Oral Microbiota in Patients with Alzheimer’s Disease: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Sources and Search Strategy
2.2. Selection Process and Data Collection
2.3. Quality Assessment
2.4. Oral Assessment
- Number of teeth: the total number of teeth present in each participant’s mouth was recorded.
- Periodontal status: periodontal health was assessed by examining the presence of periodontal pockets and measuring their depth. The presence of gingival bleeding on probing, an indicator of gingival inflammation, was also measured.
- Smoking status: participants were asked about their smoking habits, and this information was categorized as current smoker, former smoker or non-smoker.
3. Results
3.1. Search Result
3.2. Quality
3.3. Study Characteristics
3.4. Oral Health Assessment
3.5. Alpha Diversity
3.6. Beta Diversity
4. Discussion
4.1. Oral Microbiota
4.2. Oral Health Assessment
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alzheimer’s Association. 2021 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2021, 17, 327–406. [Google Scholar] [CrossRef] [PubMed]
- Alagiakrishnan, K.; Dhami, P.; Senthilselvan, A. Predictors of Conversion to Dementia in Patients with Mild Cognitive Impairment: The Role of Low Body Temperature. J. Clin. Med. Res. 2023, 15, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Marshall, G.A.; Amariglio, R.E.; Sperling, R.A.; Rentz, D.M. Activities of Daily Living: Where do They Fit in the Diagnosis of Alzheimer’s disease? Neurodegener. Dis. Manag. 2012, 2, 483–491. [Google Scholar] [CrossRef]
- Soria Lopez, J.A.; González, H.M.; Léger, G.C. Alzheimer’s disease. Handb. Clin. Neurol. 2019, 167, 231–255. [Google Scholar] [PubMed]
- Alzheimer’ Disease International. Numbers of People with Dementia, Dementia Statistics; Alzheimer’s Disease International (ADI): London, UK, 2023. [Google Scholar]
- World Health Organization. Dementia; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol. 2018, 25, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.Y.; Snyder, P.J.; Wu, W.C.; Zhang, M.; Echeverria, A.; Alber, J. Pathophysiologic relationship between Alzheimer’s disease, cerebrovascular disease, and cardiovascular risk: A review and synthesis. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2017, 7, 69–87. [Google Scholar] [CrossRef]
- Eid, A.; Mhatre, I.; Richardson, J.R. Gene-environment interactions in Alzheimer’s Disease: A potential path to precision medicine. Physiol. Behav. 2017, 176, 139–148. [Google Scholar] [CrossRef]
- Peng, X.; Cheng, L.; You, Y.; Tang, C.; Ren, B.; Li, Y.; Xu, X.; Zhou, X. Oral microbiota in human systematic diseases. Int. J. Oral Sci. 2022, 14, 14. [Google Scholar] [CrossRef]
- Herrera, D.; Sanz, M.; Shapira, L.; Brotons, C.; Chapple, I.; Frese, T.; Graziani, F.; Hobbs, F.R.; Huck, O.; Hummers, E.; et al. Periodontal diseases and cardiovascular diseases, diabetes, and respiratory diseases: Summary of the consensus report by the European Federation of Periodontology and WONCA Europe. Eur. J. Gen. Pract. 2024, 30, 2320120. [Google Scholar] [CrossRef] [PubMed]
- Pruntel, S.M.; van Munster, B.C.; de Vries, J.J.; Vissink, A.; Visser, A. Oral Health as a Risk Factor for Alzheimer Disease. J. Prev. Alzheimer’s Dis. 2024, 11, 249–258. [Google Scholar] [CrossRef]
- Dominy, S.S.; Lynch, C.; Ermini, F.; Benedyk, M.; Marczyk, A.; Konradi, A.; Nguyen, M.; Haditsch, U.; Raha, D.; Griffin, C.; et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 2019, 5, eaau3333. [Google Scholar] [CrossRef] [PubMed]
- Heravi, F.S.; Naseri, K.; Hu, H. Gut Microbiota Composition in Patients with Neurodegenerative Disorders (Parkinson’s and Alzheimer’s) and Healthy Controls: A Systematic Review. Nutrients 2023, 15, 4365. [Google Scholar] [CrossRef] [PubMed]
- Jameie, M.; Ahli, B.; Ghadir, S.; Azami, M.; Amanollahi, M.; Ebadi, R.; Rafati, A.; Moghadasi, A.N. The hidden link: How oral and respiratory microbiomes affect multiple sclerosis. Mult. Scler. Relat. Disord. 2024, 88, 105742. [Google Scholar] [CrossRef] [PubMed]
- Prospero. Available online: https://www.crd.york.ac.uk/prospero/ (accessed on 31 July 2023).
