Effects of Gradual Spatial and Temporal Cues Provided by Synchronized Walking Avatar on Elderly Gait
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods
2.1. Subjects
2.2. WalkMate AR System
2.2.1. Real-Time Human-Phase Estimation
2.2.2. Gait Phase Synchronization
2.2.3. Avatar and Auditory Cue Presentation
2.3. Experimental Protocol
- Phase 1—Base section: No avatar or auditory cue is presented to the participant as they walk down the corridor wearing the HMD.
- Phase 2—conditioned: The avatar appears after the first turn and synchronizes its steps with the participant, playing auditory cues in sync with the foot contacts of the avatar. In the middle of this phase, there is a gradual 12 s change in either the distance or phase difference between the participant and avatar. This phase can be further split into 3 sections:
- (a)
- Before—The time between the first turn and the beginning of the gradual change.
- (b)
- Change—The gradual 12 s change in either the distance or phase difference between the participant and avatar.
- (c)
- After—The time following the end of the gradual change and the beginning of the second turn.
- Phase 3—Post section: Following the second turn, similar to the Base section, the participant walks with no avatar nor auditory cues presented while wearing the headset until the end of the corridor.
- Distance decrease (Spatial Decrease, ): This condition features a 3 m decrease in the distance between the avatar and the user from 5 m to 2 m over a 12 s period. The expected outcome is a decrease in the stride length of the user.
- Distance increase (Spatial Increase, ): This condition uses a gradual increase of 3 m in the distance between the avatar and the user from 5 m to 8 m over a 12 s period. The expected outcome is an increase in the stride length of the user.
- Phase difference decrease (Phase Decrease, ): This condition modifies the phase difference between the user and avatar. A gradual decrease in phase difference from 0 rad to is used as the cue to the user. This difference can be seen in the avatar’s step timing being slightly advanced with respect to the user’s. The expected result is a decrease in the cycle time of the user’s gait.
- Phase difference increase (Phase Increase ): This condition modifies the phase difference between the user and the avatar. A gradual increase in phase difference from 0 rad to is used as the temporal cue to the user. This difference can be seen in the avatar’s step timing being slightly delayed with respect to the user’s. The expected result is an increase in the cycle time of the user’s gait.
2.4. Hardware
2.5. Data Analysis
- Base refers to the average of the values in the first phase of the trial before the first turn and with no avatar showing. Ten strides at the start and end of the phase were omitted to eliminate acceleration and deceleration readings. This was used as the baseline and control value for comparison for the learning effect.
- Before refers to the average values of 10 strides after the first turn but before the gradual cue. The 10 strides immediately after the turn were omitted not to include the acceleration values.
- After refers to the average values of 10 strides before the second turn but after the gradual cue. The last 10 strides before the turn were omitted to eliminate the deceleration readings.
- Post refers to the average of the values in the final section of the trial after the second turn and with no avatar showing. The 10 strides at the start and end of the phase were omitted to eliminate the acceleration and deceleration readings.
