Optimisation of Not-from-Concentrate Goji Juice Processing Using Fuzzy Mathematics and Response Surface Methodology and Its Quality Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Instruments
- Turbidity standard solution: Analytical grade, supplied by Howei Pharmaceutical Technology Co., Ltd. (Guangzhou, China).
- Organic solvents: 2-pentanone, 2-hexanone, 2-heptanone, 2-octanone, and 2-nonanone (Sinopharm Chemical Reagent Beijing Co., Ltd., Beijing, China), all analytical grade, were used as external references to calculate the retention index (RI) of volatile compounds.
- PAL-BX/ACID2 digital sugar acidity meter (Atago Co., Ltd., Tokyo, Japan) was used to measure TSS; WZS-188 turbidity meter (INESA Lighting Ltd., Shanghai, China) was measured the turbidity of juice; FT74XTS high/ultra-high temperature instantaneous sterilisation machine (Armfield Ltd., Ringwood, UK) was used for high-temperature sterilisation; JY92-IIN ultrasonic cell disruptor (Ningbo Xinzhi Biotechnology Co., Ltd., Ningbo, China) was used for ultrasonic processing of fruit juice; T18 homogeniser (IKA GmbH, Staufen, Germany) was used for juice averages.
2.2. Experimental Methods
2.2.1. NFC Goji Juice Processing Technology Flow
2.2.2. Single-Factor Experimental Design of NFC Goji Juice Processing Technology
Effect of Homogenisation Time on Quality of NFC Goji Juice
Effect of Ultrasonication Time on Quality of NFC Goji Juice
Effect of Sterilisation Temperature on Quality of NFC Goji Juice
Effect of Sterilisation Time on Quality of NFC Goji Juice
2.3. Design of Response Surface Experiments
2.4. Method for Index Determination
2.4.1. Total Soluble Solids (TSS)
2.4.2. Titratable Acidity (TA)
2.4.3. TSS/TA Ratio
2.4.4. Turbidity
2.4.5. Microbiological Indicator Detection
2.4.6. Colour
2.4.7. Nutritional Quality Determination
2.4.8. Determination of Volatile Components
2.5. Establishment of Fuzzy Mathematics Model
2.5.1. Sensory Evaluation
2.5.2. Determination of Sensory Factor Set and Comment Set
2.5.3. Determination of Evaluation Weight Set
2.5.4. Comprehensive Evaluation Set of Fuzzy Relationships
2.6. Data Statistics and Analysis
3. Results and Discussion
3.1. Results Analysis of Single-Factor Experiments
3.1.1. Effect of Homogenisation Time on NFC Goji Juice Quality
3.1.2. Effect of Ultrasonication Time on NFC Goji Juice Quality
3.1.3. Effect of Sterilisation Temperature on NFC Goji Juice Quality
3.1.4. Effect of Sterilisation Time on NFC Goji Juice Quality
3.2. Comprehensive Results of Fuzzy-Mathematics-Based Sensory Evaluation for NFC Goji Juice Processing Technology
3.3. Experimental Design and Results
3.4. Model Establishment and Significance Analysis
3.5. Analysis of Interaction of Various Factors
3.6. Determination of Optimal Processing Conditions and Validation of Regression Model
3.7. Quality Analysis of NFC Goji Juice
3.8. Analysis of Volatile Components in NFC Goji Juice
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, M.; Ding, C. Electrohydrodynamic (EHD) drying of the Chinese wolfberry fruits. SpringerPlus 2016, 5, 909. [Google Scholar] [CrossRef] [PubMed]
