Transferable Deep Learning Models for Accurate Ankle Joint Moment Estimation during Gait Using Electromyography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.1.1. Pre-Experiment
2.1.2. Experimental Section
2.2. sEMG Data Processing
2.3. Generic Model
2.4. Dataset
2.5. Deep Learning Models
2.6. Model Evaluation Metrics
3. Results
3.1. Intrasubject Models
3.1.1. sEMG Models
3.1.2. DEMG Models
3.2. Intersubject Model
4. Discussion
- The results are based on OpenSim ID tools, and the ID results are assumed to be accurate.
- The walking space was relatively small, causing volunteers some difficulty in maintaining natural walking during the recording period.
- The study focused on normal gait and did not include other daily activities such as sitting, standing, and jumping.
- The study focused on training small DL models, and did not examine the impact of increasing model dimensions.
- Only four muscles were used for building the models.
- The study was conducted on healthy males in their 20 s.
- Injured, aged, and amputee populations are the main targets for rehabilitation, yet the models were not tested on them.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Autoregressive model | AR |
Biceps femoris | BF |
Convolutional neural network | CNN |
Deep learning | DL |
Differentiated electromyography | DEMG |
Extensor digitorum longus | EDL |
Flexor hallucis longus | FHL |
Gastrocnemius lateral | GL |
Gastrocnemius medialis | GM |
Inertial measurement unit | IMU |
Inverse Dynamic | ID |
Long short-term memory | LSTM |
Machine learning | ML |
Mean absolute value | MAV |
Mean squared error | MSE |
Multi-layer perception | MLP |
Neuromusculoskeletal | NMS |
Normalized root square error | NRMSE |
Ordinary differential equations | ODE |
Peroneus brevis | PB |
Coefficient of determination | |
Rectus femoris | RF |
Recurrent convolutional neural network | RCNN |
Root mean square | RMS |
Root mean square error | RMSE |
Semitendinosus | ST |
Soleus | SOL |
Surface electromyography | sEMG |
Tibialis anterior | TA |
Vastus lateralis | VL |
Vastus medialis | VM |
Waveform length | WL |
Zero crossing count | ZC |
References
- Morin, J.B.; Gimenez, P.; Edouard, P.; Arnal, P.; Jiménez-Reyes, P.; Samozino, P.; Brughelli, M.; Mendiguchia, J. Sprint acceleration mechanics: The major role of hamstrings in horizontal force production. Front. Physiol. 2015, 6, 404. [Google Scholar] [CrossRef]
- Chen, B.; Ma, H.; Qin, L.Y.; Gao, F.; Chan, K.M.; Law, S.W.; Qin, L.; Liao, W.H. Recent developments and challenges of lower extremity exoskeletons. J. Orthop. Transl. 2016, 5, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Raković, M.; Savić, S.; Santos-Victor, J.; Nikolić, M.; Borovac, B. Human-inspired online path planning and biped walking realization in unknown environment. Front. Neurorobotics 2019, 13, 36. [Google Scholar] [CrossRef] [PubMed]
- Seel, T.; Raisch, J.; Schauer, T. IMU-based joint angle measurement for gait analysis. Sensors 2014, 14, 6891–6909. [Google Scholar] [CrossRef]
- Zhu, A.; Shen, H.; Shen, Z.; Li, Y.; Mao, H.; Zhang, X.; Cao, G. Prediction of Human Dynamic Ankle Moment Based on Surface Electromyography Signals. In Proceedings of the 2019 16th International Conference on Ubiquitous Robots (UR), Jeju, Republic of Korea, 24–27 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 755–759. [Google Scholar]