3. Results
3.1. Normalized Gait Values before and after Cueing
3.1.1. Stride Length
3.1.2. Cycle Time
3.1.3. Speed
3.2. Change Ratio
3.2.1. Stride Length
3.2.2. Cycle Time
3.2.3. Speed
4. Discussion
4.1. Stride Length
4.2. Cycle Time
4.3. Gait Speed
4.4. Synchronized Walking Avatar and Audio Cues on Gait Guidance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HMD | head-mounted display |
AR | augmented reality |
IMU | inertial measurement unit |
SI | Spatial (distance) Increase |
SD | Spatial (distance) Decrease |
PI | phase difference increase |
PD | phase difference decrease |
References
- McGibbon, C.A. Toward a better understanding of gait changes with age and disablement: Neuromuscular adaptation. Exerc. Sport Sci. Rev. 2003, 31, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Ferrandez, A.M.; Pailhous, J.; Durup, M. Slowness in elderly gait. Exp. Aging Res. 1990, 16, 79–89. [Google Scholar] [CrossRef]
- Aboutorabi, A.; Arazpour, M.; Bahramizadeh, M.; Hutchins, S.W.; Fadayevatan, R. The effect of aging on gait parameters in able-bodied older subjects: A literature review. Aging Clin. Exp. Res. 2016, 28, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Alexander, N.B. Gait Disorders in Older Adults. J. Am. Geriatr. Soc. 1996, 44, 434–451. [Google Scholar] [CrossRef]
- Prince, F.; Corriveau, H.; Hébert, R.; Winter, D.A. Gait in the elderly. Gait Posture 1997, 5, 128–135. [Google Scholar] [CrossRef]
- Anne-Marie, F.; Madeleine, D.; Fernand, F. Slowness, variability, and modulations of gait in healthy elderly. In Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1996; Volume 114, pp. 53–88. [Google Scholar]
- Osoba, M.; Rao, A.; Agrawal, S.; Lalwani, A. Balance and gait in the elderly: A contemporary review. Laryngoscope Investig. Otolaryngol. 2019, 4, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Puspita, P.A.D.; Saraswati, P.A.S.; Negara, A.A.G.A.P. Gait in the elderly: A narrative review. Kinesiol. Physiother. Compr. 2023, 2, 87–93. [Google Scholar] [CrossRef]
- Stefanacci, R.G.; Wilkinson, J.R. Gait Disorders in Older Adults. MSD Manual 2023. Available online: https://www.msdmanuals.com/en-jp/professional/geriatrics/gait-disorders-in-older-adults/gait-disorders-in-older-adults (accessed on 28 July 2024).
- Mahlknecht, P.; Kiechl, S.; Bloem, B.R.; Willeit, J.; Scherfler, C.; Gasperi, A.; Rungger, G.; Poewe, W.; Seppi, K. Prevalence and burden of gait disorders in elderly men and women aged 60–97 years: A population-based study. PLoS ONE 2013, 8, e69627. [Google Scholar] [CrossRef]
- Snijders, A.H.; Van De Warrenburg, B.P.; Giladi, N.; Bloem, B.R. Neurological gait disorders in elderly people: Clinical approach and classification. Lancet Neurol. 2007, 6, 63–74. [Google Scholar] [CrossRef]
- Pirker, W.; Katzenschlager, R. Gait disorders in adults and the elderly: A clinical guide. Wien. Klin. Wochenschr. 2017, 129, 81–95. [Google Scholar] [CrossRef]
- Imms, F.; Edholm, O. Studies of gait and mobility in the elderly. Age Ageing 1981, 10, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, Y. Promoting elderly mobility and fall prevention through virtual reality: A sustainable approach to gait balance training. Ibero-Am. J. Educ. Soc. Res. 2024, 4, 37–45. [Google Scholar] [CrossRef]
- Lee, K. Virtual Reality Gait Training to Promote Balance and Gait Among Older People: A Randomized Clinical Trial. Geriatrics 2020, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Mirelman, A.; Rochester, L.; Reelick, M.F.; Nieuwhof, F.; Pelosin, E.; Abbruzzese, G.; Dockx, K.; Nieuwboer, A.; Hausdorff, J.M. V-Time: A Treadmill Training Program Augmented by Virtual Reality to Decrease Fall Risk in Older Adults: Study Design of a Randomized Controlled Trial. Bmc Neurol. 2013, 13, 15. [Google Scholar] [CrossRef]
