Staining-Independent Malaria Parasite Detection and Life Stage Classification in Blood Smear Images
Abstract
:1. Introduction
2. Data Descriptions
3. Proposed Methods
3.1. Malaria Parasite Detection
3.2. Malaria Parasite Life Stage Classification
3.3. Evaluation Measures for Detection and Classification
4. Experimental Results
5. Discussion
6. Limitations and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cooke, B.M.; Mohandas, N.; Coppel, R.L. The malaria-infected red blood cell: Structural and functional changes. Adv. Parasitol. 2001, 50, 1–86. [Google Scholar] [PubMed]
- Mohandas, N.; An, X. Malaria and human red blood cells. Med. Microbiol. Immunol. 2012, 201, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Long, B.; MacDonald, A.; Liang, S.Y.; Brady, W.J.; Koyfman, A.; Gottlieb, M.; Do, S.C. Malaria: A focused review for the emergency medicine clinician. Am. J. Emerg. Med. 2024, 77, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Eijk, A.M.v.; Mannan, A.S.; Sullivan, S.A.; Carlton, J.M. Defining symptoms of malaria in India in an era of asymptomatic infections. Malar. J. 2020, 19, 237. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Malaria Report 2022; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Poostchi, M.; Silamut, K.; Maude, R.J.; Jaeger, S.; Thoma, G. Image analysis and machine learning for detecting malaria. Transl. Res. 2018, 194, 36–55. [Google Scholar] [CrossRef] [PubMed]
- Savkare, S.S.; Narote, S.P. Automated system for malaria parasite identification. In Proceedings of the 2015 International Conference on Communication, Information & Computing Technology, Mumbai, India, 15–17 January 2015. [Google Scholar]
- Tek, F.B.; Dempster, A.G.; Kale, İ. Parasite detection and identification for automated thin blood film malaria diagnosis. Comput. Vis. Image Underst. 2010, 114, 21–32. [Google Scholar] [CrossRef]
- World Health Organization. Basic Malaria Microscopy—Part I: Learner’s Guide, 2nd ed.; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Sunarko, B.; Djuniadi; Bottema, M.; Iksan, N.; Hudaya, K.A.N.; Hanif, M.S. Red blood cell classification on thin blood smear images for malaria diagnosis. J.Phys. Conf. Ser. 2022, 1444, 012036. [Google Scholar] [CrossRef]
- Aikawa, M.; Iseki, M.; Barnwell, J.W.; Taylor, D.; Oo, M.M.; Howard, R.J. The pathology of human cerebral malaria. The American J. Trop. Med. Hyg. 1990, 43, 30–37. [Google Scholar] [CrossRef]
- Fitri, L.E.; Widaningrum, T.; Endharti, A.T.; Prabowo, M.H.; Winaris, N.; Nugraha, R.Y.B. Malaria diagnostic update: From conventional to advanced method. J. Clin. Lab. Anal. 2022, 36, e24314. [Google Scholar] [CrossRef]
- Kavanaugh, M.J.; Azzam, S.E.; Rockabrand, D.M. Malaria rapid diagnostic tests: Literary review and recommendation for a quality assurance, quality control algorithm. Diagnostics 2021, 11, 768. [Google Scholar] [CrossRef]
- Das, D.K.; Mukherjee, R.; Chakraborty, C. Computational microscopic imaging for malaria parasite detection: A systematic review. J Microsc. 2015, 260, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Rubio, C.M.; de Oliveira, A.D.; Nadal, S.; Bilalli, B.; Zarzuela, F.S.; Espasa, M.S.; Sulleiro, E.; Bosh, M.; Veiga, A.L.l.; Abelló, A.; et al. Advances and challenges in automated malaria diagnosis using digital microscopy imaging with artificial intelligence tools: A review. Front. Microbiol. 2022, 13, 1006659. [Google Scholar]
- Gassenmaier, S.; Küstner, T.; Nickel, D.; Herrmann, J.; Hoffmann, R.; Almansour, H.; Afat, S.; Nikolaou, K.; Othman, A.E. Deep learning applications in magnetic resonance imaging: Has the future become present? Diagnostics 2021, 11, 2181. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, H.; Lee, D. Deep learning-based computed tomographic image super-resolution via wavelet embedding. Radiat. Phys. Chem. 2023, 205, 110718. [Google Scholar] [CrossRef] [PubMed]
