Natural Language Processing Risk Assessment Application Developed for Marble Quarries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Risk Assessment Process
2.2. Data Science Process
3. Results
3.1. Experimental Study
3.2. Data Preprocessing
- Our data were gathered in a way that creates data sets with certain orders.
- Data were augmented to enable enrichment and inter-class balance adjustment in the collected data.
- A data cleaning process was implemented on text data by eliminating non-word and non-space punctuation marks and special characters, converting all letters to lowercase, identifying unnecessary words, and removing them.
3.3. Data Analysis
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kekec, B.; Bilim, N.; Ghiloufi, D. A Review on the Evolution of the Turkey Mining Sector. Acad. Perspect. Procedia 2018, 1, 1146–1156. [Google Scholar] [CrossRef]
- Erdoğan, M.; Örs, Ş.; Demirbağ, O.; Ayaydın, H. International Competitive Advantage of the Turkish Mining Sector: A Wprldwide and Brics Countries Comparison. Int. Anatol. J. Soc. Sci. 2024, 8, 520–539. [Google Scholar] [CrossRef]
- Yari, M.; Jamali, S.; Abdullah, G.M.S.; Ahmad, M.; Badshah, M.U.; Najeh, T. Development a Risk Assessment Method for Dimensional Stone Quarries. Sci. Rep. 2024, 14, 21582. [Google Scholar] [CrossRef] [PubMed]
- Ozcelik, M. Environmental Effects of Marble Quarry Operations in Burdur Lake Basin (Burdur-Turkey). J. Degrad. Min. Lands Manag. 2023, 10, 4517. [Google Scholar] [CrossRef]
- Liu, R.; Liu, H.-C.; Shi, H.; Gu, X. Occupational Health and Safety Risk Assessment: A Systematic Literature Review of Models, Methods, and Applications. Saf. Sci. 2023, 160, 106050. [Google Scholar] [CrossRef]
- Gümüş, R.; Ayhan, M.; Gümüş, B. Safety Climate in Marble Industry and Its Influence on Safety Performance and Occupational Accidents. Arch. Environ. Occup. Health 2023, 78, 48–59. [Google Scholar] [CrossRef]
- Abu Hanieh, A.; Hasan, A.A.; Abdelall, S.; Alhanjouri, M.A. Investigating Artificial Intelligence and Modern Technologies Enhancement in Stone and Marble Cutting in Palestine. Jordan J. Mech. Ind. Eng. 2024, 18, 207–218. [Google Scholar] [CrossRef]
- Kamel Elsayed, S.; Elahmady Mohamed, A.; Atta Mohammed, W. Occupational Health Hazards among Workers in Marble and Granite Workshops in Benha City. J. Nurs. Sci. Benha Univ. 2023, 4, 617–629. [Google Scholar] [CrossRef]
- Idayu Ahmad, M.; Ramli, N.K.; Ahmad, N.A.; Ahmad, H. Pesticides and Risk Assessment in Agriculture. In Bioremediation Technologies; De Gruyter: Berlin, Germany, 2023; pp. 89–110. [Google Scholar]
- Niv, Y.; Tal, Y. Patient Safety and Risk Management in Medicine; Springer Nature: Cham, Switzerland, 2023; ISBN 978-3-031-49864-0. [Google Scholar]
- Khinvasara, T.; Ness, S.; Tzenios, N. Risk Management in Medical Device Industry. J. Eng. Res. Rep. 2023, 25, 130–140. [Google Scholar] [CrossRef]
- Janjuhah, H.T.; Ishfaque, M.; Mehmood, M.I.; Kontakiotis, G.; Shahzad, S.M.; Zarkogiannis, S.D. Integrated Underground Mining Hazard Assessment, Management, Environmental Monitoring, and Policy Control in Pakistan. Sustainability 2021, 13, 13505. [Google Scholar] [CrossRef]