- Delbes, L.; Mascret, N.; Goulon, C.; Montagne, G. Validation of an Immersive Virtual Reality Device Accepted by Seniors That Preserves the Adaptive Behavior Produced in the Real World. Front. Bioeng. Biotechnol. 2022, 10, 917486. [Google Scholar] [CrossRef]
- Rossano, C.; Terrier, P. Visually-Guided Gait Training in Paretic Patients During the First Rehabilitation Phase: Study Protocol for a Randomized Controlled Trial. Trials 2016, 17, 523. [Google Scholar] [CrossRef]
- Lee, B. Clinical usefulness of augmented reality using infrared camera based real-time feedback on gait function in cerebral palsy: A case study. J. Phys. Ther. Sci. 2016, 28, 1387–1391. [Google Scholar] [CrossRef]
- Matsuda, Y.; Nakamura, J.; Amemiya, T.; Ikei, Y.; Kitazaki, M. Enhancing virtual walking sensation using self-avatar in first-person perspective and foot vibrations. Front. Virtual Real. 2021, 2, 654088. [Google Scholar] [CrossRef]
- Sangani, S.; Patterson, K.K.; Fung, J.; Lamontagne, A. Real-time avatar-based feedback to enhance the symmetry of spatiotemporal parameters after stroke: Instantaneous effects of different avatar views. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 878–887. [Google Scholar]
- Labbe, D.R.; Kouakoua, K.; Aissaoui, R.; Nadeau, S.; Duclos, C. Proprioceptive stimulation added to a walking self-avatar enhances the illusory perception of walking in static participants. Front. Virtual Real. 2021, 2, 557783. [Google Scholar] [CrossRef]
- Booth, A.; van der Krogt, M.; Buizer, A.; Steenbrink, F.; Harlaar, J. The validity and usability of an eight marker model for avatar-based biofeedback gait training. Clin. Biomech. 2019, 70, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Alyami, M.; Nessler, J.A. Walking on a vertically oscillating platform with simulated gait asymmetry. Symmetry 2021, 13, 555. [Google Scholar] [CrossRef]
- Miller, D.A.L.; Ogata, T.; Sasabe, G.; Shan, L.; Tsumura, N.; Miyake, Y. Spatiotemporal Gait Guidance Using Audiovisual Cues of Synchronized Walking Avatar in Augmented Reality. IEEE Access 2022, 10, 90498–90506. [Google Scholar] [CrossRef]
- Ready, E.A.; Holmes, J.D.; Grahn, J.A. Gait in younger and older adults during rhythmic auditory stimulation is influenced by groove, familiarity, beat perception, and synchronization demands. Hum. Mov. Sci. 2022, 84, 102972. [Google Scholar] [CrossRef]
- Cherubini, D.; Latorre Roman, P.A.; Aragón Vela, J.; Soto Hermoso, V.M. Variations in spatiotemporal parameters in young and older women while walking at different speeds. Cult. Cienc. Deporte 2023, 18, 11–19. [Google Scholar]
- Hori, K.; Mao, Y.; Ono, Y.; Ora, H.; Hirobe, Y.; Sawada, H.; Inaba, A.; Orimo, S.; Miyake, Y. Inertial measurement unit-based estimation of foot trajectory for clinical gait analysis. Front. Physiol. 2020, 10, 1530. [Google Scholar] [CrossRef]
- Miyake, Y. Interpersonal synchronization of body motion and the Walk-Mate walking support robot. IEEE Trans. Robot. 2009, 25, 638–644. [Google Scholar] [CrossRef]
- Shan, L.; Sasabe, G.; Tsumura, N.; Ogata, T.; Miyake, Y. Gait guidance using rhythm synchronization with auditory cues and walking avatar in augmented reality. Hum. Interface Symp. 2019, 2019, 707–711. [Google Scholar]
- Mao, Y.; Ogata, T.; Ora, H.; Tanaka, N.; Miyake, Y. Estimation of stride-by-stride spatial gait parameters using inertial measurement unit attached to the shank with inverted pendulum model. Sci. Rep. 2021, 11, 1391. [Google Scholar] [CrossRef]