- Fallahpoor, M.; Chakraborty, S.; Pradhan, B.; Faust, O.; Datta Barua, P.; Chegeni, H.; Acharya, R. Deep learning techniques in PET/CT imaging: A comprehensive review from sinogram to image space. Comput. Methods Programs Biomed. 2024, 243, 107880. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Dai, W.; Wu, T.; Wang, M.; Wan, S.; Liu, J. AIMIC: Deep learning for microscopic image classification. Computer Methods and Programs in Biomedicine 2022, 226, 107162. [Google Scholar] [CrossRef]
- Theera-Umpon, N.; Poonkasem, I.; Auephanwiriyakul, S.; Patikulsila, D. Hard exudate detection in retinal fundus images using supervised learning. Neural Comput. Appl. 2020, 32, 13079–13096. [Google Scholar]
- Amarbayasgalan, T.; Pham, V.H.; Theera-Umpon, N.; Piao, Y.; Ryu, K.H. An efficient prediction method for coronary heart disease risk based on two deep neural networks trained on well-ordered training datasets. IEEE Access 2021, 9, 135210–135223. [Google Scholar] [CrossRef]
- Ruberto, C.D.; Dempster, A.; Khan, S.; Jarra, B. Automatic thresholding of infected blood images using granulometry and regional extrema. In Proceedings of the International Conference on Pattern Recognition, Barcelona, Spain, 3–8 September 2000. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 27–30 June 2016. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Rosado, L.; Correia da Costa, J.M.; Elias, D.; Cardoso, J.S. Automated detection of malaria parasites on thick blood smears via mobile devices. Procedia Comput. Sci. 2016, 90, 138–144. [Google Scholar] [CrossRef]
- Abdurahman, F.; Fante, K.A.; Aliy, M. Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models. BMC Bioinform. 2021, 22, 112. [Google Scholar] [CrossRef] [PubMed]
- Qiuyang, W.; Yani, Z.; Zhe, G.; Zhongtian, Y.; Jia, X.; JiaQin, G.; Yiming, Y.; Pinna, W.; Yongkang, W. Surface plasmon resonance microstructure optical fiber biosensor for malaria cell detections in the terahertz band. Diam. Relat. Mater. 2024, 139, 110401. [Google Scholar]
- Guin, S.; Chowdhury, D.; Chattopadhyay, M. A novel methodology for detection of malaria. Microsyst. Technol. 2024, 1–14. [Google Scholar] [CrossRef]
- Panklang, N.; Techaumnat, B.; Tanthanuch, N.; Chotivanich, K.; Horprathum, M.; Nakano, M. On-chip impedance spectroscopy of malaria-infected red blood cells. Sensors 2024, 24, 3186. [Google Scholar] [CrossRef] [PubMed]
- Garcia, G.; Kariyawasam, T.; Lord, A.; Costa, C.; Chaves, L.; Lima-Junior, J.; Maciel-de-Freitas, R.; Sikulu-Lord, M. First report of rapid, non-invasive, and reagent-free detection of malaria through the skin of patients with a beam of infrared light. Res. Sq. 2022, 1, 1–19. [Google Scholar]
- Saini, S.K.; Awasthi, S.K. Sensing and detection capabilities of one-dimensional defective photonic crystal suitable for malaria infection diagnosis from preliminary to advanced stage: Theoretical study. Crystals 2023, 13, 128. [Google Scholar] [CrossRef]
- Oliveira, M.J.; Caetano, S.; Dalot, A.; Sabino, F.; Calmeiro, T.R.; Fortunato, E.; Martins, R.; Pereira, E.; Prudêncio, M.; Byrne, H.J.; et al. A simple polystyrene microfluidic device for sensitive and accurate SERS-based detection of infection by malaria parasites. Analyst 2023, 148, 4053–4063. [Google Scholar] [CrossRef]
- Ljosa, V.; Sokolnicki, K.L.; Carpenter, A.E. Annotated high-throughput microscopy image sets for validation. Nat. Methods 2012, 9, 637. [Google Scholar] [CrossRef]
- Loddo, A.; Di Ruberto, C.; Kocher, M.; Prod’Hom, G. Processing and Analysis of Biomedical Information; MP-IDB: The Malaria Parasite Image Database for Image Processing and Analysis; Springer: Berlin/Heidelberg, Germany, 2019; pp. 57–65. [Google Scholar]
- Malaria Comparison Chart v4. Available online: https://www.cdc.gov/dpdx/resources/pdf/benchaids/malaria/malaria_comparison_p1-2.pdf (accessed on 31 August 2024).