- Spanidis, P.-M.; Roumpos, C.; Pavloudakis, F. A Multi-Criteria Approach for the Evaluation of Low Risk Restoration Projects in Continuous Surface Lignite Mines. Energy 2020, 13, 2179. [Google Scholar] [CrossRef]
- Spanidis, P.-M.; Roumpos, C.; Pavloudakis, F. A Fuzzy-AHP Methodology for Planning the Risk Management of Natural Hazards in Surface Mining Projects. Sustainability 2021, 13, 2369. [Google Scholar] [CrossRef]
- Korshunov, G.I.; Kabanov, E.I. Michal CEHLÁR Occupational Risk Management In a Mining Enterprise With the Aid of an Improved Matrix Method for Risk Assessment. Acta Montan. Slovaca 2020, 25, 289–301. [Google Scholar] [CrossRef]
- Tripathy, D.P. Hazard Identification and Safety Risk Assessment in Mining Industry. J. Mines Met. Fuels 2022, 66, 733–741. [Google Scholar]
- Kemajl, Z.; Stojance, M.; Gzim, I.; Ledi, M.L. Comprehensive Analysis of the Mining Accident Forecasting and Risk Assessment Methodologies: Case Study—Stanterg Mine. Min. Miner. Depos. 2024, 18, 11–17. [Google Scholar] [CrossRef]
- Matloob, S.; Li, Y.; Khan, K.Z. Safety Measurements and Risk Assessment of Coal Mining Industry Using Artificial Intelligence and Machine Learning. Open J. Bus. Manag. 2021, 09, 1198–1209. [Google Scholar] [CrossRef]
- Esmaeilzadeh, A.; Shaffiee Haghshenas, S.; Mikaeil, R.; Guido, G.; Shirani Faradonbeh, R.; Abbasi Azghan, R.; Jafarpour, A.; Taghizadeh, S. Risk Assessment in Quarries Using Failure Modes and Effects Analysis Method (Case Study: West-Azerbaijan Mines). J. Min. Environ. 2022, 13, 715–725. [Google Scholar] [CrossRef]
- Mijalkovski, S.; Peltechki, D.; Zeqiri, K.; Kortnik, J.; Mirakovski, D. Risk Assessment at Workplace in Underground Lead and Zinc Mine with Application of Fuzzy Topsis Method. J. Inst. Electron. Comput. 2020, 2, 121–141. [Google Scholar] [CrossRef]
- Kokangül, A.; Polat, U.; Dağsuyu, C. A New Approximation for Risk Assessment Using the AHP and Fine Kinney Methodologies. Saf. Sci. 2017, 91, 24–32. [Google Scholar] [CrossRef]
- Gul, M.; Celik, E. Fuzzy Rule-Based Fine–Kinney Risk Assessment Approach for Rail Transportation Systems. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 1786–1812. [Google Scholar] [CrossRef]
- Ilbahar, E.; Karaşan, A.; Cebi, S.; Kahraman, C. A Novel Approach to Risk Assessment for Occupational Health and Safety Using Pythagorean Fuzzy AHP & Fuzzy Inference System. Saf. Sci. 2018, 103, 124–136. [Google Scholar] [CrossRef]
- Koulinas, G.K.; Marhavilas, P.K.; Demesouka, O.E.; Vavatsikos, A.P.; Koulouriotis, D.E. Risk Analysis and Assessment in the Worksites Using the Fuzzy-Analytical Hierarchy Process and a Quantitative Technique—A Case Study for the Greek Construction Sector. Saf. Sci. 2019, 112, 96–104. [Google Scholar] [CrossRef]
- Oz, N.E.; Mete, S.; Serin, F.; Gul, M. Risk Assessment for Clearing and Grading Process of a Natural Gas Pipeline Project: An Extended TOPSIS Model with Pythagorean Fuzzy Sets for Prioritizing Hazards. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1615–1632. [Google Scholar] [CrossRef]