- Potterat, O. Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med. 2009, 76, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Huang, Q.; Zhao, K.; Shang, P. Biological activities and potential health benefit effects of polysaccharides isolated from Lycium barbarum L. Int. J. Biol. Macromol. 2013, 54, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yan, Y.; Zhou, W.; Chen, D.; Huang, K.; Yu, S.; Mi, J.; Lu, L.; Zeng, X.; Cao, Y. Effects of polysaccharides from bee collected pollen of Chinese wolfberry on immune response and gut microbiota composition in cyclophosphamide-treated mice. J. Funct. Foods 2020, 72, 104057. [Google Scholar] [CrossRef]
- Lin, F.Y.; Lai, Y.K.; Yu, H.C.; Chen, N.Y.; Chang, C.Y.; Lo, H.C.; Hsu, T.H. Effects of Lycium barbarum extract on production and immunomodulatory activity of the extracellular polysaccharopeptides from submerged fermentation culture of Coriolus versicolor. Food Chem. 2008, 110, 446–453. [Google Scholar] [CrossRef]
- Yu, J.; Yan, Y.; Zhang, L.; Mi, J.; Yu, F.; Lu, L.; Luo, Q.; Li, X.; Zhou, X.; Cao, Y. A comprehensive review of goji berry processing and utilization. Food Sci. Nutr. 2023, 11, 7445–7457. [Google Scholar] [CrossRef]
- Liu, Y.; Gu, P.; Laaksonen, O.; Wei, B.; Zhu, Y.; Li, H. Lactic acid bacteria incubation and aging drives flavor enhancement of goji berry juice. J. Food Compos. Anal. 2022, 105, 104202. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, H.; Liu, H.; Cheng, H.; Pan, L.; Hu, M.; Li, X. Goji berry juice fermented by probiotics attenuates dextran sodium sulfate-induced ulcerative colitis in mice. J. Funct. Foods 2021, 83, 104491. [Google Scholar] [CrossRef]
- Ma, R.H.; Zhang, X.X.; Thakur, K.; Zhang, J.G.; Wei, Z.G. Research progress of Lycium barbarum L. as functional food: Phytochemical composition and health benefits. Curr. Opin. Food Sci. 2022, 47, 100871. [Google Scholar] [CrossRef]
- Beaulieu, J.C.; Obando-Ulloa, J.M. Not-from-concentrate pilot plant ‘Wonderful’ cultivar pomegranate juice changes: Volatiles. Food Chem. 2017, 229, 553–564. [Google Scholar] [CrossRef]
- Abedelmaksoud, T.G.; Mohsen, S.M.; Duedahl-Olesen, L.; Elnikeety, M.M.; Feyissa, A.H. Optimization of ohmicsonication for overall quality characteristics of NFC apple juice. J. Food Process. Preserv. 2019, 43, e14087. [Google Scholar] [CrossRef]
- Sellami, I.; Mall, V.; Schieberle, P. Changes in the key odorants and aroma profiles of hamlin and valencia orange juices not from concentrate (NFC) during chilled storage. J. Agric. Food Chem. 2018, 66, 7428–7440. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Ma, Q.; Wang, L.; Liu, W.; Chen, Z.; Wang, W.; Wang, J.; Mu, J. Physicochemical, sensory characterisation and volatile components of 16 NFC pear juice. J. Food Meas. Charact. 2023, 17, 3534–3547. [Google Scholar] [CrossRef]
- Vivek, K.; Subbarao, K.V.; Routray, W.; Kamini, N.R.; Dash, K.K. Application of fuzzy logic in sensory evaluation of food products: A comprehensive study. Food Bioprocess Technol. 2020, 13, 1–29. [Google Scholar] [CrossRef]