- Zuiderveld, K. Contrast Limited Adaptive Histogram Equalization, Graphics Gems IV; Heckbert, P.S., Ed.; Academic Press Professional: San Diego, CA, USA, 1994; pp. 474–485. [Google Scholar]
- Reza, A.M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 2004, 38, 35–44. [Google Scholar] [CrossRef]
- Yadav, G.; Maheshwari, S.; Agarwal, A. Contrast limited adaptive histogram equalization based enhancement for real time video system. In Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics, Delhi, India, 24–27 September 2014. [Google Scholar]
- Yang, C.-C. Image enhancement by modified contrast-stretching manipulation. Opt. Laser Technol. 2006, 38, 196–201. [Google Scholar] [CrossRef]
- Terven, J.; Cordova-Esparza, D.-M.; Romero-González, J.-A. A comprehensive review of YOLO architectures in computer vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- George, G.; Oommen, R.M.; Shelly, S.; Philipose, S.S.; Varghese, A.M. A survey on various median filtering techniques for removal of impulse noise from digital image. In Proceedings of the Conference on Emerging Devices and Smart Systems, Tamilnadu, India, 2–3 March 2018. [Google Scholar]
- Saravanan, C. Color image to grayscale image conversion. In Proceedings of the International Conference on Computer Engineering and Applications, Bali, Indonesia, 19–21 March 2010. [Google Scholar]
- Neubeck, A.; Gool, L.V. Efficient non-maximum suppression. In Proceedings of the International Conference on Pattern Recognition, Hong Kong, China, 20–24 August 2006. [Google Scholar]
- Zhou, L.; Yu, W. Improved convolutional neural image recognition algorithm based on LeNet-5. J. Comput. Netw. Commun. 2022, 2022, 1636203. [Google Scholar] [CrossRef]
- Han, S.; Niu, P.; Luo, S.; Li, Y.; Zhen, D.; Feng, G.; Sun, S. A novel deep convolutional neural network combining global feature extraction and detailed feature extraction for bearing compound fault diagnosis. Sensors 2023, 23, 8060. [Google Scholar] [CrossRef]
- Prati, R.; Batista, G.; Monard, M.-C. Data mining with imbalanced class distributions: Concepts and methods. In Proceedings of the Indian International Conference on Artificial Intelligence, Karnataka, India, 16–18 December 2009. [Google Scholar]
- Shaheed, K.; Szczuko, P.; Abbas, Q.; Hussain, A.; Albathan, M. Computer-aided diagnosis of COVID-19 from chest X-ray images using hybrid-features and random forest classifier. Healthcare 2023, 11, 837. [Google Scholar] [CrossRef]
- Lin, C.-C.; Liao, J.-X.; Chiu, M.-S.; Yeh, M.-T.; Chung, Y.-N.; Hsu, C.-H. Applying deep learning algorithm to cell identification. J. Netw. Intell. 2021, 6, 401–410. [Google Scholar]
- Turuk, M.; Sreemathy, R.; Kadiyala, S.; Kotecha, S.; Kulkarni, V. CNN based deep learning approach for automatic malaria parasite detection. IAENG Int. J. Comput. Sci. 2022, 49, 745–753. [Google Scholar]
- Silka, W.; Wieczorek, M.; Silka, J.; Wozniak, M. Malaria detection using advanced deep learning architecture. Sensors 2023, 23, 1501. [Google Scholar] [CrossRef]