- Mete, S. Assessing Occupational Risks in Pipeline Construction Using FMEA-Based AHP-MOORA Integrated Approach under Pythagorean Fuzzy Environment. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1645–1660. [Google Scholar] [CrossRef]
- Fargnoli, M.; Lombardi, M.; Haber, N.; Guadagno, F. Hazard Function Deployment: A QFD-Based Tool for the Assessment of Working Tasks—A Practical Study in the Construction Industry. Int. J. Occup. Saf. Ergon. 2020, 26, 348–369. [Google Scholar] [CrossRef]
- Gul, M.; Lo, H.-W.; Yucesan, M. Fermatean Fuzzy TOPSIS-Based Approach for Occupational Risk Assessment in Manufacturing. Complex Intell. Syst. 2021, 7, 2635–2653. [Google Scholar] [CrossRef]
- Ak, M.F.; Yucesan, M.; Gul, M. Occupational Health, Safety and Environmental Risk Assessment in Textile Production Industry through a Bayesian BWM-VIKOR Approach. Stoch. Environ. Res. Risk Assess. 2022, 36, 629–642. [Google Scholar] [CrossRef]
- Gul, M.; Ak, M.F. Occupational Risk Assessment for Flight Schools: A 3,4-Quasirung Fuzzy Multi-Criteria Decision Making-Based Approach. Sustainability 2022, 14, 9373. [Google Scholar] [CrossRef]
- Wang, W.; Ding, L.; Liu, X.; Liu, S. An Interval 2-Tuple Linguistic Fine-Kinney Model for Risk Analysis Based on Extended ORESTE Method with Cumulative Prospect Theory. Inf. Fusion 2022, 78, 40–56. [Google Scholar] [CrossRef]
- Marhavilas, P.K.; Filippidis, M.; Koulinas, G.K.; Koulouriotis, D.E. The Integration of HAZOP Study with Risk-Matrix and the Analytical-Hierarchy Process for Identifying Critical Control-Points and Prioritizing Risks in Industry—A Case Study. J. Loss Prev. Process Ind. 2019, 62, 103981. [Google Scholar] [CrossRef]
- Badida, P.; Janakiraman, S.; Jayaprakash, J. Occupational Health and Safety Risk Assessment Using a Fuzzy Multi-Criteria Approach in a Hospital in Chennai, India. Int. J. Occup. Saf. Ergon. 2023, 29, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Çalış Boyacı, A.; Selim, A. Assessment of Occupational Health and Safety Risks in a Turkish Public Hospital Using a Two-Stage Hesitant Fuzzy Linguistic Approach. Environ. Sci. Pollut. Res. 2022, 29, 36313–36325. [Google Scholar] [CrossRef] [PubMed]
- Marhavilas, P.K.; Filippidis, M.; Koulinas, G.K.; Koulouriotis, D.E. Safety-Assessment by Hybridizing the MCDM/AHP & HAZOP-DMRA Techniques through Safety’s Level Colored Maps: Implementation in a Petrochemical Industry. Alex. Eng. J. 2022, 61, 6959–6977. [Google Scholar] [CrossRef]
- Seker, S. A Novel Risk Assessment Approach Using a Hybrid Method Based On Fine–Kinney and Extended MCDM Methods Under Interval-Valued Intuitionistic Fuzzy Environment. Int. J. Inf. Technol. Decis. Mak. 2022, 21, 1591–1616. [Google Scholar] [CrossRef]
- Gul, M.; Guneri, A.F. A Fuzzy Multi Criteria Risk Assessment Based on Decision Matrix Technique: A Case Study for Aluminum Industry. J. Loss Prev. Process Ind. 2016, 40, 89–100. [Google Scholar] [CrossRef]
- Ozdemir, Y.; Gul, M.; Celik, E. Assessment of Occupational Hazards and Associated Risks in Fuzzy Environment: A Case Study of a University Chemical Laboratory. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 895–924. [Google Scholar] [CrossRef]