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (Minors): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Leblhuber, F.; Huemer, J.; Steiner, K.; Gostner, J.M.; Fuchs, D. Knock-on effect of periodontitis to the pathogenesis of Alzheimer’s disease? Wien. Klin. Wochenschr. 2020, 132, 493–498. [Google Scholar] [CrossRef]
- Chen, L.; Cao, H.; Wu, X.; Xu, X.; Ji, X.; Wang, B.; Zhang, P.; Li, H. Effects of oral health intervention strategies on cognition and microbiota alterations in patients with mild Alzheimer’s disease: A randomized controlled trial. Geriatr. Nurs. 2022, 48, 103–110. [Google Scholar] [CrossRef]
- Fu, K.L.; Chiu, M.J.; Wara-aswapati, N.; Yang, C.N.; Chang, L.C.; Guo, Y.L.; Ni, Y.H.; Chen, Y.W. Oral microbiome and serological analyses on association of Alzheimer’s disease and periodontitis. Oral Dis. 2022, 29, 3677–3687. [Google Scholar] [CrossRef]
- Liu, X.X.; Jiao, B.; Liao, X.X.; Guo, L.N.; Yuan, Z.H.; Wang, X.; Xiao, X.W.; Zhang, X.Y.; Tang, B.S.; Shen, L. Analysis of Salivary Microbiome in Patients with Alzheimer’s Disease. J. Alzheimer’s Dis. 2019, 72, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.F.; Lee, W.F.; Salamanca, E.; Yao, W.L.; Su, J.N.; Wang, S.Y.; Hu, C.J.; Chang, W.J. Oral microbiota changes in elderly patients, an indicator of Alzheimer’s disease. Int. J. Environ. Res. Public Health 2021, 18, 4211. [Google Scholar] [CrossRef]
- Qiu, C.; Zhou, W.; Shen, H.; Wang, J.; Tang, R.; Wang, T.; Xie, X.; Hong, B.; Ren, R.; Wang, G.; et al. Profiles of subgingival microbiomes and gingival crevicular metabolic signatures in patients with amnestic mild cognitive impairment and Alzheimer’s disease. Alzheimer’s Res. Ther. 2024, 16, 41. [Google Scholar] [CrossRef]
- Holmer, J.; Aho, V.; Eriksdotter, M.; Paulin, L.; Pietiäinen, M.; Auvinen, P.; Schultzberg, M.; Pussinen, P.J.; Buhlin, K. Subgingival microbiota in a population with and without cognitive dysfunction. J. Oral Microbiol. 2021, 13, 1854552. [Google Scholar] [CrossRef]
- Cirstea, M.S.; Kliger, D.; MacLellan, A.D.; Yu, A.C.; Langlois, J.; Fan, M.; Boroomand, S.; Kharazyan, F.; Hsiung, R.G.; MacVicar, B.A.; et al. The Oral and Fecal Microbiota in a Canadian Cohort of Alzheimer’s Disease. J. Alzheimer’s Dis. 2022, 87, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Issilbayeva, A.; Kaiyrlykyzy, A.; Vinogradova, E.; Jarmukhanov, Z.; Kozhakhmetov, S.; Kassenova, A.; Nurgaziyev, M.; Mukhanbetzhanov, N.; Alzhanova, D.; Zholdasbekova, G.; et al. Oral Microbiome Stamp in Alzheimer’s Disease. Pathogens 2024, 13, 195. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Li, B.; Yao, H.; Liu, D.; Chen, R.; Zhou, S.; Ji, Y.; Zeng, L.; Du, M. Profiling the oral microbiomes in patients with Alzheimer’s disease. Oral Dis. 2023, 29, 1341–1355. [Google Scholar] [CrossRef] [PubMed]
- Taati Moghadam, M.; Amirmozafari, N.; Mojtahedi, A.; Bakhshayesh, B.; Shariati, A.; Masjedian Jazi, F. Association of perturbation of oral bacterial with incident of Alzheimer’s disease: A pilot study. J. Clin. Lab. Anal. 2022, 36, e24483. [Google Scholar] [CrossRef] [PubMed]