- Yang, Z.; Benhabiles, H.; Hammoudi, K.; Windal, F.; He, R.; Collard, D. A generalized deep learning-based framework for assistance to the human malaria diagnosis from microscopic images. Neural Comput. Appl. 2022, 34, 14223–14238. [Google Scholar] [CrossRef]
- Ohdar, K.; Nigam, A. A robust approach for malaria parasite identification with CNN based feature extraction and classification using SVM. In Proceedings of the International Conference on Computing Communication and Networking Technologies, Delhi, India, 6–8 July 2023. [Google Scholar]
- Rahman, A.; Zunair, H.; Reme, T.R.; Rahman, M.S.; Mahdy, M.R.C. A comparative analysis of deep learning architectures on high variation malaria parasite classification dataset. Tissue Cell 2021, 69, 101473. [Google Scholar] [CrossRef]
- Abbas, S.S.; Dijkstra, T.M.H. Detection and stage classification of Plasmodium falciparum from images of Giemsa stained thin blood films using random forest classifiers. Diagn. Pathol. 2020, 15, 130. [Google Scholar] [CrossRef] [PubMed]
- Krishnadas, P.; Chadaga, K.; Sampathila, N.; Rao, S.; Swathi, K.S.; Prabhu, S. Classification of malaria using object detection models. Informatics 2022, 9, 76. [Google Scholar] [CrossRef]
- Loddo, A.; Fadda, C.; Di Ruberto, C. An empirical evaluation of convolutional networks for malaria diagnosis. J. Imaging 2022, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Maity, M.; Jaiswal, A.; Gantait, K.; Chatterjee, J.; Mukherjee, A. Quantification of malaria parasitaemia using trainable semantic segmentation and capsnet. Pattern Recognit. Lett. 2020, 138, 88–94. [Google Scholar] [CrossRef]
- Sifat, M.M.H.; Islam, M.M. A fully automated system to detect malaria parasites and their stages from the blood smear. In Proceedings of the IEEE Region 10 Symp., Dhaka, Bangladesh, 5–7 June 2020. [Google Scholar]
- Chen, S.; Zhao, S.; Huang, C. An automatic malaria disease diagnosis framework integrating blockchain-enabled cloud-edge computing and deep learning. IEEE Internet Things J. 2023, 10, 21544–21553. [Google Scholar] [CrossRef]
- Acula, D.D.; Carlos, J.A.P.; Lumacad, M.M.; Minano, J.C.L.O.; Reodica, J.K.R. Detection and classification of plasmodium parasites in human blood smear images using Darknet with YOLO. In Proceedings of the International Conference on Green Energy, Computing and Intelligent Technology, Iskandar Puteri, Malaysia, 10–12 July 2023. [Google Scholar]
- Madhu, G.; Mohamed, A.W.; Kautish, S.; Shah, M.A.; Ali, I. Intelligent diagnostic model for malaria parasite detection and classification using imperative inception-based capsule neural networks. Sci. Rep. 2023, 13, 13377. [Google Scholar] [CrossRef]
- Dou, B.; Zhu, Z.; Merkurjev, E.; Ke, L.; Chen, L.; Jiang, J.; Zhu, Y.; Liu, J.; Zhang, B.; Wei, G.-W. Machine learning methods for small data challenges in molecular science. Chem. Rev. 2023, 123, 8736–8780. [Google Scholar] [CrossRef]
- Jajosky, R.P.; Wu, S.C.; Jajosky, P.G.; Stowell, S.R. Plasmodium knowlesi (Pk) malaria: A review & proposal of therapeutically rational exchange (T-REX) of Pk-resistant red blood cells. Trop. Med. Infect. Dis. 2023, 8, 478. [Google Scholar] [CrossRef]