- Gul, M.; Ak, M.F. Assessment of Occupational Risks from Human Health and Environmental Perspectives: A New Integrated Approach and Its Application Using Fuzzy BWM and Fuzzy MAIRCA. Stoch. Environ. Res. Risk Assess. 2020, 34, 1231–1262. [Google Scholar] [CrossRef]
- Mohandes, S.R.; Sadeghi, H.; Mahdiyar, A.; Durdyev, S.; Banaitis, A.; Yahya, K.; Ismail, S. Assessing construction labours’ safety level: A fuzzy MCDM approach. J. Civ. Eng. Manag. 2020, 26, 175–188. [Google Scholar] [CrossRef]
- La Fata, C.M.; Giallanza, A.; Micale, R.; La Scalia, G. Ranking of Occupational Health and Safety Risks by a Multi-Criteria Perspective: Inclusion of Human Factors and Application of VIKOR. Saf. Sci. 2021, 138, 105234. [Google Scholar] [CrossRef]
- Liu, R.; Zhu, Y.; Chen, Y.; Liu, H. Occupational Health and Safety Risk Assessment Using an Integrated TODIM-PROMETHEE Model under Linguistic Spherical Fuzzy Environment. Int. J. Intell. Syst. 2021, 36, 6814–6836. [Google Scholar] [CrossRef]
- Chen, Q.-Y.; Liu, H.-C.; Wang, J.-H.; Shi, H. New Model for Occupational Health and Safety Risk Assessment Based on Fermatean Fuzzy Linguistic Sets and CoCoSo Approach. Appl. Soft Comput. 2022, 126, 109262. [Google Scholar] [CrossRef]
- Bao, J.; Johansson, J.; Zhang, J. An Occupational Disease Assessment of the Mining Industry’s Occupational Health and Safety Management System Based on FMEA and an Improved AHP Model. Sustainability 2017, 9, 94. [Google Scholar] [CrossRef]
- Dabbagh, R.; Yousefi, S. A Hybrid Decision-Making Approach Based on FCM and MOORA for Occupational Health and Safety Risk Analysis. J. Saf. Res. 2019, 71, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, H.; Mohandes, S.R.; Hosseini, M.R.; Banihashemi, S.; Mahdiyar, A.; Abdullah, A. Developing an Ensemble Predictive Safety Risk Assessment Model: Case of Malaysian Construction Projects. Int. J. Environ. Res. Public Health 2020, 17, 8395. [Google Scholar] [CrossRef] [PubMed]
- Karamustafa, M.; Cebi, S. Extension of Safety and Critical Effect Analysis to Neutrosophic Sets for the Evaluation of Occupational Risks. Appl. Soft Comput. 2021, 110, 107719. [Google Scholar] [CrossRef]
- Mohandes, S.R.; Zhang, X. Towards the Development of a Comprehensive Hybrid Fuzzy-Based Occupational Risk Assessment Model for Construction Workers. Saf. Sci. 2019, 115, 294–309. [Google Scholar] [CrossRef]
- Kutlu Gündoğdu, F.; Seyfi-Shishavan, S.A. Occupational Risk Assessment Using Spherical Fuzzy Safety and Critical Effect Analysis for Shipyards. J. ETA Marit. Sci. 2021, 9, 110–119. [Google Scholar] [CrossRef]
- Zermane, A.; Mohd Tohir, M.Z.; Baharudin, M.R.; Mohamed Yusoff, H. Risk Assessment of Fatal Accidents Due to Work at Heights Activities Using Fault Tree Analysis: Case Study in Malaysia. Saf. Sci. 2022, 151, 105724. [Google Scholar] [CrossRef]
- Gul, M.; Ak, M.F.; Guneri, A.F. Occupational Health and Safety Risk Assessment in Hospitals: A Case Study Using Two-Stage Fuzzy Multi-Criteria Approach. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 187–202. [Google Scholar] [CrossRef]
