions. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2020, Montréal, QC, Canada, 20–24 July 2020; pp. 584–587. [Google Scholar] [CrossRef]
- Sciaraffa, N.; Di Flumeri, G.; Germano, D.; Giorgi, A.; Di Florio, A.; Borghini, G.; Vozzi, A.; Ronca, V.; Babiloni, F.; Aricò, P. Evaluation of a New Lightweight EEG Technology for Translational Applications of Passive Brain-Computer Interfaces. Front. Hum. Neurosci. 2022, 16, 458. [Google Scholar] [CrossRef]
- Borghini, G.; Aricò, P.; Di Flumeri, G.; Ronca, V.; Giorgi, A.; Sciaraffa, N.; Conca, C.; Stefani, S.; Verde, P.; Landolfi, A.; et al. Air Force Pilot Expertise Assessment during Unusual Attitude Recovery Flight. Safety 2022, 8, 38. [Google Scholar] [CrossRef]
- Haggard, P.; Chambon, V. Sense of agency. Curr. Biol. 2012, 22, R390–R392. [Google Scholar] [CrossRef]
- Moore, J.W.; Obhi, S.S. Intentional binding and the sense of agency: A review. Conscious. Cogn. 2012, 21, 546–561. [Google Scholar] [CrossRef] [PubMed]
- Blanke, O.; Metzinger, T. Full-body illusions and minimal phenomenal selfhood. Trends Cogn. Sci. 2009, 13, 7–13. [Google Scholar] [CrossRef] [PubMed]
Environments Comparison | Main Task | Experiments |
---|---|---|
Real life vs. VR vs. AR [27,38,47,55,56,57] | Walking activity Motor imagery activity Spatial navigation Threat management | 6 |
360° vs. VR [32,58] | Motor activity | 2 |
2D vs. 3D vs. VR [27,43,44,48,57] | Spatial navigation Motor imagery activity Cognitive activity Social interaction | 5 |
VR vs. AR [26,36,37,49,59,60,61] | Walking activity Motor imagery activity Spatial navigation | 7 |
2D vs. VR vs. AR [33,38,46,56] | Spatial navigation Motor imagery activity Cognitive activity | 4 |
2D vs. VR [31,44] | Spatial navigation Motor imagery activity Cognitive activity Social interaction | 8 |
Questionnaire | Year | Items | Experiments |
---|---|---|---|
Acrophobia Questionnaire (AQ) | 1977 | 20 | 2 |
State-Trait Anxiety Inventory (STAI) | 1981 | 40 | 3 |
Simulator Sickness Questionnaire | 1993 | 16 | 2 |
Barfield et al. Questionnaire | 1993 | 3 | 2 |
Slater-Usoh-Steed Questionnaire (SUS) | 1994 | 6 | 3 |
Self-Assessment-Manikin (SAM) | 1994 | 6 | 1 |
Sensation Seeking Scale, Form V (SSS-V) | 1996 | 40 | 2 |
Positive and Negative Affect Schedule (PANAS) | 1996 | 20 | 3 |
Kim and Biocca Questionnaire | 1997 | 8 | 1 |
Witmer and Singer Presence Questionnaire (PQ) | 1998 | 19 | 3 |
Immersive Tendencies Questionnaire | 1998 | 18 | 1 |
Questionnaire on Presence and Realism (QPR) | 1998 | 10 | 1 |
Dinh et al. Questionnaire | 1999 | 14 | 2 |
Murray et al. Questionnaire | 2000 | 5 | 2 |
Nichols et al. Questionnaire | 2000 | 9 | 1 |
Reality Judgment and Presence Questionnaire (RJPQ) | 2000 | 18 | 1 |
Lombard & Ditton Questionnaire | 2000 | 103 | 1 |
Gerhard et al. Questionnaire | 2001 | 19 | 2 |
Igroup Presence Questionnaire (IPQ) | 2001 | 14 | 3 |
Swedish Viewer-User Presence (SVUP) | 2001 | 150 | 1 |
ITC Sense of Presence Inventory (ITC-SOPI) | 2001 | 63 | 1 |
Krauss et al. Questionnaire | 2001 | 42 | 1 |
Swedish User-Viewer Presence Questionnaire | 2001 | 19 | 3 |
Schroeder et al. Questionnaire | 2001 | 10 | 2 |
Experimental Virtual Environment-Experience (EVEQ) | 2002 | 124 | 1 |
E2I Scale Development | 2002 | 9 | 2 |
Cho et al. Questionnaire | 2003 | 4 | 3 |
Nowak and Biocca Questionnaire | 2003 | 29 | 1 |
Sas and O’Hare Questionnaire | 2003 | 34 | 1 |
MEC Spatial Presence Questionnaire (MEC-SPQ) | 2004 | 16 | 1 |
Bouchard et al. Questionnaire | 2004 | 1 | 1 |
Presence-Involvement-Flow Framework (PIFF) | 2004 | 15 | 1 |
Template Presence Inventory (TPI) | 2009 | 42 | 1 |
Virtual Experience Test (VET) | 2010 | 24 | 1 |
Spatial Presence (P) and Self-presence (SP) | 2016 | 5 | 3 |
Embodiment Questionnaire (EQ) | 2020 | 10 | 1 |
Behavioural Parameter | Definition | Experiments |
---|---|---|
Latency time | Time period between an input or stimulus and the participant’s behavioral response. | 11 |
Transversal time | Duration required to complete a specific task or action within the virtual environment. | 5 |