- Naderpajouh, N.; Afshar, A.; Mirmohammadsadeghi, A. Fuzzy decision support system for application of value engineering in construction industry. J. Int. J. Civ. Eng. 2006, 4, 261–273. [Google Scholar]
- Mukhopadhyay, S.; Majumdar, G.C.; Goswami, T.K.; Mishra, H.N. Fuzzy logic (similarity analysis) approach for sensory evaluation of chhana podo. LWT-Food Sci. Technol. 2013, 53, 204–210. [Google Scholar] [CrossRef]
- Sinija, V.R.; Mishra, H.N. Fuzzy analysis of sensory data for quality evaluation and ranking of instant green tea powder and granules. Food Bioprocess. Technol. 2011, 4, 408–416. [Google Scholar] [CrossRef]
- Ren, X.; Wu, M.; Liu, S.; Pan, H. Optimizing Ultrasonic Extraction and Purification of Nuciferine with Response Surface Method. Nat. Prod. Commun. 2024, 19, 1934578X231220119. [Google Scholar] [CrossRef]
- Prisacaru, A.E.; Ghinea, C.; Albu, E.; Ursachi, F. Effects of Ginger and Garlic Powders on the Physicochemical and Microbiological Characteristics of Fruit Juices during Storage. Foods 2023, 12, 1311. [Google Scholar] [CrossRef]
- Wei, W.Z.; Wei, D.Y.; Jia, Y.W.; Zu, F.W.; He, C.D.; Xian, Q.H.; Ya, N.L. Antioxidant and preservation effects of tea polyphenols on apple juice. Food Biosci. 2024, 60, 104288. [Google Scholar]
- Subeen, D.; Yuri, K.; Jonggab, Y.; Kwang, G.L. Analysis of volatile compounds, betaine, and antioxidant effect in goji berry (Lycium barbarum L.) powder extracted by various drying methods and extraction solvents. Curr. Res. Food Sci. 2024, 9, 100798. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Yan, M.; Ya, L.L.; Xin, T.M.; Ming, Q.X.; Ting, Z.; Hui, Z.; Hai, Y.Y. Process Optimization of Sea Buckthorn Fruit Powder Effervescent Tablets by Random Centroid Methodology Combined with Fuzzy Mathematical Sensory Evaluation. Processes 2023, 11, 2639. [Google Scholar] [CrossRef]
- Uscanga, M.A.; Salvador, A.; Camacho, M.D.M. Impact of freeze-drying shelf temperature on the bioactive compounds, physicalproperties and sensory evaluation of a product based on orange juice. Int. J. Food Sci. Technol. 2021, 56, 5409–5416. [Google Scholar] [CrossRef]
- Genovese, D.B.; Elustondo, M.P.; Lozano, J.E. Color and Cloud Stabilization in Cloudy Apple Juice by Steam Heating During Crushing. J. Food Sci. 2006, 62, 1171–1175. [Google Scholar] [CrossRef]
- Poliseli-Scopel, F.H.; Hernandez-Herrero, M.; Guamis, B.; Ferragut, V. Comparison of ultra high pressure homogenization and conventional thermal treatments on the microbiological, physical and chemical quality of soymilk. LWT-Food Sci. Technol. 2011, 46, 42–48. [Google Scholar] [CrossRef]
- Maresca, P.; Donsi, F.; Ferrari, G. Application of a multi-pass high-pressure homogenization treatment for the pasteurization of fruit juices. J. Food Eng. 2011, 104, 364–372. [Google Scholar] [CrossRef]
- Karacam, C.H.; Sahin, S.; Oztop, M.H. Effect of high pressure homogenization (microfluidization) on the quality of Ottoman Strawberry (F. Ananassa) juice. LWT-Food Sci. Technol. 2015, 64, 932–937. [Google Scholar] [CrossRef]