- Gul, M. Application of Pythagorean Fuzzy AHP and VIKOR Methods in Occupational Health and Safety Risk Assessment: The Case of a Gun and Rifle Barrel External Surface Oxidation and Colouring Unit. Int. J. Occup. Saf. Ergon. 2020, 26, 705–718. [Google Scholar] [CrossRef]
- Liu, R.; Mou, X.; Liu, H.-C. Occupational Health and Safety Risk Assessment Based on Combination Weighting and Uncertain Linguistic Information: Method Development and Application to a Construction Project. IISE Trans. Occup. Ergon. Hum. Factors 2020, 8, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Debnath, J.; Biswas, A.; Sivan, P.; Sen, K.N.; Sahu, S. Fuzzy Inference Model for Assessing Occupational Risks in Construction Sites. Int. J. Ind. Ergon. 2016, 55, 114–128. [Google Scholar] [CrossRef]
- Badri, A.; Nadeau, S.; Gbodossou, A. Proposal of a Risk-Factor-Based Analytical Approach for Integrating Occupational Health and Safety into Project Risk Evaluation. Accid. Anal. Prev. 2012, 48, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Ersoy, M. A Proposal on Occupational Accident Risk Analysis: A Case Study of a Marble Factory. Hum. Ecol. Risk Assess. Int. J. 2015, 21, 2099–2125. [Google Scholar] [CrossRef]
- Nuñez, I.; Prieto, M. The Impact of Skills Mismatches on Occupational Accidents: An Analysis of the Effectiveness of Organizational Responses. Saf. Sci. 2024, 170, 106349. [Google Scholar] [CrossRef]
- Cinar, U.; Cebi, S. A Novel Approach to Assess Occupational Risks and Prevention of Hazards: The House of Safety & Prevention. J. Intell. Fuzzy Syst. 2021, 42, 517–528. [Google Scholar] [CrossRef]
- Durdyev, S.; Mohandes, S.R.; Tokbolat, S.; Sadeghi, H.; Zayed, T. Examining the OHS of Green Building Construction Projects: A Hybrid Fuzzy-Based Approach. J. Clean. Prod. 2022, 338, 130590. [Google Scholar] [CrossRef]
- Fragiadakis, N.G.; Tsoukalas, V.D.; Papazoglou, V.J. An Adaptive Neuro-Fuzzy Inference System (Anfis) Model for Assessing Occupational Risk in the Shipbuilding Industry. Saf. Sci. 2014, 63, 226–235. [Google Scholar] [CrossRef]
- Gul, M. A Fuzzy-Based Occupational Health and Safety Risk Assessment Framework and a Case Study in an International Port Authority. J. Mar. Eng. Technol. 2020, 19, 161–175. [Google Scholar] [CrossRef]
- Hacibektasoglu, S.E.; Mertoglu, B.; Tozan, H. Application of a Novel Hybrid F-SC Risk Analysis Method in the Paint Industry. Sustainability 2021, 13, 13605. [Google Scholar] [CrossRef]
- Khan, M.W.; Ali, Y.; De Felice, F.; Petrillo, A. Occupational Health and Safety in Construction Industry in Pakistan Using Modified-SIRA Method. Saf. Sci. 2019, 118, 109–118. [Google Scholar] [CrossRef]
- Oturakci, M. A New Fuzzy-Based Approach for Environmental Risk Assessment. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1718–1728. [Google Scholar] [CrossRef]
- Stefanovic, M.; Tadic, D.; Djapan, M.; Macuzic, I. Software for Occupational Health and Safety Risk Analysis Based on a Fuzzy Model. Int. J. Occup. Saf. Ergon. 2012, 18, 127–136. [Google Scholar] [CrossRef]
- Tadic, D.; Djapan, M.; Misita, M.; Stefanovic, M.; Milanovic, D.D. A Fuzzy Model for Assessing Risk of Occupational Safety in the Processing Industry. Int. J. Occup. Saf. Ergon. 2012, 18, 115–126. [Google Scholar] [CrossRef]