- Chen, L.; Fu, Y.; Wei, K.; Zheng, D.; Heide, F. Instance segmentation in the dark. Int. J. Comput. Vis. 2023, 131, 2198–2218. [Google Scholar] [CrossRef]
- Chibuta, S.; Acar, A.C. Real-time malaria parasite screening in thick blood smears for low-resource setting. J. Digit. Imaging 2020, 33, 763–775. [Google Scholar] [CrossRef]
- Zedda, L.; Loddo, A.; Di Ruberto, C. YOLO-PAM: Parasite-attention-based model for efficient malaria detection. J. Imaging 2023, 9, 266. [Google Scholar] [CrossRef] [PubMed]
- Sukumarran, D.; Hasikin, K.; Khairuddin, A.S.M.; Ngui, R.; Sulaiman, W.Y.W.; Vythilingam, I.; Divis, P.C.S. An optimised YOLOv4 deep learning model for efficient malarial cell detection in thin blood smear images. Parasit Vectors 2024, 17, 188. [Google Scholar] [CrossRef] [PubMed]
- Hoyos, K.; Hoyos, W. Supporting malaria diagnosis using deep learning and data augmentation. Diagnostics 2024, 14, 690. [Google Scholar] [CrossRef] [PubMed]
Dataset | Classes of Cells/Infected Cells | Original Number of Images (before Augmentation) | Number of Images after Augmentation |
---|---|---|---|
MBB (P. vivax) | Red blood cell | 83,034 | 83,034 |
Ring | 522 | 82,095 | |
Trophozoite | 1584 | 80,762 | |
Schizont | 190 | 79,401 | |
Gametocyte | 156 | 80,257 | |
MP-IDB (P. vivax) | Red blood cell | 2857 | 2857 |
Ring | 37 | 2842 | |
Trophozoite | 5 | 2782 | |
Schizont | 11 | 2804 | |
Gametocyte | 8 | 2819 | |
MP-IDB (P. ovale) | Red blood cell | 2606 | 2606 |
Ring | 12 | 2633 | |
Trophozoite | 12 | 2623 | |
Schizont | 1 | 2322 | |
Gametocyte | 7 | 2605 | |
MP-IDB (P. malariae) | Red blood cell | 2407 | 2407 |
Ring | 1 | 2395 | |
Trophozoite | 23 | 2339 | |
Schizont | 10 | 2315 | |
Gametocyte | 7 | 2306 | |
MP-IDB (P. falciparum) | Red blood cell | 9589 | 9589 |
Ring | 1022 | 9196 | |
Trophozoite | 42 | 9474 | |
Schizont | 17 | 9335 | |
Gametocyte | 7 | 9070 |
Preprocessing in Color Space First then Grayscale Conversion | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|
Original | 0.91 ± 0.02 | 0.93 ± 0.02 | 0.92 ± 0.02 | 0.87 ± 0.03 |
CLAHE | 0.97 ± 0.02 | 0.94 ± 0.02 | 0.95 ± 0.01 | 0.92 ± 0.03 |
Contrast stretching (CS) | 0.89 ± 0.03 | 0.94 ± 0.03 | 0.92 ± 0.03 | 0.87 ± 0.04 |
Median blur | 0.93 ± 0.03 | 0.95 ± 0.01 | 0.94 ± 0.02 | 0.89 ± 0.03 |
CS then CLAHE | 0.90 ± 0.05 | 0.95 ± 0.01 | 0.92 ± 0.03 | 0.87 ± 0.04 |
CLAHE then CS | 0.93 ± 0.04 | 0.95 ± 0.01 | 0.94 ± 0.02 | 0.89 ± 0.03 |
Grayscale Conversion First then Preprocessing in Grayscale Space | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|
CLAHE | 0.90 ± 0.04 | 0.93 ± 0.02 | 0.92 ± 0.02 | 0.86 ± 0.03 |
Contrast stretching (CS) | 0.89 ± 0.02 | 0.94 ± 0.02 | 0.92 ± 0.02 | 0.86 ± 0.03 |
Median blur | 0.91 ± 0.03 | 0.93 ± 0.02 | 0.92 ± 0.02 | 0.86 ± 0.03 |
CS then CLAHE | 0.91 ± 0.06 | 0.93 ± 0.04 | 0.92 ± 0.03 | 0.87 ± 0.04 |
CLAHE then CS | 0.87 ± 0.02 | 0.93 ± 0.02 | 0.90 ± 0.02 | 0.84 ± 0.02 |
MP-IDB Dataset | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|
P. vivax | 0.90 ± 0.01 | 0.90 ± 0.02 | 0.90 ± 0.01 | 0.84 ± 0.02 |
P. ovale | 0.87 ± 0.02 | 0.91 ± 0.02 | 0.89 ± 0.02 | 0.82 ± 0.03 |
P. malariae | 0.86 ± 0.05 | 0.83 ± 0.04 | 0.85 ± 0.03 | 0.79 ± 0.04 |