- Wellala, C.K.D.; Bi, J.; Liu, X.; Liu, J.; Lyu, J.; Zhou, M.; Marszalek, K.; Trych, U. Effect of high pressure homogenization combined with juice ratio on water- soluble pectin characteristics, functional properties and bioactive compounds in mixed juices. Innov. Food Sci. Emerg. 2019, 60, 102279. [Google Scholar] [CrossRef]
- Aadil, R.M.; Zeng, X.A.; Han, Z.; San, D.W. Effects of ultrasound treatments on quality of grapefruit juice. Food Chem. 2013, 141, 3201–3206. [Google Scholar] [CrossRef]
- Türkylmaz, M.; Hamzaolu, F.; Zkan, M. Effects of Pasteurization And Storage on Turbidity and Copigmentation in Pomegranate Juices Clarified with Various Hydrocolloid Combinations. Food Chem. 2021, 358, 129803. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K.; O’Donnell, C.P.; Patras, A.; Brunton, N.; Cullen, P.J. Stability of anthocyanins and ascorbic acid in sonicated strawberry juice during storage. Eur. Food Res. Technol. 2009, 228, 717–724. [Google Scholar] [CrossRef]
- Yu, Y.; Cheng, X.; Zhang, C.; Zhang, J.; Zhang, S.; Xu, J. Ultrasonic and microwave treatment improved jujube juice yield. Food Sci. Nutr. 2020, 8, 4196–4204. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Zhang, Y.; Kou, C.; Xi, P.; He, L. Ultrasonic and other sterilization methods on nutrition and flavor of cloudy apple juice. Ultrason. Sonochem. 2022, 84, 105975. [Google Scholar] [CrossRef]
- Sperandio, M.G.; Lopes, F.K.; Morandi, L.B.; Freitas, B.D.S.J.J. Effects of high-intensity ultrasonic bath on the quality of strawberry juice. CyTA-J. Food 2021, 19, 501–510. [Google Scholar]
- Lara, M.; Sonia, C.; Dino, M.; Maria, C.N.; Carlo, R.L. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Technol. 2000, 11, 340–346. [Google Scholar]
- Tian, Y.; Sun, L.; Yang, Y.; Gou, X.; Niu, P.; Guo, Y. Changes in the physicochemical properties, aromas and polyphenols of not from concentrate (NFC) apple juice during production. CyTA-J. Food 2018, 16, 755–764. [Google Scholar] [CrossRef]
- Qin, R.F.; Xiao, G. A Novel Approach to Fuzzy Soft Set-Based Group Decision-Making. Math. Pract. Theory 2016, 46, 271–280. [Google Scholar]
- Liu, X.; Wang, S.; Tamogami, S.; Chen, J.; Zhang, H. Volatile profile and flavor characteristics of ten edible oils. Anal. Lett. 2021, 54, 1423–1438. [Google Scholar] [CrossRef]
Factor | ||||
---|---|---|---|---|
Level | A. Homogenisation Time (min) | B. Ultrasonication Time (min) | C. Sterilisation Temperature (°C) | D. Sterilisation Time (s) |
−1 | 2 | 1 | 90 | 60 |
0 | 3 | 2 | 100 | 90 |
1 | 4 | 3 | 110 | 120 |
Level | Taste | Colour | Odor | Texture |
---|---|---|---|---|
V1 | Pronounced fruity flavour, appropriately sweet and sour, rich taste, moderate astringency | Colour ranges from orange-red to brown-red, rich and appealing colour, good gloss | Noticeable fruity aroma, pure aroma without off-notes | Juice is uniform, no pulp precipitation |
V2 | Moderate fruity flavour, slightly sour or sweet, mediocre taste, slight astringency | Colour deviates slightly, good gloss | Aroma is somewhat faint, slight off-notes, mediocre aroma | Layering present but not significant, minimal sediment at the bottom |
