Fault Feature Extraction Using L-Kurtosis and Minimum Entropy-Based Signal Demodulation
Abstract
:1. Introduction
2. Background
2.1. Clustering-Based Segmentation
2.2. Fuzzy C-Mean
3. Methodology
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, C.; Gao, H.; Liu, X.; Liu, B. A visual vibration characterization method for intelligent fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 2023, 192, 110229. [Google Scholar] [CrossRef]
- He, G.; Li, J.; Ding, K.; Zhang, Z. Feature extraction of gear and bearing compound faults based on vibration signal sparse decomposition. Appl. Acoust. 2022, 189, 108604. [Google Scholar] [CrossRef]
- Hou, Y.; Zhou, C.; Tian, C.; Wang, D.; He, W.; Huang, W.; Wu, P.; Wu, D. Acoustic feature enhancement in rolling bearing fault diagnosis using sparsity-oriented multipoint optimal minimum entropy deconvolution adjusted method. Appl. Acoust. 2022, 201, 109105. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, F.; Jia, M. A centrifugal fan blade damage identification method based on the multi-level fusion of vibro-acoustic signals and CNN. Measurement 2022, 199, 111475. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, J.; Ding, X.; Wang, L.; Yang, Y.; Zhang, W.; Du, M.; Shao, Y. A new raw signal fusion method using reweighted VMD for early crack fault diagnosis at spline tooth of clutch friction disc. Measurement 2023, 220, 113414. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, P.; Vashishtha, G.; Chauhan, S.; Zimroz, R.; Kumar, S.; Kumar, R.; Gupta, M.K.; Ross, N.S. Fault Identification of Direct-Shift Gearbox Using Variational Mode Decomposition and Convolutional Neural Network. Machines 2024, 12, 428. [Google Scholar] [CrossRef]
- Cioch, W.; Knapik, O.; Leśkow, J. Finding a frequency signature for a cyclostationary signal with applications to wheel bearing diagnostics. Mech. Syst. Signal Process. 2013, 38, 55–64. [Google Scholar] [CrossRef]
- Obuchowski, J.; Wyłomańska, A.; Zimroz, R. Selection of informative frequency band in local damage detection in rotating machinery. Mech. Syst. Signal Process. 2014, 48, 138–152. [Google Scholar] [CrossRef]
- Smith, W.A.; Borghesani, P.; Ni, Q.; Wang, K.; Peng, Z. Optimal demodulation-band selection for envelope-based diagnostics: A comparative study of traditional and novel tools. Mech. Syst. Signal Process. 2019, 134, 106303. [Google Scholar] [CrossRef]
- Lei, Y.; Lin, J.; He, Z.; Zuo, M.J. A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 2013, 35, 108–126. [Google Scholar] [CrossRef]
- Espinoza-Sepulveda, N.; Sinha, J. Two-step vibration-based machine learning model for the fault detection and diagnosis in rotating machine and its blind application. Struct. Health Monit. 2024, 14759217241249055. [Google Scholar] [CrossRef]
- Almutairi, K.; Sinha, J.K.; Wen, H. Fault Detection of Rotating Machines Using poly-Coherent Composite Spectrum of Measured Vibration Responses with Machine Learning. Machines 2024, 12, 573. [Google Scholar] [CrossRef]
- Bendjama, H. Feature extraction based on vibration signal decomposition for fault diagnosis of rolling bearings. Int. J. Adv. Manuf. Technol. 2024, 130, 821–836. [Google Scholar] [CrossRef]
- Tahmasbi, D.; Shirali, H.; Sajad Mousavi Nejad Souq, S.; Eslampanah, M. Diagnosis and root cause analysis of bearing failure using vibration analysis techniques. Eng. Fail. Anal. 2024, 158, 107954. [Google Scholar] [CrossRef]
- Antoni, J. The infogram: Entropic evidence of the signature of repetitive transients. Mech. Syst. Signal Process. 2016, 74, 73–94. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, J.; Markert, R.; Liang, M. Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications. Mech. Syst. Signal Process. 2016, 66–67, 679–698. [Google Scholar] [CrossRef]
- Combet, F.; Gelman, L. Optimal filtering of gear signals for early damage detection based on the spectral kurtosis. Mech. Syst. Signal Process. 2009, 23, 652–668. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, M. Identification of multiple transient faults based on the adaptive spectral kurtosis method. J. Sound Vib. 2012, 331, 470–486. [Google Scholar] [CrossRef]