- Schwesig, R.; Leuchte, S.; Fischer, D.; Ullmann, R.; Kluttig, A. Inertial sensor based reference gait data for healthy subjects. Gait Posture 2011, 33, 673–678. [Google Scholar] [CrossRef]
- Luukinen, H.; Koski, K.; Laippala, P.; Kivela, S.L. Risk factors for recurrent falls in the elderly in long-term institutional care. Public Health 1995, 109, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Espy, D.D.; Yang, F.; Bhatt, T.; Pai, Y.C. Independent influence of gait speed and step length on stability and fall risk. Gait Posture 2010, 32, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Bank, P.J.; Roerdink, M.; Peper, C. Comparing the efficacy of metronome beeps and stepping stones to adjust gait: Steps to follow! Exp. Brain Res. 2011, 209, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Bertram, J.E.; Ruina, A. Multiple walking speed–frequency relations are predicted by constrained optimization. J. Theor. Biol. 2001, 209, 445–453. [Google Scholar] [CrossRef]
- Patel, P.; Enzastiga, D.; Casamento-Moran, A.; Christou, E.A.; Lodha, N. Increased Temporal Stride Variability Contributes to Impaired Gait Coordination After Stroke. Sci. Rep. 2022, 12, 12679. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.V.; Ogamba, M.; Lewis, C.L. Effects of Additional Anterior Body Mass on Gait. BMC Pregnancy Childbirth 2016, 16, 109. [Google Scholar] [CrossRef]
- Madrid, J.; Ulrich, B.; Santos, A.N.; Jolles, B.M.; Favre, J.; Benninger, D.H. Spatiotemporal parameters during turning gait maneuvers of different amplitudes in young and elderly healthy adults: A descriptive and comparative study. Gait Posture 2023, 99, 152–159. [Google Scholar] [CrossRef]
- Madrid, J.; Benning, L.; Selig, M.; Ulrich, B.; Jolles, B.M.; Favre, J.; Benninger, D.H. Slowing gait during turning: How volition of modifying walking speed affects the gait pattern in healthy adults. Front. Hum. Neurosci. 2024, 18, 1269772. [Google Scholar] [CrossRef]
- Mancini, M.; Smulders, K.; Harker, G.; Stuart, S.; Nutt, J.G. Assessment of the ability of open-and closed-loop cueing to improve turning and freezing in people with Parkinson’s disease. Sci. Rep. 2018, 8, 12773. [Google Scholar] [CrossRef]
- Yogev-Seligmann, G.; Josman, N.; Bitterman, N.; Rosenblum, S.; Naaman, S.; Gilboa, Y. The development of a home-based technology to improve gait in people with Parkinson’s disease: A feasibility study. Biomed. Eng. Online 2023, 22, 2. [Google Scholar] [CrossRef]
- Khan, O.; Ahmed, I.; Cottingham, J.; Rahhal, M.; Arvanitis, T.N.; Elliott, M.T. Timing and correction of stepping movements with a virtual reality avatar. PLoS ONE 2020, 15, e0229641. [Google Scholar] [CrossRef] [PubMed]
- Rizzolatti, G.; Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 2004, 27, 169–192. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, K.; Kim, Y. Effect of action observation by subject type on the balance and the gait of stroke patients. J. Korean Soc. Phys. Med. 2019, 14, 7–14. [Google Scholar] [CrossRef]
- Sobarna, A. The effect of training stride length and stride frequency on increasing sprint speed. Migr. Lett. 2023, 20, 1122–1136. [Google Scholar] [CrossRef]
- Granatosky, M.; McElroy, E. Stride frequency or length? a phylogenetic approach to understand how animals regulate locomotor speed. J. Exp. Biol. 2022, 225. [Google Scholar] [CrossRef]
- Naik, K.; Paldhikar, S. Comparison of effect of rhythmic auditory cueing versus rhythmic visual cueing on gait abnormalities with gait parameters in parkinson’s patients. Ip Indian J. Neurosci. 2022, 8, 113–118. [Google Scholar] [CrossRef]