V3 | Faint fruity flavour, inappropriate sweetness or acidity, unbalanced taste, slightly more astringent | Colour is uneven, slight gloss | Fruity aroma lacking, off-notes in aroma, poor aroma | Significant layering, noticeable sediment at the bottom |
V4 | No fruity flavour, overly sour or sweet, poor taste, heavy astringency | Dull colour, poor gloss | No fruity aroma, pronounced off-notes, unbalanced aroma | Serious layering, flocculation present, significant sediment at the bottom, uneven colour |
Comment Set | Excellent | Good | Fair | Poor |
---|---|---|---|---|
Scoring range | 90–100 | 80–89 | 60–79 | 0–59 |
Boundary clarification | 95 | 85 | 70 | 30 |
Factor | Taste | Colour | Odor | Texture |
---|---|---|---|---|
Weight value | 30/100 | 20/100 | 25/100 | 25/100 |
Sample | Taste | Colour | Odor | Texture | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V1 | V2 | V3 | V4 | V1 | V2 | V3 | V4 | V1 | V2 | V3 | V4 | V1 | V2 | V3 | V4 | |
1 | 0.6 | 0.3 | 0 | 0.1 | 0.1 | 0.5 | 0.1 | 0.3 | 0.6 | 0 | 0 | 0.4 | 0.3 | 0.5 | 0.2 | 0 |
2 | 0.6 | 0.3 | 0.1 | 0 | 0.1 | 0.5 | 0.3 | 0.1 | 0.6 | 0.4 | 0 | 0 | 0.4 | 0.6 | 0 | 0 |
3 | 0.6 | 0.2 | 0 | 0.2 | 0.7 | 0.3 | 0 | 0 | 0.6 | 0.4 | 0 | 0 | 0.6 | 0.3 | 0.1 | 0 |
4 | 0.6 | 0.3 | 0.1 | 0 | 0.1 | 0.5 | 0.3 | 0.1 | 0.6 | 0.3 | 0.1 | 0 | 0.4 | 0.6 | 0 | 0 |
5 | 0 | 0.1 | 0.3 | 0.6 | 0.2 | 0.3 | 0.5 | 0 | 0 | 0.4 | 0.3 | 0.3 | 0.2 | 0.3 | 0.2 | 0.3 |
6 | 0.1 | 0.2 | 0.3 | 0.4 | 0.1 | 0 | 0.5 | 0.4 | 0.3 | 0 | 0.3 | 0.4 | 0 | 0.4 | 0.6 | 0 |
7 | 0 | 0.1 | 0.4 | 0.5 | 0 | 0.1 | 0.4 | 0.5 | 0.1 | 0 | 0.4 | 0.5 | 0 | 0.1 | 0.4 | 0.5 |
8 | 0 | 0.2 | 0.2 | 0.6 | 0.1 | 0 | 0.3 | 0.6 | 0.6 | 0.3 | 0 | 0.1 | 0.3 | 0.4 | 0 | 0.3 |
9 | 0.6 | 0 | 0.1 | 0.3 | 0.1 | 0.3 | 0.1 | 0.5 | 0.6 | 0.4 | 0 | 0 | 0.6 | 0.3 | 0.1 | 0 |
10 | 0.6 | 0.3 | 0 | 0.1 | 0.1 | 0.5 | 0 | 0.4 | 0.6 | 0 | 0 | 0.4 | 0.3 | 0.5 | 0.2 | 0 |
11 | 0.4 | 0.5 | 0 | 0.1 | 0 | 0.5 | 0.2 | 0.3 | 0.1 | 0 | 0.4 | 0.5 | 0 | 0.1 | 0.4 | 0.5 |
12 | 0.3 | 0.2 | 0.3 | 0.2 | 0.1 | 0 | 0.5 | 0.4 | 0.6 | 0 | 0 | 0.4 | 0 | 0.4 | 0.6 | 0 |
13 | 0.6 | 0.3 | 0 | 0.1 | 0.1 | 0 | 0.5 | 0.4 | 0.6 | 0 | 0 | 0.4 | 0.3 | 0.5 | 0.2 | 0 |
14 | 0.4 | 0.5 | 0 | 0.1 | 0 | 0.5 | 0.2 | 0.3 | 0.1 | 0 | 0.4 | 0.5 | 0 | 0.1 | 0.4 | 0.5 |
15 | 0.1 | 0.2 | 0.6 | 0.1 | 0.2 | 0.3 | 0.4 | 0.1 | 0 | 0.4 | 0.3 | 0.3 | 0.2 | 0.3 | 0.2 | 0.3 |
16 | 0.2 | 0.3 | 0.1 | 0.4 | 0.1 | 0.3 | 0.2 | 0.4 | 0.6 | 0.4 | 0 | 0 | 0.3 | 0.5 | 0.2 | 0 |
17 | 0 | 0.2 | 0.2 | 0.6 | 0.1 | 0 | 0.3 | 0.6 | 0.6 | 0.3 | 0 | 0.1 | 0.3 | 0.4 | 0.2 | 0.1 |
18 | 0.4 | 0.5 | 0 | 0.1 | 0 | 0.5 | 0.2 | 0.3 | 0.1 | 0.4 | 0.2 | 0.3 | 0 | 0.1 | 0.4 | 0.5 |
19 | 0.6 | 0 | 0.2 | 0.2 | 0.1 | 0.3 | 0.2 | 0.4 | 0.6 | 0.3 | 0 | 0.1 | 0.6 | 0.1 | 0 | 0.3 |
20 | 0.6 | 0.2 | 0.2 | 0 | 0 | 0.3 | 0.6 | 0.1 | 0.6 | 0 | 0.4 | 0 | 0 | 0.3 | 0.1 | 0.6 |
21 | 0.4 | 0.3 | 0.2 | 0.1 | 0.1 | 0.5 | 0.3 | 0.1 | 0.6 | 0.3 | 0.1 | 0 | 0.1 | 0.3 | 0.4 | 0.2 |
22 | 0.6 | 0 | 0.2 | 0.2 | 0.1 | 0.3 | 0.1 | 0.5 | 0.6 | 0.4 | 0 | 0 | 0.6 | 0.3 | 0.1 | 0 |
23 | 0.3 | 0.2 | 0.3 | 0.2 | 0.1 | 0 | 0.5 | 0.4 | 0.3 | 0 | 0.3 | 0.4 | 0 | 0.4 | 0.6 | 0 |
24 | 0.6 | 0.2 | 0 | 0.2 | 0.1 | 0 | 0.5 | 0.4 | 0.6 | 0 | 0 | 0.4 | 0.3 | 0.5 | 0.2 | 0 |