- Gul, M.; Ak, M.F. A Comparative Outline for Quantifying Risk Ratings in Occupational Health and Safety Risk Assessment. J. Clean. Prod. 2018, 196, 653–664. [Google Scholar] [CrossRef]
- Karasan, A.; Ilbahar, E.; Cebi, S.; Kahraman, C. A New Risk Assessment Approach: Safety and Critical Effect Analysis (SCEA) and Its Extension with Pythagorean Fuzzy Sets. Saf. Sci. 2018, 108, 173–187. [Google Scholar] [CrossRef]
- Tepe, S.; Kaya, İ. A Fuzzy-Based Risk Assessment Model for Evaluations of Hazards with a Real-Case Study. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 512–537. [Google Scholar] [CrossRef]
- Mohandes, S.R.; Zhang, X. Developing a Holistic Occupational Health and Safety Risk Assessment Model: An Application to a Case of Sustainable Construction Project. J. Clean. Prod. 2021, 291, 125934. [Google Scholar] [CrossRef]
- Beriha, G.S.; Patnaik, B.; Mahapatra, S.S.; Padhee, S. Assessment of Safety Performance in Indian Industries Using Fuzzy Approach. Expert. Syst. Appl. 2012, 39, 3311–3323. [Google Scholar] [CrossRef]
- Amiri, M.; Ardeshir, A.; Fazel Zarandi, M.H. Fuzzy Probabilistic Expert System for Occupational Hazard Assessment in Construction. Saf. Sci. 2017, 93, 16–28. [Google Scholar] [CrossRef]
- Sui, Y.; Ding, R.; Wang, H. A Novel Approach for Occupational Health and Safety and Environment Risk Assessment for Nuclear Power Plant Construction Project. J. Clean. Prod. 2020, 258, 120945. [Google Scholar] [CrossRef]
- Celik, E.; Gul, M. Hazard Identification, Risk Assessment and Control for Dam Construction Safety Using an Integrated BWM and MARCOS Approach under Interval Type-2 Fuzzy Sets Environment. Autom. Constr. 2021, 127, 103699. [Google Scholar] [CrossRef]
- Adem, A.; Çakit, E.; Dağdeviren, M. Occupational Health and Safety Risk Assessment in the Domain of Industry 4.0. SN Appl. Sci. 2020, 2, 977. [Google Scholar] [CrossRef]
- Foli, S.; Durst, S.; Romero, E.D. Evaluation of Operational Knowledge Risks in SMEs—Using a Grey-Dematel Technique. J. Inf. Knowl. Manag. 2023, 22, 2350071. [Google Scholar] [CrossRef]
- Liu, R.; Hou, L.-X.; Liu, H.-C.; Lin, W. Occupational Health and Safety Risk Assessment Using an Integrated SWARA-MABAC Model under Bipolar Fuzzy Environment. Comput. Appl. Math. 2020, 39, 276. [Google Scholar] [CrossRef]
- Gul, M.; Ak, M.F.; Guneri, A.F. Pythagorean Fuzzy VIKOR-Based Approach for Safety Risk Assessment in Mine Industry. J. Saf. Res. 2019, 69, 135–153. [Google Scholar] [CrossRef]
- Mo, H. A SWOT Method to Evaluate Safety Risks in Life Cycle of Wind Turbine Extended by D Number Theory. J. Intell. Fuzzy Syst. 2021, 40, 4439–4452. [Google Scholar] [CrossRef]
- Ziquan, X.; Jiaqi, Y.; Naseem, M.H.; Zuquan, X. Occupational Health and Safety Risk Assessment of Cruise Ship Construction Based on Improved Intuitionistic Fuzzy TOPSIS Decision Model. Math. Probl. Eng. 2021, 2021, 5966711. [Google Scholar] [CrossRef]
- Sarkar, S.; Ejaz, N.; Maiti, J.; Pramanik, A. An Integrated Approach Using Growing Self-Organizing Map-Based Genetic K-Means Clustering and Tolerance Rough Set in Occupational Risk Analysis. Neural Comput. Appl. 2022, 34, 9661–9687. [Google Scholar] [CrossRef]