- Panzarella, V.; Mauceri, R.; Baschi, R.; Maniscalco, L.; Campisi, G.; Monastero, R. Oral Health Status in Subjects with Amnestic Mild Cognitive Impairment and Alzheimer’s Disease: Data from the Zabut Aging Project. J. Alzheimer’s Dis. 2022, 87, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Bathini, P.; Foucras, S.; Dupanloup, I.; Imeri, H.; Perna, A.; Berruex, J.L.; Doucey, M.A.; Annoni, J.M.; Auber Alberi, L. Classifying dementia progression using microbial profiling of saliva. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2020, 12, e12000. [Google Scholar] [CrossRef] [PubMed]
- Maitre, Y.; Mahalli, R.; Micheneau, P.; Delpierre, A.; Amador, G.; Denis, F. Evidence and therapeutic perspectives in the relationship between the oral microbiome and Alzheimer’s disease: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 11157. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Xuan, S.; Wang, Z. Oral microbiota: A new view of body health. Food Sci. Hum. Wellness 2019, 8, 8–15. [Google Scholar] [CrossRef]
- Sedghi, L.; DiMassa, V.; Harrington, A.; Lynch, S.V.; Kapila, Y.L. The oral microbiome: Role of key organisms and complex networks in oral health and disease. Periodontol. 2000 2021, 87, 107–131. [Google Scholar] [CrossRef]
- Everaars, B.; Weening-Verbree, L.F.; Jerković-Ćosić, K.; Schoonmade, L.; Bleijenberg, N.; de Wit, N.J.; van der Heijden, G.J. Measurement properties of oral health assessments for non-dental healthcare professionals in older people: A systematic review. BMC Geriatr. 2020, 20, 4. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, L.E.; Robertson, D.; Nile, C.J.; Cross, L.J.; Riggio, M.; Sherriff, A.; Bradshaw, D.; Lambert, M.; Malcolm, J.; Buijs, M.J.; et al. The oral microbiome of denture wearers is influenced by levels of natural dentition. PLoS ONE 2015, 10, e0137717. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xiang, Y.; Ren, H.; Zhang, C.; Hu, Z.; Leng, W.; Xia, L. Association between periodontitis and dental caries: A systematic review and meta-analysis. Clin. Oral Investig. 2024, 28, 306. [Google Scholar] [CrossRef] [PubMed]
References | 1. Clearly Stated Aim | 2. Inclusion of Consecutive Patients | 3. Prospective Data Collection | 4. Endpoints Appropriate to Study Aim | 5. Unbiased Assessment of Endpoints | 6. Follow-Up Appropriate to Study Aim | 7. <5% Lost to Follow-Up | 8. Prospective Calculation of Study Size | 9. Adequate Control Group | 10. Contemporary Groups | 11. Baseline Equivalence of Groups | 12. Adequate Statistical Analyses | Total * |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Non-comparative studies | |||||||||||||
Leblhuber et al. [18] | 0 | 0 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | 1 |
Chen et al. [19] | 1 | 2 | 1 | 2 | 2 | NA | NA | NA | NA | NA | NA | NA | 8 |
Comparative studies | |||||||||||||
Fu et al. [20] | 2 | 2 | 2 | 2 | 0 | NA | NA | 1 | 2 | 2 | 1 | 2 | 16 |
Liu et al. [21] | 2 | 2 | 2 | 2 | 0 | NA | NA | 0 | 0 | 2 | 0 | 1 | 11 |
Wu et al. [22] | 2 | 2 | 2 | 2 | 0 | NA | NA | 0 | 0 | 2 | 0 | 2 | 12 |
Qiu et al. [23] | 2 | 2 | 2 | 2 | 0 | NA | NA | 0 | 2 | 2 | 1 | 2 | 15 |
Holmer et al. [24] | 2 | 2 | 2 | 2 | 0 | NA | NA | 0 | 2 | 2 | 1 | 2 | 15 |
Cirstea et al. [25] | 2 | 2 | 2 | 2 | 0 | NA | NA | 0 | 2 | 2 | 0 | 2 | 14 |
Issilbayeva et al. [26] | 1 | 2 | 2 | 2 | 0 | NA | NA | 0 | 2 | 2 | 0 | 2 | 13 |
Guo et al. [27] | 0 | 2 | 2 | 2 | 0 | NA | NA | 0 | 2 | 2 | 2 | 2 | 14 |
Moghadam et al. [28] | 2 | 2 | 2 | 2 | 0 | NA | NA | 0 | 2 | 2 | 1 | 2 | 15 |
Panzarella et al. [29] | 2 | 2 | 2 | 2 | 0 | NA | NA | 0 | 2 | 2 | 1 | 2 | 15 |
Bathini et al. [30] | 1 | 0 | 2 | 2 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | 5 |