25 | 0.2 | 0.4 | 0.2 | 0.2 | 0.1 | 0.5 | 0.3 | 0.1 | 0.6 | 0.3 | 0.1 | 0 | 0.1 | 0.3 | 0.4 | 0.2 |
26 | 0.2 | 0.4 | 0.2 | 0.2 | 0.1 | 0.5 | 0.3 | 0.1 | 0.6 | 0.3 | 0.1 | 0 | 0.3 | 0.4 | 0.2 | 0.1 |
27 | 0.6 | 0.2 | 0.2 | 0 | 0.1 | 0 | 0.3 | 0.6 | 0.6 | 0.3 | 0 | 0.1 | 0.6 | 0.1 | 0 | 0.3 |
28 | 0.6 | 0.2 | 0.2 | 0 | 0.1 | 0.3 | 0.2 | 0.4 | 0.6 | 0.3 | 0 | 0.1 | 0.6 | 0.1 | 0 | 0.3 |
29 | 0.1 | 0.1 | 0.6 | 0.2 | 0.2 | 0.4 | 0.4 | 0 | 0.3 | 0.4 | 0.3 | 0 | 0.4 | 0.4 | 0.2 | 0 |
Experimental No. | Homogenisation Time (min) | Ultrasonication Time (min) | Sterilisation Temperature (°C) | Sterilisation Time (s) | TSS/TA Ratio (%) | Sensory Evaluation (Points) |
---|---|---|---|---|---|---|
1 | 2 | 1 | 100 | 90 | 13.63 | 78.1 |
2 | 4 | 1 | 100 | 90 | 14.1 | 87.5 |
3 | 2 | 3 | 100 | 90 | 14.3 | 87.65 |
4 | 4 | 3 | 100 | 90 | 14.3 | 87.25 |
5 | 3 | 2 | 90 | 60 | 9.98 | 64.6 |
6 | 3 | 2 | 110 | 60 | 10.5 | 65.6 |
7 | 3 | 2 | 90 | 120 | 9.8 | 53.75 |
8 | 3 | 2 | 110 | 120 | 10 | 64.25 |
9 | 2 | 2 | 100 | 60 | 11.8 | 78.8 |
10 | 4 | 2 | 100 | 60 | 12.4 | 77.2 |
11 | 2 | 2 | 100 | 120 | 11.85 | 65.35 |
12 | 4 | 2 | 100 | 120 | 11.7 | 71 |
13 | 3 | 1 | 90 | 90 | 11.85 | 76.2 |
14 | 3 | 3 | 90 | 90 | 11.8 | 65.35 |
15 | 3 | 1 | 110 | 90 | 11.77 | 71.35 |
16 | 3 | 2 | 110 | 90 | 12.5 | 75.85 |
17 | 2 | 2 | 90 | 90 | 10.8 | 66.5 |
18 | 4 | 2 | 90 | 90 | 11.4 | 68.6 |
19 | 2 | 2 | 110 | 90 | 12.3 | 75.8 |
20 | 4 | 2 | 110 | 90 | 11.2 | 75.9 |
21 | 3 | 1 | 100 | 60 | 12.3 | 80.2 |
22 | 3 | 3 | 100 | 60 | 12.8 | 80.15 |
23 | 3 | 1 | 100 | 120 | 12.3 | 69.5 |
24 | 3 | 3 | 100 | 120 | 12.1 | 74.55 |
25 | 3 | 2 | 100 | 90 | 14.2 | 77.95 |
26 | 3 | 2 | 100 | 90 | 14.03 | 79.2 |
27 | 3 | 2 | 100 | 90 | 13.8 | 79.1 |
28 | 3 | 2 | 100 | 90 | 13.66 | 76.7 |
29 | 3 | 2 | 100 | 90 | 13.7 | 80.3 |
Y1: TSS/TA Ratio (%) | Y2: Sensory Evaluation (Points) | |||||||
---|---|---|---|---|---|---|---|---|
Source | Quadratic Sum | Mean Square | F | p | Quadratic Sum | Mean Square | F | p |
Model | 51.16 | 3.65 | 61.74 | <0.0001 ** | 1701.2 | 121.51 | 50.99 | <0.0001 ** |
A-Homogenisation time | 0.015 | 0.01 | 0.25 | 0.6260 | 19.38 | 19.38 | 8.13 | 0.0128* |
B-Ultrasonication time | 0.33 | 0.33 | 5.65 | 0.0323 * | 25.83 | 25.83 | 10.84 | 0.0053 ** |
C-Sterilisation temperature | 0.90 | 0.9 | 15.14 | 0.0016 ** | 169.95 | 169.95 | 71.32 | <0.0001 ** |
D-Sterilisation time | 0.34 | 0.34 | 5.8 | 0.0304 * | 193.2 | 193.2 | 81.08 | <0.0001 ** |
AB | 0.06 | 0.06 | 0.93 | 0.3505 | 24.01 | 24.01 | 10.08 | 0.0068 ** |
AC | 0.72 | 0.72 | 12.21 | 0.0036 ** | 1 | 1 | 0.42 | 0.5276 |
AD | 0.14 | 0.14 | 2.38 | 0.1455 | 13.14 | 13.14 | 5.51 | 0.0341 * |
BC | 0.20 | 0.2 | 3.35 | 0.0887 | 112.76 | 112.76 | 47.32 | <0.0001 ** |
BD | 0.12 | 0.12 | 2.07 | 0.1722 | 6.5 | 6.5 | 2.73 | 0.1208 |
CD | 0.03 | 0.03 | 0.43 | 0.5214 | 22.56 | 22.56 | 9.47 | 0.0082 ** |
A2 | 0.37 | 0.37 | 6.32 | 0.0247 * | 18.05 | 18.05 | 7.57 | 0.0156 * |
B2 | 0.53 | 0.53 | 8.91 | 0.0098 ** | 136.62 | 136.62 | 57.33 | <0.0001 ** |
C2 | 27.47 | 27.47 | 464.15 | <0.0001 ** | 458.32 | 458.32 | 192.34 | <0.0001 ** |