- Gul, M.; Guven, B.; Guneri, A.F. A New Fine-Kinney-Based Risk Assessment Framework Using FAHP-FVIKOR Incorporation. J. Loss Prev. Process Ind. 2018, 53, 3–16. [Google Scholar] [CrossRef]
- Gul, M.; Mete, S.; Serin, F.; Celik, E. Fine–Kinney-Based Fuzzy Multi-Criteria Occupational Risk Assessment; Springer International Publishing: Cham, Switzerland, 2021; Volume 398, ISBN 978-3-030-52147-9. [Google Scholar]
- Gul, M.; Mete, S.; Serin, F.; Celik, E. Fine–Kinney Occupational Risk Assessment Method and Its Extensions by Fuzzy Sets: A State-of-the-Art Review. In Fine–Kinney-Based Fuzzy Multi-Criteria Occupational Risk Assessment; Springer: Cham, Switzerland, 2021; pp. 1–11. [Google Scholar]
- Can, G.F.; Toktaş, P. An Advanced Stochastic Risk Assessment Approach Proposal Based on KEMIRA-M, QFD and Fine–Kinney Hybridization. Int. J. Inf. Technol. Decis. Mak. 2021, 20, 431–468. [Google Scholar] [CrossRef]
- Dogan, B.; Oturakci, M.; Dagsuyu, C. Action Selection in Risk Assessment with Fuzzy Fine–Kinney-Based AHP-TOPSIS Approach: A Case Study in Gas Plant. Environ. Sci. Pollut. Res. 2022, 29, 66222–66234. [Google Scholar] [CrossRef]
- Gökler, S.H.; Yılmaz, D.; Ürük, Z.F.; Boran, S. A New Hybrid Risk Assessment Method Based on Fine-Kinney and ANFIS Methods for Evaluation Spatial Risks in Nursing Homes. Heliyon 2022, 8, e11028. [Google Scholar] [CrossRef]
- Gul, M.; Yucesan, M.; Ak, M.F. Control Measure Prioritization in Fine − Kinney-Based Risk Assessment: A Bayesian BWM-Fuzzy VIKOR Combined Approach in an Oil Station. Environ. Sci. Pollut. Res. 2022, 29, 59385–59402. [Google Scholar] [CrossRef] [PubMed]
- Ayvaz, B.; Tatar, V.; Sağır, Z.; Pamucar, D. An Integrated Fine-Kinney Risk Assessment Model Utilizing Fermatean Fuzzy AHP-WASPAS for Occupational Hazards in the Aquaculture Sector. Process Saf. Environ. Prot. 2024, 186, 232–251. [Google Scholar] [CrossRef]
- Tang, J.; Liu, X.; Wang, W. A Hybrid Risk Prioritization Method Based on Generalized TODIM and BWM for Fine-Kinney under Interval Type-2 Fuzzy Environment. Hum. Ecol. Risk Assess. Int. J. 2021, 27, 954–979. [Google Scholar] [CrossRef]
- García Aguirre, P.A.; Pérez-Domínguez, L.; Luviano-Cruz, D.; Solano Noriega, J.J.; Martínez Gómez, E.; Callejas-Cuervo, M. PFDA-FMEA, an Integrated Method Improving FMEA Assessment in Product Design. Appl. Sci. 2021, 11, 1406. [Google Scholar] [CrossRef]
- Liu, P.; Xu, Y.; Li, Y.; Geng, Y. An FMEA Risk Assessment Method Based on Social Networks Considering Expert Clustering and Risk Attitudes. IEEE Trans. Eng. Manag. 2024, 71, 10783–10796. [Google Scholar] [CrossRef]
- Çeliker, S.; Saraç Eşsiz, E.; Oturakci, M. Integrated AHP-FMEA Risk Assessment Method to Stainless Tank Production Process. Turk. J. Eng. 2021, 5, 118–122. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, T. Risk Assessment Based on a STPA–FMEA Method: A Case Study of a Sweeping Robot. Risk Anal. 2023, 43, 590–604. [Google Scholar] [CrossRef]