P. falciparum | 0.95 ± 0.01 | 0.96 ± 0.01 | 0.96 ± 0.01 | 0.92 ± 0.01 |
MBB Dataset | Precision | Recall | F1-Score | Accuracy | |
---|---|---|---|---|---|
Direct cropping | Red blood cell | 0.99 | 0.98 | 0.99 | 0.93 |
Ring | 0.91 | 0.92 | 0.91 | ||
Trophozoite | 0.84 | 0.80 | 0.82 | ||
Schizont | 0.93 | 0.94 | 0.93 | ||
Gametocyte | 0.92 | 0.97 | 0.94 | ||
Zero padding | Red blood cell | 0.98 | 1.00 | 0.99 | 0.92 |
Ring | 0.91 | 0.89 | 0.90 | ||
Trophozoite | 0.82 | 0.76 | 0.79 | ||
Schizont | 0.89 | 0.93 | 0.91 | ||
Gametocyte | 0.91 | 0.95 | 0.93 | ||
Cropping with Background | Red blood cell | 0.96 | 0.99 | 0.97 | 0.92 |
Ring | 0.93 | 0.89 | 0.91 | ||
Trophozoite | 0.81 | 0.80 | 0.81 | ||
Schizont | 0.91 | 0.90 | 0.90 | ||
Gametocyte | 0.91 | 0.94 | 0.92 |
MP-IDB (P. vivax) Dataset | Precision | Recall | F1-Score | Accuracy | |
---|---|---|---|---|---|
Direct cropping | Red blood cell | 1.00 | 1.00 | 1.00 | 0.95 |
Ring | 0.97 | 0.96 | 0.97 | ||
Trophozoite | 0.90 | 0.90 | 0.91 | ||
Schizont | 0.95 | 0.97 | 0.96 | ||
Gametocyte | 0.96 | 0.94 | 0.94 | ||
Zero padding | Red blood cell | 1.00 | 1.00 | 1.00 | 0.94 |
Ring | 0.89 | 0.98 | 0.95 | ||
Trophozoite | 0.87 | 0.93 | 0.90 | ||
Schizont | 0.99 | 0.91 | 0.95 | ||
Gametocyte | 1.00 | 0.89 | 0.94 | ||
Cropping with Background | Red blood cell | 1.00 | 1.00 | 1.00 | 0.93 |
Ring | 0.86 | 0.84 | 0.84 | ||
Trophozoite | 0.96 | 0.94 | 0.95 | ||
Schizont | 0.85 | 0.84 | 0.84 | ||
Gametocyte | 0.99 | 0.94 | 0.97 |
MP-IDB (P. ovale) Dataset | Precision | Recall | F1-Score | Accuracy | |
---|---|---|---|---|---|
Direct cropping | Red blood cell | 1.00 | 0.97 | 0.99 | 0.93 |
Ring | 0.97 | 1.00 | 0.98 | ||
Trophozoite | 0.84 | 0.85 | 0.85 | ||
Schizont | 0.92 | 0.89 | 0.99 | ||
Gametocyte | 0.92 | 0.94 | 0.93 | ||
Zero padding | Red blood cell | 1.00 | 0.97 | 0.98 | 0.87 |
Ring | 0.96 | 0.98 | 0.96 | ||
Trophozoite | 0.76 | 0.72 | 0.74 | ||
Schizont | 0.77 | 0.78 | 0.77 | ||
Gametocyte | 0.87 | 0.91 | 0.88 | ||
Cropping with Background | Red blood cell | 0.96 | 0.99 | 0.97 | 0.92 |
Ring | 0.93 | 0.89 | 0.91 | ||
Trophozoite | 0.81 | 0.80 | 0.81 | ||
Schizont | 0.91 | 0.90 | 0.90 | ||
Gametocyte | 1.00 | 0.97 | 0.99 |
MP-IDB (P. malariae) Dataset | Precision | Recall | F1-Score | Accuracy | |
---|---|---|---|---|---|
Direct cropping | Red blood cell | 1.00 | 1.00 | 1.00 | 0.94 |
Ring | 0.98 | 0.94 | 0.96 | ||
Trophozoite | 0.85 | 0.97 | 0.91 | ||
Schizont | 0.95 | 0.78 | 0.86 | ||
Gametocyte | 0.92 | 1.00 | 0.95 | ||
Zero padding | Red blood cell | 0.96 | 1.00 | 0.98 | 0.88 |
Ring | 0.88 | 0.87 | 0.89 | ||
Trophozoite | 0.87 | 0.84 | 0.81 | ||
Schizont | 0.88 | 0.67 | 0.79 | ||
Gametocyte | 0.87 | 0.98 | 0.92 | ||
Cropping with background | Red blood cell | 1.00 | 0.99 | 1.00 | 0.94 |
Ring | 0.87 | 0.92 | 0.89 | ||
Trophozoite | 0.90 | 0.96 | 0.93 | ||
Schizont | 0.87 | 0.92 | 0.89 | ||
Gametocyte | 0.98 | 0.95 | 0.97 |
MP-IDB (P. falciparum) Dataset | Precision | Recall | F1-Score | Accuracy | |
---|---|---|---|---|---|
Direct cropping | Red blood cell | 0.87 | 0.98 | 0.92 | 0.91 |
Ring | 0.84 | 0.73 | 0.78 | ||
Trophozoite | 0.86 | 0.84 | 0.85 | ||