D2 | 20.55 | 20.55 | 347.21 | <0.0001 ** | 386.72 | 386.72 | 162.29 | <0.0001 ** |
Residual error | 0.83 | 0.06 | 33.36 | 2.38 | ||||
Lack-of-fit | 0.62 | 0.06 | 1.16 | 0.4801 | 25.84 | 2.58 | 1.37 | 0.4069 |
Error | 0.21 | 0.05 | 7.52 | 1.88 | ||||
Total Sum of Squares | 51.99 | 1734.56 |
Measuring Item | Fresh-Pressed Goji Juice | NFC Goji Juice |
---|---|---|
TSS/TA ratio | 11.91 ± 0.2 b | 12.80 ± 0.1 a |
TSS (%) | 19.9 ± 0.15 b | 20.10 ± 0.17 a |
TA (g/L) | 1.67 ± 0.2 a | 1.57 ± 0.15 a |
Turbidity/NTU | 1231 ± 3.5 b | 1420 ± 2.8 a |
L | 11.58 ± 0.8 a | 10.22 ± 0.2 b |
a | 34.68 ± 1.8 a | 30.82 ± 1.3 b |
b | 19.82 ± 0.3 a | 17.46 ± 0.2 b |
ΔE | 41.59 ± 0.5 a | 36.87 ± 0.3 b |
Total phenols (mg/mL) | 3.40 ± 0.01 a | 2.60 ± 0.02 b |
β-carotene (mg/mL) | 3.02 ± 0.1 b | 4.75 ± 0.2 a |
Polysaccharides (mg/mL) | 7.50 ± 0.2 b | 9.50 ± 0.2 a |
Betaine (g/100 g) | 0.276 ± 0.01 b | 0.403 ± 0.01 a |
E. coli (MPN/mL) | Not detected | Not detected |
Total colony count (CFU/mL) | <10 | <10 |
No. | Compound | CAS | Molecular Formula | Retention Index | Retention Time (s) | Drift Time (s) | Relative Content (%) | |
---|---|---|---|---|---|---|---|---|
Fresh-Processed Juice | Processed Juice | |||||||
1 | Ethanol-M | C64175 | C2H6O | 46.1 | 489.9 | 1.0418 | 0.86 | 0.61 |
2 | Pentanal-M | C110623 | C5H10O | 86.1 | 700.1 | 1.1887 | 0.42 | 0.57 |
3 | Nonanal | C124196 | C9H18O | 142.2 | 1104.3 | 1.4808 | 0.24 | 0.18 |
4 | 2-Butanone | C78933 | C4H8O | 72.1 | 580.5 | 1.0587 | 1.32 | 1.4 |
5 | Ethylmethylpropanoate | C97621 | C6H12O2 | 116.2 | 769.7 | 1.1909 | 0.34 | 0.33 |
6 | 1-Butanol | C71363 | C4H10O | 74.1 | 649.9 | 1.176 | 1.07 | 1.16 |
7 | 2-Hexenal-M | C505577 | C6H10O | 98.1 | 846.2 | 1.1822 | 1.56 | 1.63 |
8 | Propyl acetate | C109604 | C5H10O2 | 102.1 | 717.6 | 1.172 | 0.46 | 0.49 |
9 | Methyl acetate | C79209 | C3H6O2 | 74.1 | 510.2 | 1.1989 | 0.65 | 0.87 |
10 | Ethanol-D | C64175 | C2H6O | 46.1 | 451.8 | 1.1168 | 4.02 | 5.06 |
11 | 3-Pentanone-M | C96220 | C5H10O | 86.1 | 684.3 | 1.1148 | 1.04 | 1.08 |
12 | 6-Methyl-5-hepten-2-one | C110930 | C8H14O | 126.2 | 984.4 | 1.18 | 0.4 | 0.36 |
13 | Hexanal-M | C66251 | C6H12O | 100.2 | 792.7 | 1.2638 | 1.32 | 1.4 |
14 | Hexanenitrile | C628739 | C6H11N | 97.2 | 880.6 | 1.2658 | 0.73 | 1.09 |
15 | Hexanal-D | C66251 | C6H12O | 100.2 | 782.9 | 1.5636 | 4.2 | 3.13 |
16 | 2-Butanone-D | C78933 | C4H8O | 72.1 | 579.3 | 1.2475 | 3.71 | 3.91 |
17 | 2-Hexenal-D | C505577 | C6H10O | 98.1 | 847.9 | 1.521 | 3.77 | 3.23 |
18 | Heptanal-M | C111717 | C7H14O | 114.2 | 890.6 | 1.3318 | 1.32 | 0.83 |
19 | 2-Methylbutanal | C96173 | C5H10O | 86.1 | 680.2 | 1.3947 | 0.42 | 0.6 |
20 | 1,2-Dimethoxyethane | C110714 | C4H10O2 | 90.1 | 634.6 | 1.3151 | 1.27 | 1.13 |
21 | 1-Hexanol-M | C111273 | C6H14O | 102.2 | 865.5 | 1.3296 | 1.1 | 0.79 |
22 | (E)-2-pentenal-M | C1576870 | C5H8O | 84.1 | 742.7 | 1.1065 | 1.42 | 0.83 |
23 | 3-Hydroxy-2-butanone-M | C513860 | C4H8O2 | 88.1 | 721.5 | 1.2476 | 0.76 | 0.48 |
24 | 3-Pentanone-D | C96220 | C5H10O | 86.1 | 685.3 | 1.3474 | 4.12 | 1.97 |
25 | 2-Pentylfuran | C3777693 | C9H14O | 138.2 | 980.5 | 1.257 | 0.89 | 0.36 |