Reference | Study Design | Type of Subjects | Microbiological Method | Main Findings (Microbiota Related to AD) | MINORS * | Limitations |
---|---|---|---|---|---|---|
Non-comparative studies | ||||||
Leblhuber et al., 2020 [18] | Prospective | AD (N = 20): 78.1 ± 2.2 y.o. Non-smokers Austria Gingival Crevicular Fluid and paperpoints | Detection (>104 cells) of Treponema denticola, Tannerella forsythia, Porphyromonas gingivalis, Prevotella intermedia and Aggregatibacter actinomycetemcomitans (PerioPOC®) | A significant association between the salivary presence of P. gingivalis and lower MMSE. | 1 | No oral health status assessed. No cognitively healthy control group included. No assessment in time. |
Chen et al., 2022 [19] | Longitudinal | AD (N = 66): 82.85 ± 6.00 y.o. divided into Intervention (N = 33) 82.70 ± 6.03 and Control (N = 33) group 83.00 ± 6.04 y.o. Intervention: oral health intervention for 24 weeks Non-smokers China Kayser-Jones Brief Oral Health Examination (BOHSE) Subgingival plaque samples by paperpoints | V3-V4 region of 16S rRNA gene amplicon sequencing (Illumina MiSeq) | The intervention group had a higher proportion of the relative abundance of Alphaproteobacteria, Betaproteobacteria and Flavobacteria compared to the control group, while Actinobacteria, Spirochaete and Synergistes were lower in the intervention group. | 8 | No cognitively healthy control group included.Oral microbiota affected by oral health intervention. |
Comparative studies | ||||||
Fu et al., 2022 [20] | Cross-sectional | AD (N = 20): 74.65 ± 1.75 y.o. Controls (N = 20): 73.00 ± 1.71 y.o. Smoking 5% of AD 5% of Controls Taiwan Periodontal status, plaque index, nr of teeth Unstimulated saliva | Amplicon sequencing of V3-V4 region of 16S rRNA gene (Illumina MiSeq) | The relative abundance of Capnocytophaga, Eubacterium infirmum, Prevotella buccae and Selenomonas artemidis were significantly in- creased in the AD group. The relative abundance of Streptococcus mutans and Rothia dentocariosa—significantly lower in AD group. | 16 | The control group exhibited more frequent toothbrushing (p = 0.006), dental visits (p < 0.001) and higher education level (p = 0.027) than the AD patients. |
Liu et al., 2019 [21] | Cross-sectional | AD (N = 39): 64.28 ± 9.28 y.o. Healthy controls (N = 39): 63.90 ± 9.36 y.o. Non-smokers China 2 mL of unstimulated saliva | Amplicon sequencing of V3-V4 region of 16S rRNA gene (Illumina Hiseq2500) | Significantly lower alpha diversity in AD vs. controls. In AD: Moraxella catarrhalis (high), Leptotrichia buccalis (high) and Sphaerochaeta multiformis (high) In controls: Rothia dentocariosa (high) | 11 | No oral health assessment. |
Wu et al., 2021 [22] | Cross-sectional | AD (N = 17): 77.9 ± 10.5 y.o. Controls (N = 18): 65.2 ± 24.6 y.o. Taiwan Decayed, Missing, and Filled Teeth and dental plaque weight Pooled supra-gingival plaque from all buccal and lingual/palatal surfaces of all teeth. By periodontal curettes | Amplicon sequencing of full 16S rRNA gene (PacBio, SMRT) | AD patients had significantly lower alpha diversity than healthy controls. The proportion of Lactobacillales, Streptococcaceae and the Firmicutes/Bacteroidetes ratios were significantly higher, whereas Fusobacterium and Proteobacteria were significantly lower in patients with AD compared to the controls. | 12 | The number of missing teeth and dental plaque weight significantly higher in AD group. No mention of the smoking status of the patients. |