Schizont | 0.99 | 0.99 | 0.99 | ||
Gametocyte | 0.98 | 1.00 | 0.99 | ||
Zero padding | Red blood cell | 0.99 | 0.99 | 0.99 | 0.91 |
Ring | 0.83 | 0.78 | 0.80 | ||
Trophozoite | 0.81 | 0.85 | 0.83 | ||
Schizont | 0.99 | 0.96 | 0.97 | ||
Gametocyte | 0.95 | 0.95 | 0.97 | ||
Cropping with background | Red blood cell | 0.97 | 0.99 | 0.98 | 0.96 |
Ring | 0.91 | 0.92 | 0.91 | ||
Trophozoite | 0.95 | 0.91 | 0.93 | ||
Schizont | 0.91 | 0.90 | 0.90 | ||
Gametocyte | 0.99 | 0.99 | 0.99 |
Method | Dataset | Classification Performance |
---|---|---|
Scaled YOLOv4 [57] | MBB | P. vivax: precision = 0.37, recall = 0.86 |
YOLOv5 [57] | MBB | P. vivax: precision = 0.45, recall = 0.56 |
Proposed method | MBB | P. vivax: accuracy = 0.93, precision = 0.92, recall = 0.92 |
AlexNet [58] | MP-IDB | P. falciparum only: accuracy = 0.90 |
GoogleNet [58] | MP-IDB | P. falciparum only: accuracy = 0.93 |
ResNet-101 [58] | MP-IDB | P. falciparum only: accuracy = 0.95 |
DenseNet-201 [58] | MP-IDB | P. falciparum only: accuracy = 0.94 |
VGG-16 [58] | MP-IDB | P. falciparum only: accuracy = 0.94 |
CapsNet [59] | MP-IDB | P. vivax and P. falciparum (no species-wise results): accuracy = 0.97 |
VGG-16 [60] | MP-IDB | Four species (no results on each species): accuracy = 0.96 |
MobileNet V1 [61] | MP-IDB | Four species (no results on each species): accuracy = 0.99 |
VGG-16 [62] | MP-IDB | Ring: accuracy = 0.94, precision = 0.97, recall = 0.96 Trophozoite: accuracy = 0.92, precision = 0.57, recall = 0.44 Schizont: accuracy = 0.95, precision = 0.22, recall = 0.44 Gametocyte: accuracy = 0.97, precision = 0.57, recall = 0.80 |
Darknet53 [62] | MP-IDB | Ring: accuracy = 0.99, precision = 0.99, recall = 0.99 Trophozoite: accuracy = 0.98, precision = 0.71, recall = 0.62 Schizont: accuracy = 0.98, precision = 0.67, recall = 0.67 Gametocyte: accuracy = 0.99, precision = 0.83, recall = 1.00 |
Proposed method | MP-IDB | P. vivax: accuracy = 0.95, precision = 0.96, recall = 0.95 P. ovale: accuracy = 0.93, precision = 0.93, recall = 0.93 P. malariae: accuracy = 0.94, precision = 0.94, recall = 0.94 P. falciparum: accuracy = 0.96, precision = 0.95, recall = 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Theera-Umpon, N.; Auephanwiriyakul, S. Staining-Independent Malaria Parasite Detection and Life Stage Classification in Blood Smear Images. Appl. Sci. 2024, 14, 8402. https://doi.org/10.3390/app14188402
Xu T, Theera-Umpon N, Auephanwiriyakul S. Staining-Independent Malaria Parasite Detection and Life Stage Classification in Blood Smear Images. Applied Sciences. 2024; 14(18):8402. https://doi.org/10.3390/app14188402
Chicago/Turabian StyleXu, Tong, Nipon Theera-Umpon, and Sansanee Auephanwiriyakul. 2024. "Staining-Independent Malaria Parasite Detection and Life Stage Classification in Blood Smear Images" Applied Sciences 14, no. 18: 8402. https://doi.org/10.3390/app14188402
APA StyleXu, T., Theera-Umpon, N., & Auephanwiriyakul, S. (2024). Staining-Independent Malaria Parasite Detection and Life Stage Classification in Blood Smear Images. Applied Sciences, 14(18), 8402. https://doi.org/10.3390/app14188402