Discomfort response time | Time period for obtaining the participant’s response to a stressful stimulus. | 6 |
Walking time | Time period required for completing spatial navigation tasks in MR. | 12 |
Method | Frequency Bands and Regions | Results |
---|---|---|
Normalized EEG PSD ratio | Theta, alpha Frontal, and parietal | High capability of identifying high-embodiment conditions in MR. |
Normalized EEG PSD ratio | Beta, alpha Fronto-central, and parietal | High capability of identifying high-embodiment conditions in MR. |
Neural network developed with EEG spectral features | Theta, alpha, beta Frontal, and parietal | Highest accuracy (i.e., above 70%) in tracking the embodiment variations. |
Connectivity analysis based on EEG spectral features | Delta, theta, alpha, beta Frontal, central, and parietal | High accuracy (i.e., above 75%) in detecting the embodiment variations, especially in social VR interactions. |
Normalized EEG PSD | Alpha Central | Significant and high correlation with the embodiment variations during walking activities in VR. |
EEG PSD asymmetry | Alpha Central | Significant and high correlation with the embodiment variations during physical activities in VR and AR. |
Latency | ERP Components | Results |
---|---|---|
Early components | N170 | Highest-embodiment perception, especially with emotional MR stimuli. |
PE | High correlation with events, including embodiment disruption. | |
VPP | High correlation with high-embodiment subjective perception. | |
N3 | Significant correlation with high-embodiment perception, especially during the interaction with avatars. | |
Pe | High correlation with events of embodiment disruption, especially during the interaction with the virtual arm and/or hand. | |
Late components | N400 | The amplitude of such a component was highly correlated with the condition characterized by low-embodiment. |
P450 | The amplitude of such a component was highly correlated with the high-embodiment perception while interacting with the virtual arm and/or hand. |
Type | Feature | Results |
---|---|---|
Cardiac | Normalized HR | High correlation with the increase of spatial presence in VR and AR. |
Normalized HF | High correlation with the sense of presence in VR. | |
Normalized LF | Negative and significant correlation with the increase of embodiment in VR. | |
Electrodermal activity | Normalized SCL (i.e., phasic EDA) | Positive and significant correlation with the embodiment increase in VR and AR. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ronca, V.; Ricci, A.; Capotorto, R.; Di Donato, L.; Freda, D.; Pirozzi, M.; Palermo, E.; Mattioli, L.; Di Gironimo, G.; Coccorese, D.; et al. How Immersed Are You? State of the Art of the Neurophysiological Characterization of Embodiment in Mixed Reality for Out-of-the-Lab Applications. Appl. Sci. 2024, 14, 8192. https://doi.org/10.3390/app14188192
Ronca V, Ricci A, Capotorto R, Di Donato L, Freda D, Pirozzi M, Palermo E, Mattioli L, Di Gironimo G, Coccorese D, et al. How Immersed Are You? State of the Art of the Neurophysiological Characterization of Embodiment in Mixed Reality for Out-of-the-Lab Applications. Applied Sciences. 2024; 14(18):8192. https://doi.org/10.3390/app14188192
Chicago/Turabian StyleRonca, Vincenzo, Alessia Ricci, Rossella Capotorto, Luciano Di Donato, Daniela Freda, Marco Pirozzi, Eduardo Palermo, Luca Mattioli, Giuseppe Di Gironimo, Domenico Coccorese, and et al. 2024. "How Immersed Are You? State of the Art of the Neurophysiological Characterization of Embodiment in Mixed Reality for Out-of-the-Lab Applications" Applied Sciences 14, no. 18: 8192. https://doi.org/10.3390/app14188192
APA StyleRonca, V., Ricci, A., Capotorto, R., Di Donato, L., Freda, D., Pirozzi, M., Palermo, E., Mattioli, L., Di Gironimo, G., Coccorese, D., Buonocore, S., Massa, F., Germano, D., Di Flumeri, G., Borghini, G., Babiloni, F., & Aricò, P. (2024). How Immersed Are You? State of the Art of the Neurophysiological Characterization of Embodiment in Mixed Reality for Out-of-the-Lab Applications. Applied Sciences, 14(18), 8192. https://doi.org/10.3390/app14188192