Qiu et al., 2024 [23] | Cross-sectional | AD (N = 32): 76.03 ± 8.23 y.o. Amnestic mild cognitive impairment (aMCI) (N = 32): 72.31 ± 8.07 y.o. Cognitively normal people (N = 32): 65.75 ± 6.33 y.o. China Functional tooth number of ≥6, periodontal probing depth (PPD), clinical attachment level (CAL), percentage of CAL > 3 mm, gingival index, plaque index and percentage of bleeding on probing. Subgingival plaque and gingival crevicular fluid samples were obtained from Ramfjord index teeth ** and teeth with moderate and deep periodontal pockets (PPD > 3 mm). Sterile paper points into the gingival sulcus or periodontal pockets. | Amplicon sequencing of full 16S rRNA gene (PacBio and SMRT) | Veillonella parvula, Lancefieldella parvula, Prevotella melaninogenica, Megasphaera micronuciformis, Anaeroglobus geminatus, Streptococcus anginosus, Campylobacter gracilis and Dialister pneumosintes were negatively correlated with cognitive function. (Eubacterium) yurii, Pseudoleptotrichia goodfellowii, Campylobacter rectus, Leptotrichia buccalis, Streptococcus sanguinis, Actinomyces massiliensis, Haemophilus parainfluenzae and Campylobacter concisus were positively correlated with cognitive function. None of them were significant. | 15 | No mention of the smoking status of the patients. Controls significantly younger. In AD group: significantly lower nr of teeth, higher PPD, CAL, CAL > 3 mm, PLI and BOP |
Holmer et al., 2021 [24] | Cross-sectional | AD (N = 46): 71 y.o. Controls (N = 63): 69 y.o. Mild cognitive impairment (MCI) (N = 40): 70 y.o. Subjective cognitive decline (SCD) (N = 46): 61 y.o. Current smoking AD: 8.7% Previous smoking AD: 47.8% Current smoking Controls: 7.9% Previous smoking Controls: 44.4% Sweden Nr of teeth, periodontal status Subgingival microbial sampling | Amplicon sequencing of V3-V4 region of 16S rRNA gene (Illumina MiSeq) | Alpha diversity: higher in males and individuals with PPD ≥ 6 mm; Significantly higher alpha diversity in MCI group; Actinomyces and Rothia were more common among controls with healthier periodontal status than in the diagnostic subgroup of AD with poorer periodontal status; In AD, higher abundance of Slackia exigua and Lachospiraceae [G-7]. | 15 | Control group had significantly higher BMI, AD group had significantly more sites with periodontal pocket depth (PPD) ≥ 6 and higher bleeding on probing (BoP). |
Cirstea et al., 2022 [25] | Cross-sectional | AD (N = 45): 74 (65–78) y.o. Controls (N = 54): 70 (66–74) y.o. Ever smoker AD: 42.2% Ever smoker Control: 46.3% Current smoker AD: 2.2% Current smoker Control: 7.4% Canada Sampling via bilateral swabbing the oral mucosa over the opening of the ductus of parotis salivary gland and below the tongue using a cotton swab | Amplicon sequencing of V4 region of 16S rRNA gene (Illumina MiSeq) | Alpha-diversity: higher in the AD. A higher relative abundance of Weeksellaceae in AD; A lower abundance of Streptococcaceae and Actinomycetaceae in AD; Porphyromonas gingivalis—5 times more prevalent among patients with AD. | 14 | No oral health status assessed. No mention of the number of teeth in both groups. |
