Simplified Deep Learning for Accessible Fruit Quality Assessment in Small Agricultural Operations
Abstract
:1. Introduction
- Laser-based techniques: These involve the use of laser scanners to measure fruit size, shape, and surface characteristics. Laser scanning precision allows for the detailed 3D modeling of fruits [10,11]. Lasers can also be used in orchard harvesting for the detection of the location of fruits [12,13].
- Spectral imaging (visible and non-visible): Spectral imaging techniques, including near-infrared (NIR), hyperspectral, and multispectral imaging, are used to assess both the external and internal quality of fruit. These methods can detect chemical compositions, moisture content, and internal defects not visible to the naked eye [14,15].
- Ultrasound technology: Ultrasound is a non-destructive technique used to probe the internal structure of fruits, assessing qualities such as texture, density, and the presence of internal defects or rot, without affecting the fruit’s quality [18].
- Electrical impedance: This method involves measuring the resistance of fruit tissue to an electrical current and investigating its correlation with fruit firmness and ripeness [24].
2. Materials and Methods
3. Results
3.1. Model Training
3.2. Transfer Learning Model
3.3. Custom CNN Model
3.4. Comparison between Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Baldwin, E.; Bai, J.; Plotto, A.; Ritenour, M. Citrus fruit quality assessment; producer and consumer perspectives. Stewart Postharvest Rev. 2014, 10, 1–7. [Google Scholar]
- Bösch, Y.; Britt, E.; Perren, S.; Naef, A.; Frey, J.E.; Bühlmann, A. Dynamics of the Apple Fruit Microbiome after Harvest and Implications for Fruit Quality. Microorganisms 2021, 9, 272. [Google Scholar] [CrossRef]
- Albahar, M. A Survey on Deep Learning and Its Impact on Agriculture: Challenges and Opportunities. Agriculture 2023, 13, 540. [Google Scholar] [CrossRef]
- Liu, S.; Qiao, Y.; Li, J.; Zhang, H.; Zhang, M.; Wang, M. An Improved Lightweight Network for Real-Time Detection of Apple Leaf Diseases in Natural Scenes. Agronomy 2022, 12, 2363. [Google Scholar] [CrossRef]
- Aherwadi, N.; Mittal, U. Fruit quality identification using image processing, machine learning, and deep learning: A review. Adv. Appl. Math. Sci. 2022, 21, 2645–2660. [Google Scholar]
- Dhiman, B.; Kumar, Y.; Kumar, M. Fruit quality evaluation using machine learning techniques: Review, motivation and future perspectives. Multimed. Tools Appl. 2022, 81, 16255–16277. [Google Scholar] [CrossRef]
- Mamatkulovich, B.B.; Qizi, T.S.X.; Qizi, T.O.M.; O‘G‘Li, X.D.S. Simplified machine learning for image-based fruit quality assessment. Eurasian J. Res. Dev. Innov. 2023, 19, 8–12. [Google Scholar]
- Mahanti, N.K.; Pandiselvam, R.; Kothakota, A.; Ishwarya, S.P.; Chakraborty, S.K.; Kumar, M.; Cozzolino, D. Emerging non-destructive imaging techniques for fruit damage detection: Image processing and analysis. Trends Food Sci. Technol. 2022, 120, 418–438. [Google Scholar] [CrossRef]
- Adedeji, A.A.; Ekramirad, N.; Rady, A.; Hamidisepehr, A.; Donohue, K.D.; Villanueva, R.T.; Parrish, C.A.; Li, M. Non-Destructive Technologies for Detecting Insect Infestation in Fruits and Vegetables under Postharvest Conditions: A Critical Review. Foods 2020, 9, 927. [Google Scholar] [CrossRef]
- Patel, A.; Kadam, P.; Naik, S. Color, Size and Shape Feature Extraction Techniques for Fruits: A Technical Review. Int. J. Comput. Appl. 2015, 130, 6–10. [Google Scholar] [CrossRef]
- Shiddiq, M.; Fitmawati; Anjasmara, R.; Sari, N.; Hefniati. Ripeness detection simulation of oil palm fruit bunches using laser-based imaging system. AIP Conf. Proc. 2017, 1801, 050003. [Google Scholar] [CrossRef]
- Gené-Mola, J.; Gregorio, E.; Guevara, J.; Auat, F.; Sanz-Cortiella, R.; Escolà, A.; Llorens, J.; Morros, J.-R.; Ruiz-Hidalgo, J.; Vilaplana, V.; et al. Fruit detection in an apple orchard using a mobile terrestrial laser scanner. Biosyst. Eng. 2019, 187, 171–184. [Google Scholar] [CrossRef]
- Chu, P.; Li, Z.; Zhang, K.; Lammers, K.; Lu, R. High-precision fruit localization using active laser-camera scanning: Robust laser line extraction for 2D-3D transformation. Smart Agric. Technol. 2024, 7, 100391. [Google Scholar] [CrossRef]
- Feature extraction of hyperspectral images for detecting immature green citrus fruit. Front. Agric. Sci. Eng. 2018, 5, 475–484. [CrossRef]
- Chandrasekaran, I.; Panigrahi, S.S.; Ravikanth, L.; Singh, C.B. Potential of Near-Infrared (NIR) Spectroscopy and Hyperspectral Imaging for Quality and Safety Assessment of Fruits: An Overview. Food Anal. Methods 2019, 12, 2438–2458. [Google Scholar] [CrossRef]
- Baietto, M.; Wilson, A.D. Electronic-Nose Applications for Fruit Identification, Ripeness and Quality Grading. Sensors 2015, 15, 899–931. [Google Scholar] [CrossRef] [PubMed]
- Sujatha, K.; Ponmagal, R.S.; Srividhya, V.; Godhavari, T. Feature extraction for ethylene gas measurement for ripening fruits. In Proceedings of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016; pp. 3804–3808. [Google Scholar]
- Yildiz, F.; Özdemir, A.T.; Uluışık, S. Evaluation Performance of Ultrasonic Testing on Fruit Quality Determination. J. Food Qual. 2019, 2019, 6810865. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Ji, G.; Phillips, P. Fruit classification using computer vision and feedforward neural network. J. Food Eng. 2014, 143, 167–177. [Google Scholar] [CrossRef]
- Bhargava, A.; Bansal, A. Fruits and vegetables quality evaluation using computer vision: A review. J. King Saud Univ.—Comput. Inf. Sci. 2021, 33, 243–257. [Google Scholar] [CrossRef]
- Van De Looverbosch, T.; Rahman Bhuiyan, M.H.; Verboven, P.; Dierick, M.; Van Loo, D.; De Beenbouwer, J.; Sijbers, J.; Nicolaï, B. Nondestructive internal quality inspection of pear fruit by X-ray CT using machine learning. Food Control 2020, 113, 107170. [Google Scholar] [CrossRef]
- Matsui, T.; Kamata, T.; Koseki, S.; Koyama, K. Development of automatic detection model for stem-end rots of ‘Hass’ avocado fruit using X-ray imaging and image processing. Postharvest Biol. Technol. 2022, 192, 111996. [Google Scholar] [CrossRef]
- Filter Design for Optimal Feature Extraction from X-ray Images. Available online: https://elibrary.asabe.org/abstract.asp?aid=13353 (accessed on 20 June 2024).