- Wang, T.; Chu, F.; Han, Q.; Kong, Y. Compound faults detection in gearbox via meshing resonance and spectral kurtosis methods. J. Sound Vib. 2017, 392, 367–381. [Google Scholar] [CrossRef]
- Borghesani, P.; Pennacchi, P.; Randall, R.B.; Sawalhi, N.; Ricci, R. Application of cepstrum pre-whitening for the diagnosis of bearing faults under variable speed conditions. Mech. Syst. Signal Process. 2013, 36, 370–384. [Google Scholar] [CrossRef]
- Sacerdoti, D.; Strozzi, M.; Secchi, C. A Comparison of Signal Analysis Techniques for the Diagnostics of the IMS Rolling Element Bearing Dataset. Appl. Sci. 2023, 13, 5977. [Google Scholar] [CrossRef]
- Antoni, J.; Randall, R.B. The spectral kurtosis: Application to the vibratory surveillance and diagnostics of rotating machines. Mech. Syst. Signal Process. 2006, 20, 308–331. [Google Scholar] [CrossRef]
- Berrouche, Y.; Vashishtha, G.; Chauhan, S.; Zimroz, R. Local damage detection in rolling element bearings based on a single ensemble empirical mode decomposition. Knowl.-Based Syst. 2024, 301, 112265. [Google Scholar] [CrossRef]
- Wang, H.; Du, W. Early weak fault diagnosis of rolling element bearing based on resonance sparse decomposition and multi-objective information frequency band selection method. J. Vib. Control 2022, 28, 2762–2776. [Google Scholar] [CrossRef]
- Hebda-Sobkowicz, J.; Zimroz, R.; Wyłomańska, A. Selection of the Informative Frequency Band in a Bearing Fault Diagnosis in the Presence of Non-Gaussian Noise—Comparison of Recently Developed Methods. Appl. Sci. 2020, 10, 2657. [Google Scholar] [CrossRef]
- Schmidt, S.; Heyns, P.S.; Gryllias, K.C. An informative frequency band identification framework for gearbox fault diagnosis under time-varying operating conditions. Mech. Syst. Signal Process. 2021, 158, 107771. [Google Scholar] [CrossRef]
- Zhao, H.; Jiang, X.; Wang, B.; Cheng, X. Bearing fault feature extraction method: Stochastic resonance-based negative entropy of square envelope spectrum. Meas. Sci. Technol. 2024, 35, 045102. [Google Scholar] [CrossRef]
- Wu, K.; Tong, W.; Huang, B.; Wu, D. Combined Weighted Envelope Spectrum: An enhanced demodulation framework for extracting characteristic frequency of rotating machinery. Mech. Syst. Signal Process. 2024, 209, 111083. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R. L-Moments Ratio-Based Condition Indicators for Diagnosis of Fault in a Worm Gearbox. J. Vib. Eng. Technol. 2023, 11, 4131–4149. [Google Scholar] [CrossRef]
S. No. | Components | Specifications |
---|---|---|
1. | Motor | DCmotor; power: 1 hp.; maximum speed: 2880 rpm. |
2. | Worm gearbox | Single stage; worm and wheel; gear ratio 20:1. |
S. No. | Components | Specifications |
---|---|---|
1. | Motor | DCmotor; power: 1 hp.; maximum speed: 2880 rpm. |
2. | Helical gearbox | Three stages; helical gears; reduction ratio 7:3.2:3.1. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Chauhan, S.; Vashishtha, G.; Kumar, S.; Kumar, R. Fault Feature Extraction Using L-Kurtosis and Minimum Entropy-Based Signal Demodulation. Appl. Sci. 2024, 14, 8342. https://doi.org/10.3390/app14188342
Kumar S, Chauhan S, Vashishtha G, Kumar S, Kumar R. Fault Feature Extraction Using L-Kurtosis and Minimum Entropy-Based Signal Demodulation. Applied Sciences. 2024; 14(18):8342. https://doi.org/10.3390/app14188342
Chicago/Turabian StyleKumar, Surinder, Sumika Chauhan, Govind Vashishtha, Sunil Kumar, and Rajesh Kumar. 2024. "Fault Feature Extraction Using L-Kurtosis and Minimum Entropy-Based Signal Demodulation" Applied Sciences 14, no. 18: 8342. https://doi.org/10.3390/app14188342
APA StyleKumar, S., Chauhan, S., Vashishtha, G., Kumar, S., & Kumar, R. (2024). Fault Feature Extraction Using L-Kurtosis and Minimum Entropy-Based Signal Demodulation. Applied Sciences, 14(18), 8342. https://doi.org/10.3390/app14188342