Issilbayeva et al., 2024 [26] | Cross-sectional | AD (N = 64): 68 (63–74) y.o. Controls (N = 71): 67 (61–72) y.o. Kazakhstan History of smoking AD: 20.3% History of smoking Controls: 14.1% Bone loss, bleeding on probing (BoP), periodontal probing depth (PPD), clinical loss of attachment, gingival recession and number of remaining teeth were indicated. Unstimulated saliva, supragingival and subgingival plaque, tongue dorsum, hard palate, buccal mucosa, keratinized gingiva, palatine tonsils and throat | Amplicon sequencing V3-V4 region of 16S rRNA gene (Illumina NovaSeq 6000) | Alpha-diversity and Beta-diversity were higher in the AD group. Four species were significantly decreased in the AD group: Haemophilus parainfluenza, Prevotella melaninogenica, Prevotella histicola and Actinomyces oris. Enrichment in the AD group and the leading prediction features are Bacteroides, Methylobacterium-methylorubrum, Anaerostipes, Shuttleworthia and Lactobacillus. | 13 | No mention of the smoking status of the patients. Unclear data from which sample type is presented in the results. |
Guo et al., 2021 [27] | Cross-sectional | AD (N = 26): 71.96 ± 7.92 y.o. Control (N = 26): 70.04 ± 6.44 y.o. China Number of teeth > 7 Periodontal status Citric-acid stimulated saliva; Gingival crevicular fluid of four teeth with the deepest pocket by sterile paperpoints. | Full-length 16S rRNA gene amplicon sequencing (SMRTbell and PacBio) | In saliva: A significantly higher relative abundance of Firmicutes and Deinococcus-Thermus, and a significantly lower relative abundance of Fusobacteria and Proteobacteria in AD patients. At the species level, Veillonella parvula, Prevotella denticola and Lactobacillus salivarius enriched in the AD group. Aggregatibacter aphrophilus, Haemophilus parainfluenzae, Haemophilus haemolyticus and Cardiobacterium valvarum—lower in the AD group. In CGF, a positive correlation between AD and Veillonella parvula. | 14 | No mention of the smoking status of the patients. |
Moghadam et al., 2022 [28] | Cross-sectional | AD (N = 15): 69.47 ± 6.88 y.o. Healthy controls (N = 15): 64.33 ± 3.73 y.o. Smokers, non-smokers and ex-smokers Iran Sampled from mucosa, teeth, supra- and sub-gingival spaces, tongue and keratinized gingiva using sterile paper points. | qPCR of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Prevotella intermedia and Streptococcus mutans | Significantly higher amount of P. gingivalis F. nucleatum and P. intermedia in AD group | 15 | No oral health assessment. Significant difference between the control and AD groups: AD older, higher frequency of hypertension, diabetes, hyperlipidemia and lower education level |
Panzarella et al., 2022 [29] | Cross-sectional | AD (N = 20): 83.5 ± 7.7 y.o. Amnestic mild cognitive impairment (aMCI) (N = 20): 78.0 ± 9.5 y.o. Controls (CONS) (N = 20): 78.8 ± 8.1 y.o. Smoking: 20% in controls and 0% in AD Italy Oral health assessment Subgingival plaque samples | Quantitative determination of Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, Treponema denticola and Tannerella forsythia via RT-PCR analysis (Carpegen® Perio Diagnostics kit) | F. nucleatum was higher in the AD group compared to the control group. T. denticola was higher in the MCI group compared to the AD group. | 15 | The number of smokers different in each group. Significantly higher DMFT in AD group Significantly higher M (missing teeth) in AD group |