- Nishikawa, R.; Nishizawa, H.; Fukushima, K.; Oguchi, K.; Takei, Y.; Nakamura, A.; Kimura, T. The effects of visual cues from optical stimulation devices on gait disturbance in patients with parkinson’s disease. J. Phys. Ther. Sci. 2023, 35, 230–236. [Google Scholar] [CrossRef]
- Vaz, J.; Rand, T.; Fujan-Hansen, J.; Mukherjee, M.; Stergiou, N. Auditory and visual external cues have different effects on spatial but similar effects on temporal measures of gait variability. Front. Physiol. 2020, 11, 67. [Google Scholar] [CrossRef] [PubMed]
- Raffalt, P.C.; Stergiou, N.; Sommerfeld, J.H.; Likens, A.D. The temporal pattern and the probability distribution of visual cueing can alter the structure of stride-to-stride variability. Neurosci. Lett. 2021, 763, 136193. [Google Scholar] [CrossRef]
- Kannape, O.; Blanke, O. Self in motion: Sensorimotor and cognitive mechanisms in gait agency. J. Neurophysiol. 2013, 110, 1837–1847. [Google Scholar] [CrossRef]
- Meerhoff, L.; Poel, H.; Jowett, T.; Button, C. Walking with avatars: Gait-related visual information for following a virtual leader. Hum. Mov. Sci. 2019, 66, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Lyu, T.; Yan, K.; Lyu, J.; Zhao, X.; Wang, R.; Zhang, C.; Li, M.; Xiong, C.; Liu, C.; Wei, Y. Comparative efficacy of gait training for balance outcomes in patients with stroke: A systematic review and network meta-analysis. Front. Neurol. 2023, 14, 1093779. [Google Scholar] [CrossRef] [PubMed]
- Hove, M.J.; Suzuki, K.; Uchitomi, H.; Orimo, S.; Miyake, Y. Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of Parkinson’s patients. PLoS ONE 2012, 7, e32600. [Google Scholar] [CrossRef] [PubMed]
- Muto, T.; Herzberger, B.; Hermsdoerfer, J.; Miyake, Y.; Poeppel, E. Interactive cueing with walk-mate for hemiparetic stroke rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 58. [Google Scholar] [CrossRef]
- Nombela, C.; Hughes, L.; Owen, A.; Grahn, J. Into the groove: Can rhythm influence parkinson’s disease? Neurosci. Biobehav. Rev. 2013, 37, 2564–2570. [Google Scholar] [CrossRef]
- Harrison, E.; Horin, A. Internal cueing improves gait more than external cueing in healthy adults and people with parkinson disease. Sci. Rep. 2018, 8, 15525. [Google Scholar] [CrossRef]
- Mendonça, C.; Oliveira, M.; Fontes, L.; Santos, J. The effect of instruction to synchronize over step frequency while walking with auditory cues on a treadmill. Hum. Mov. Sci. 2014, 33, 33–42. [Google Scholar] [CrossRef]
Category | Details |
---|---|
Number of participants | 19 |
Sex | 13 males, 6 females |
Age (years) | |
Height (m) | |
Weight (kg) | |
Inclusion criteria |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, D.A.L.; Uchitomi, H.; Miyake, Y. Effects of Gradual Spatial and Temporal Cues Provided by Synchronized Walking Avatar on Elderly Gait. Appl. Sci. 2024, 14, 8374. https://doi.org/10.3390/app14188374
Miller DAL, Uchitomi H, Miyake Y. Effects of Gradual Spatial and Temporal Cues Provided by Synchronized Walking Avatar on Elderly Gait. Applied Sciences. 2024; 14(18):8374. https://doi.org/10.3390/app14188374
Chicago/Turabian StyleMiller, Dane A. L., Hirotaka Uchitomi, and Yoshihiro Miyake. 2024. "Effects of Gradual Spatial and Temporal Cues Provided by Synchronized Walking Avatar on Elderly Gait" Applied Sciences 14, no. 18: 8374. https://doi.org/10.3390/app14188374
APA StyleMiller, D. A. L., Uchitomi, H., & Miyake, Y. (2024). Effects of Gradual Spatial and Temporal Cues Provided by Synchronized Walking Avatar on Elderly Gait. Applied Sciences, 14(18), 8374. https://doi.org/10.3390/app14188374