- Fruit Quality Evaluation Using Electrical Impedance Spectroscopy. Available online: https://bia.unibz.it/esploro/outputs/doctoral/Fruit-Quality-Evaluation-Using-Electrical-Impedance/991006127184201241 (accessed on 20 June 2024).
- Gan, H.; Lee, W.S.; Alchanatis, V.; Abd-Elrahman, A. Active thermal imaging for immature citrus fruit detection. Biosyst. Eng. 2020, 198, 291–303. [Google Scholar] [CrossRef]
- Satone, M.; Diwakar, S.; Joshi, V. Automatic Bruise Detection in Fruits Using Thermal Images. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2017, 7, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Bhole, V.; Kumar, A.; Bhatnagar, D. A Texture-Based Analysis and Classification of Fruits Using Digital and Thermal Images. In Proceedings of the ICT Analysis and Applications; Fong, S., Dey, N., Joshi, A., Eds.; Springer: Singapore, 2020; pp. 333–343. [Google Scholar]
- Caceres-Hernandez, D.; Gutierrez, R.; Kung, K.; Rodriguez, J.; Lao, O.; Contreras, K.; Jo, K.-H.; Sanchez-Galan, J.E. Recent advances in automatic feature detection and classification of fruits including with a special emphasis on Watermelon (Citrillus lanatus): A review. Neurocomputing 2023, 526, 62–79. [Google Scholar] [CrossRef]
- Ren, A.; Zahid, A.; Zoha, A.; Shah, S.A.; Imran, M.A.; Alomainy, A.; Abbasi, Q.H. Machine Learning Driven Approach Towards the Quality Assessment of Fresh Fruits Using Non-Invasive Sensing. IEEE Sens. J. 2020, 20, 2075–2083. [Google Scholar] [CrossRef]
- Abideen, A.Z.; Sundram, V.P.K.; Pyeman, J.; Othman, A.K.; Sorooshian, S. Food Supply Chain Transformation through Technology and Future Research Directions—A Systematic Review. Logistics 2021, 5, 83. [Google Scholar] [CrossRef]
- Teixeira, I.; Morais, R.; Sousa, J.J.; Cunha, A. Deep Learning Models for the Classification of Crops in Aerial Imagery: A Review. Agriculture 2023, 13, 965. [Google Scholar] [CrossRef]
- Zárate, V.; González, E.; Cáceres-Hernández, D. Fruit Detection and Classification Using Computer Vision and Machine Learning Techniques. In Proceedings of the 2023 IEEE 32nd International Symposium on Industrial Electronics (ISIE), Helsinki, Finland, 19–21 June 2023; pp. 1–6. [Google Scholar]
- Tian, Y.; Wu, W.; Lu, S.; Deng, H. Application of deep learning in fruit quality detection and grading. Food Sci. 2021, 42, 260. [Google Scholar] [CrossRef]
- Bobde, S.; Jaiswal, S.; Kulkarni, P.; Patil, O.; Khode, P.; Jha, R. Fruit Quality Recognition using Deep Learning Algorithm. In Proceedings of the 2021 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON), Pune, India, 29–30 October 2021; pp. 1–5. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zárate, V.; Hernández, D.C. Simplified Deep Learning for Accessible Fruit Quality Assessment in Small Agricultural Operations. Appl. Sci. 2024, 14, 8243. https://doi.org/10.3390/app14188243
Zárate V, Hernández DC. Simplified Deep Learning for Accessible Fruit Quality Assessment in Small Agricultural Operations. Applied Sciences. 2024; 14(18):8243. https://doi.org/10.3390/app14188243
Chicago/Turabian StyleZárate, Víctor, and Danilo Cáceres Hernández. 2024. "Simplified Deep Learning for Accessible Fruit Quality Assessment in Small Agricultural Operations" Applied Sciences 14, no. 18: 8243. https://doi.org/10.3390/app14188243
APA StyleZárate, V., & Hernández, D. C. (2024). Simplified Deep Learning for Accessible Fruit Quality Assessment in Small Agricultural Operations. Applied Sciences, 14(18), 8243. https://doi.org/10.3390/app14188243