Bathini et al., 2020 [30] | Cross-sectional | AD (N = 17): 71.1 ± 6.6 y.o. Cognitive Normal Healthy Controls—CNh (N = 27): 67.0 ± 9.2 y.o. Switzerland 2 mL of unstimulated saliva | Amplicon sequencing of V3-V4 region of 16S rRNA gene (Illumina MiSeq) | Prevotella tannerae (low), Filifactor villosus (low), P. gingivalis (low) and Cardiobacterium valvarum (high) are significantly different in AD as compared to CNh. Filifactor villosus and P. tannerae—the best differentiators in patients with AD | 5 | No oral health status assessed. No mention of the number of teeth in both groups. No mention of the smoking status of the patients. |
Taxa in the AD Group | Higher Relative Abundance | Lower Relative Abundance |
---|---|---|
Firmicutes (p) | [22,27] | |
Bacteriodetes (p) | [22] | |
Proteobacteria (p) | [27] | |
Fusobacteria (c) | [22,27] | |
Lactobacillales (o) | [22] | |
Actinomycetales (o) | [24,25] | |
Cardiobacteriales (o) | [22] | |
Porphyromonadaceae (f) | [22] | |
Streptococcaceae (f) | [22] | [25] |
Lachnosporaceae (f) | [24] | |
Weeksellaceae (f) | [25] | |
Bacteriodes (g) | [26] | |
Streptococcus (g) | [22] | |
Deinococcus-Thermus (g) | [27] | |
Lactobacillus (g) | [26] | |
Shuttleworthia (g) | [22,26] | |
Moraxella (g) | [21] | |
Leptotrichia (g) | [30] | |
Methylobacterium-methylorubrum (g) | [26] | |
Anaerostipes (g) | [26] | |
Actinomyces oris (s) | [26] | |
Corynebacterium durum (s) | [24] | |
Prevotella oulorum (s) | [24] | |
Prevotella denticola (s) | [27] | |
Prevotella tannerae (s) | [30] | |
Prevotella melaninogenica (s) | [26] | |
Prevotella histicola (s) | [26] | |
Prevotella intermedia (s) | [24,28] | |
Slackia exigua (s) | [24] | |
Porphyromonas gingivalis (s) | [24,25,28] | [30] |
Fusobacterium nucleatum (s) | [28,29] | [27] |
Filifactor alocis (s) | [30] | |
Filifactor villosus (s) | [30] | |
Streptococcus mutans (s) | [20] | |
Treponema denticola (s) | [29] (MCI > AD) | |
Eubacterium infirmum (s) | [20] | |
Prevotella buccae (s) | [20] | |
Selenomonas artemidis (s) | [20] | |
Rothia dentocariosa (s) | [20,21,24] | |
Veillonella parvula (s) | [27] | |
Haemophilus parainfluenzae (s) | [26,27] | |
Aggregatibacter aphrophilus (s) | [27] | |
Porphyromonas endodontalis (s) | [27] | |
Lactobacillus salivarius (s) | [27] | |
Streptococcus aginosus (s) | [27] | |
Bifidobacterium dentium (s) | [27] | |
Atopobium parvulum (s) | [27] | |
Cardiobacterium valvarum (s) | [30] | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pruntel, S.M.; Leusenkamp, L.A.; Zaura, E.; Vissink, A.; Visser, A. Oral Microbiota in Patients with Alzheimer’s Disease: A Systematic Review. Appl. Sci. 2024, 14, 8869. https://doi.org/10.3390/app14198869
Pruntel SM, Leusenkamp LA, Zaura E, Vissink A, Visser A. Oral Microbiota in Patients with Alzheimer’s Disease: A Systematic Review. Applied Sciences. 2024; 14(19):8869. https://doi.org/10.3390/app14198869
Chicago/Turabian StylePruntel, Sanne M., Lauren A. Leusenkamp, Egija Zaura, Arjan Vissink, and Anita Visser. 2024. "Oral Microbiota in Patients with Alzheimer’s Disease: A Systematic Review" Applied Sciences 14, no. 19: 8869. https://doi.org/10.3390/app14198869
APA StylePruntel, S. M., Leusenkamp, L. A., Zaura, E., Vissink, A., & Visser, A. (2024). Oral Microbiota in Patients with Alzheimer’s Disease: A Systematic Review. Applied Sciences, 14(19), 8869. https://doi.org/10.3390/app14198869