- Mundt, M.; Thomsen, W.; Witter, T.; Koeppe, A.; David, S.; Bamer, F.; Potthast, W.; Markert, B. Prediction of lower limb joint angles and moments during gait using artificial neural networks. Med Biol. Eng. Comput. 2020, 58, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Hayashibe, M.; Venture, G.; Ayusawa, K.; Nakamura, Y. Muscle strength and mass distribution identification toward subject-specific musculoskeletal modeling. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 3701–3707. [Google Scholar]
- Zhang, L.; Li, Z.; Hu, Y.; Smith, C.; Farewik, E.M.G.; Wang, R. Ankle joint torque estimation using an EMG-driven neuromusculoskeletal model and an artificial neural network model. IEEE Trans. Autom. Sci. Eng. 2020, 18, 564–573. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, L.; Han, B.; Zhang, T.; Wang, Z.; Wei, P. sEMG-based continuous estimation of knee joint angle using deep learning with convolutional neural network. In Proceedings of the 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada, 22–26 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 140–145. [Google Scholar]
- Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Feature reduction and selection for EMG signal classification. Expert Syst. Appl. 2012, 39, 7420–7431. [Google Scholar] [CrossRef]
- Siu, H.C.; Sloboda, J.; McKindles, R.J.; Stirling, L.A. A neural network estimation of ankle torques from electromyography and accelerometry. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 1624–1633. [Google Scholar] [CrossRef] [PubMed]
- Truong, M.T.N.; Ali, A.E.A.; Owaki, D.; Hayashibe, M. EMG-Based Estimation of Lower Limb Joint Angles and Moments Using Long Short-Term Memory Network. Sensors 2023, 23, 3331. [Google Scholar] [CrossRef]
- Kim, P.; Lee, J.; Jeong, J.; Shin, C.S. Deep learning-based identification algorithm for transitions between walking environments using electromyography signals only. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 358–365. [Google Scholar] [CrossRef]
- Sakamoto, S.i.; Hutabarat, Y.; Owaki, D.; Hayashibe, M. Ground Reaction Force and Moment Estimation through EMG Sensing Using Long Short-Term Memory Network during Posture Coordination. Cyborg Bionic Syst. 2023, 4, 0016. [Google Scholar] [CrossRef] [PubMed]
- Moreira, L.; Figueiredo, J.; Vilas-Boas, J.P.; Santos, C.P. Kinematics, Speed, and Anthropometry-Based Ankle Joint Torque Estimation: A Deep Learning Regression Approach. Machines 2021, 9, 154. [Google Scholar] [CrossRef]
- Wouda, F.J.; Giuberti, M.; Bellusci, G.; Maartens, E.; Reenalda, J.; Van Beijnum, B.J.F.; Veltink, P.H. Estimation of vertical ground reaction forces and sagittal knee kinematics during running using three inertial sensors. Front. Physiol. 2018, 9, 218. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.H.; Chai, J.; Shimoda, S.; Hayashibe, M. Synergy-Space Recurrent Neural Network for Transferable Forearm Motion Prediction from Residual Limb Motion. Sensors 2023, 23, 4188. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [PubMed]
- Seth, A.; Hicks, J.L.; Uchida, T.K.; Habib, A.; Dembia, C.L.; Dunne, J.J.; Ong, C.F.; DeMers, M.S.; Rajagopal, A.; Millard, M.; et al. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput. Biol. 2018, 14, e1006223. [Google Scholar] [CrossRef] [PubMed]
- Phinyomark, A.; Quaine, F.; Charbonnier, S.; Serviere, C.; Tarpin-Bernard, F.; Laurillau, Y. Feature extraction of the first difference of EMG time series for EMG pattern recognition. Comput. Methods Programs Biomed. 2014, 117, 247–256. [Google Scholar] [CrossRef]
- Moisio, K.C.; Sumner, D.R.; Shott, S.; Hurwitz, D.E. Normalization of joint moments during gait: A comparison of two techniques. J. Biomech. 2003, 36, 599–603. [Google Scholar] [CrossRef]
- Englehart, K.; Hudgin, B.; Parker, P.A. A wavelet-based continuous classification scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 2001, 48, 302–311. [Google Scholar] [CrossRef]