26 | 3-Octanol | C589980 | C8H18O | 130.2 | 994.9 | 1.4088 | 0.32 | 0.18 |
27 | Ethylformate | C109944 | C3H6O2 | 74.1 | 518 | 1.2181 | 0.56 | 0.62 |
28 | 1-Pentanol-M | C71410 | C5H12O | 88.1 | 759.8 | 1.2556 | 0.88 | 0.44 |
29 | 1-Penten-3-one-M | C1629589 | C5H8O | 84.1 | 666.2 | 1.0786 | 0.87 | 0.38 |
30 | 1-Hexanol-D | C111273 | C6H14O | 102.2 | 862.4 | 1.6442 | 0.53 | 0.25 |
31 | 2,3-Butanedione | C431038 | C4H6O2 | 86.1 | 608.4 | 1.17 | 0.4 | 0.25 |
32 | 3-Hydroxy-2-butanone-D | C513860 | C4H8O2 | 88.1 | 722.1 | 1.4986 | 0.33 | 0.17 |
33 | 2-Ethylfuran | C3208160 | C6H8O | 96.1 | 741.2 | 1.3078 | 0.42 | 0.18 |
34 | (Z)-4-Heptenal | C6728310 | C7H12O | 112.2 | 889.2 | 1.1492 | 1.25 | 0.31 |
35 | 3-Heptanol | C589822 | C7H16O | 116.2 | 887.8 | 1.6596 | 0.76 | 0.38 |
36 | 1-Propanol | C71238 | C3H8O | 60.1 | 537.2 | 1.253 | 0.43 | 0.21 |
37 | (E)-2-octenal-M | C2548870 | C8H14O | 126.2 | 1055.9 | 1.3364 | 0.97 | 0.1 |
38 | (E)-2-octenal-D | C2548870 | C8H14O | 126.2 | 1055.9 | 1.8278 | 0.32 | 0.14 |
39 | Dimethyl trisulfide | C3658808 | C2H6S3 | 126.3 | 980.5 | 1.3098 | 0.45 | 0.11 |
40 | (E)-2-heptenal-M | C18829555 | C7H12O | 112.2 | 949.2 | 1.2592 | 1 | 0.12 |
41 | (E)-2-heptenal-D | C18829555 | C7H12O | 112.2 | 946.9 | 1.6728 | 0.41 | 0.12 |
42 | Heptanal-D | C111717 | C7H14O | 114.2 | 890.6 | 1.6948 | 1.88 | 0.29 |
43 | 1-Pentanol-D | C71410 | C5H12O | 88.1 | 755.3 | 1.5145 | 0.43 | 0.13 |
44 | (E)-2-pentenal-D | C1576870 | C5H8O | 84.1 | 741.6 | 1.3621 | 3.12 | 0.37 |
45 | 1-Penten-3-one-D | C1629589 | C5H8O | 84.1 | 667.1 | 1.3112 | 4.32 | 0.21 |
46 | Butyl lactate | C138227 | C7H14O3 | 146.2 | 1016.5 | 1.2675 | 1.35 | 0.28 |
47 | alpha-Phellandrene | C99832 | C10H16 | 136.2 | 1017.3 | 1.692 | 0.64 | 0.18 |
48 | Phenylacetaldehyde | C122781 | C8H8O | 120.2 | 1021 | 1.2457 | 0.67 | 0.88 |
49 | 2-Heptanone | C110430 | C7H14O | 114.2 | 881.2 | 1.6332 | 0.5 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Ye, D.; Pan, Y.; Zhang, T.; Liang, L.; Liu, Y.; Ma, Y. Optimisation of Not-from-Concentrate Goji Juice Processing Using Fuzzy Mathematics and Response Surface Methodology and Its Quality Assessment. Appl. Sci. 2024, 14, 8393. https://doi.org/10.3390/app14188393
Meng X, Ye D, Pan Y, Zhang T, Liang L, Liu Y, Ma Y. Optimisation of Not-from-Concentrate Goji Juice Processing Using Fuzzy Mathematics and Response Surface Methodology and Its Quality Assessment. Applied Sciences. 2024; 14(18):8393. https://doi.org/10.3390/app14188393
Chicago/Turabian StyleMeng, Xintao, Duoduo Ye, Yan Pan, Ting Zhang, Lixian Liang, Yiming Liu, and Yan Ma. 2024. "Optimisation of Not-from-Concentrate Goji Juice Processing Using Fuzzy Mathematics and Response Surface Methodology and Its Quality Assessment" Applied Sciences 14, no. 18: 8393. https://doi.org/10.3390/app14188393
APA StyleMeng, X., Ye, D., Pan, Y., Zhang, T., Liang, L., Liu, Y., & Ma, Y. (2024). Optimisation of Not-from-Concentrate Goji Juice Processing Using Fuzzy Mathematics and Response Surface Methodology and Its Quality Assessment. Applied Sciences, 14(18), 8393. https://doi.org/10.3390/app14188393