- Sanchez-Gomez, R.; Becerro-de Bengoa-Vallejo, R.; Romero Morales, C.; Losa-Iglesias, M.E.; Castrillo de la Fuente, A.; López-López, D.; Díez Vega, I.; Calvo-Lobo, C. Muscle activity of the triceps surae with novel propulsion heel-lift orthotics in recreational runners. Orthop. J. Sport. Med. 2020, 8, 2325967120956914. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Gómez, R.; Romero-Morales, C.; Gómez-Carrión, Á.; Zaragoza-Garcia, I.; Martinez-Sebastian, C.; Ortuño-Soriano, I.; Gomez-Lara, A.; De la Cruz-Torres, B. Assessment of a New Lateral Cushioned Casting Orthosis: Effects on Peroneus Longus Muscle Electromyographic Activity During Running. Orthop. J. Sport. Med. 2021, 9, 23259671211059152. [Google Scholar] [CrossRef] [PubMed]
Model | Architecture | Activation Function | Hidden Layers | Neurons per Layer | Dropout | Additional Details |
---|---|---|---|---|---|---|
Multi layer perception (MLP) | Feedforward | SELU | 3 | 4 | N/A | Flatten, Dense x3 |
Recurrent convolutional neural network (RCNN) | CNN + LSTM | CNN: N/A LSTM: tanh | CNN: 1, LSTM: 2 | CNN: , LSTM: 4 | N/A | Conv1D, BatchNorm, MaxPool1D, LSTM x2 |
Long short-term memory (LSTM) | Recurrent | tanh | 2 | 8 | 10% | LSTM x2 |
Volunteer | MLP (TA+SOL+GM+PB MAV+WL) | RCNN (TA+GM+PB MAV+WL) | RCNN (TA+SOL+GM+PB WL) | ||||||
---|---|---|---|---|---|---|---|---|---|
RMSE (Nm/kg) | NRMSE | RMSE (Nm/kg) | NRMSE | RMSE (Nm/kg) | NRMSE | ||||
S1 | 0.9514 | 0.103 | 0.056 | 0.9605 | 0.092 | 0.051 | 0.9761 | 0.072 | 0.039 |
S2 | 0.9747 | 0.076 | 0.041 | 0.9791 | 0.069 | 0.038 | 0.9834 | 0.062 | 0.034 |
S3 | 0.9754 | 0.067 | 0.039 | 0.9619 | 0.084 | 0.048 | 0.973 | 0.07 | 0.041 |
S4 | 0.9495 | 0.099 | 0.061 | 0.9621 | 0.086 | 0.052 | 0.9538 | 0.094 | 0.058 |
S5 | 0.9655 | 0.076 | 0.045 | 0.9592 | 0.082 | 0.049 | 0.9752 | 0.064 | 0.038 |
S6 | 0.9634 | 0.075 | 0.049 | 0.962 | 0.076 | 0.05 | 0.973 | 0.064 | 0.042 |
S7 | 0.9499 | 0.073 | 0.051 | 0.9455 | 0.076 | 0.053 | 0.9479 | 0.074 | 0.052 |
Summary |
Volunteer | RCNN (TA+SOL+GM+Pb WL) | RCNN (TA+GM+Pb MAV+WL) | ||||
---|---|---|---|---|---|---|
NRMSE | RMSE [Nm/kg] | NRMSE | RMSE [Nm/kg] | |||
S1 | 86.85% | 0.092 | 0.169 | 91.00% | 0.076 | 0.139 |
S2 | 90.23% | 0.082 | 0.150 | 89.41% | 0.085 | 0.156 |
S3 | 87.43% | 0.088 | 0.152 | 89.69% | 0.079 | 0.138 |
S4 | 87.83% | 0.094 | 0.153 | 78.25% | 0.126 | 0.205 |
S5 | 94.13% | 0.059 | 0.099 | 92.89% | 0.065 | 0.109 |
S6 | 94.37% | 0.061 | 0.093 | 90.66% | 0.078 | 0.119 |
S7 | 81.59% | 0.098 | 0.140 | 41.21% | 0.175 | 0.250 |
Summary |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.E.A.; Owaki, D.; Hayashibe, M. Transferable Deep Learning Models for Accurate Ankle Joint Moment Estimation during Gait Using Electromyography. Appl. Sci. 2024, 14, 8795. https://doi.org/10.3390/app14198795
Ali AEA, Owaki D, Hayashibe M. Transferable Deep Learning Models for Accurate Ankle Joint Moment Estimation during Gait Using Electromyography. Applied Sciences. 2024; 14(19):8795. https://doi.org/10.3390/app14198795
Chicago/Turabian StyleAli, Amged Elsheikh Abdelgadir, Dai Owaki, and Mitsuhiro Hayashibe. 2024. "Transferable Deep Learning Models for Accurate Ankle Joint Moment Estimation during Gait Using Electromyography" Applied Sciences 14, no. 19: 8795. https://doi.org/10.3390/app14198795
APA StyleAli, A. E. A., Owaki, D., & Hayashibe, M. (2024). Transferable Deep Learning Models for Accurate Ankle Joint Moment Estimation during Gait Using Electromyography. Applied Sciences, 14(19), 8795. https://doi.org/10.3390/app14198795