- Lv, L.; Li, H.; Wang, L.; Xia, Q.; Ji, L. Failure Mode and Effect Analysis (FMEA) with Extended MULTIMOORA Method Based on Interval-Valued Intuitionistic Fuzzy Set: Application in Operational Risk Evaluation for Infrastructure. Information 2019, 10, 313. [Google Scholar] [CrossRef]
- Du, J.; Chu, J. Internal Risk Assessment of Whole Process Engineering Consulting Consortium Based on GRA-TOPSIS-FMEA. J. Mechatron. Artif. Intell. Eng. 2023, 4, 36–46. [Google Scholar] [CrossRef]
- Ateş, F.M.; Albayrak, M. Ataturk University Vocational School of Health Services Laboratories Risk Analysis Application. Int. J. Innov. Res. Rev. 2022, 6, 132–157. [Google Scholar]
- Kantaş Yılmaz, F.; Karakuş, S. Laboratory Risk Analysis in a Branch Hospital: The L-Type Matrix. Int. J. Occup. Saf. Health 2024, 14, 194–200. [Google Scholar] [CrossRef]
- Joubert, F.; Steyn, E.; Pretorius, L. Using the HAZOP Method to Conduct a Risk Assessment on the Dismantling of Large Industrial Machines and Associated Structures: Case Study. J. Constr. Eng. Manag. 2021, 147, 05020021. [Google Scholar] [CrossRef]
- Ghasempour, M.; Gholamnia, R.; Jabbari, M.; Saeedi, R. Reliability Assessment and Verification of Safety Instrumented Systems with the Application of LOPA and FTA in the Isomerisation Unit of the Isfahan Oil Refinery. Int. J. Qual. Eng. Technol. 2021, 8, 151. [Google Scholar] [CrossRef]
- Yavuz, S.; Gur, B.; Cakir, A.D.; Kose, D.A. Investigation of The Posture Positions of The Apparel Workshop Employees with The REBA and RULA Method. Hittite J. Sci. Eng. 2021, 8, 149–160. [Google Scholar] [CrossRef]
- Zendel, O.; Murschitz, M.; Humenberger, M.; Herzner, W. How Good Is My Test Data? Introducing Safety Analysis for Computer Vision. Int. J. Comput. Vis. 2017, 125, 95–109. [Google Scholar] [CrossRef]
- Babaei, M.; Roozbahani, A.; Shahdany, S.M.H. Risk Assessment of Agricultural Water Conveyance and Delivery Systems by Fuzzy Fault Tree Analysis Method. Water Resour. Manag. 2018, 32, 4079–4101. [Google Scholar] [CrossRef]
- Hasani, A.; Mokhtari, H. An Integrated Relief Network Design Model under Uncertainty: A Case of Iran. Saf. Sci. 2019, 111, 22–36. [Google Scholar] [CrossRef]
- Papazoglou, I.A.; Aneziris, O.N.; Bellamy, L.J.; Ale, B.J.M.; Oh, J. Quantitative Occupational Risk Model: Single Hazard. Reliab. Eng. Syst. Saf. 2017, 160, 162–173. [Google Scholar] [CrossRef]
- Schmidt, J.R.A.; Nogueira, D.J.; Nassar, S.M.; Vaz, V.P.; da Silva, M.L.N.; Vicentini, D.S.; Matias, W.G. Probabilistic Model for Assessing Occupational Risk during the Handling of Nanomaterials. Nanotoxicology 2020, 14, 1258–1270. [Google Scholar] [CrossRef]
- Efe, B.; Kurt, M.; Efe, Ö.F. Hazard Analysis Using a Bayesian Network and Linear Programming. Int. J. Occup. Saf. Ergon. 2020, 26, 573–588. [Google Scholar] [CrossRef]
- Papazoglou, I.A.; Aneziris, O.N.; Bellamy, L.J.; Ale, B.J.M.; Oh, J. Multi-Hazard Multi-Person Quantitative Occupational Risk Model and Risk Management. Reliab. Eng. Syst. Saf. 2017, 167, 310–326. [Google Scholar] [CrossRef]
- Li, X.; Li, F. Reliability Assessment of Space Station Based on Multi-Layer and Multi-Type Risks. Appl. Sci. 2021, 11, 10258. [Google Scholar] [CrossRef]
- Klimecka-Tatar, D.; Ulewicz, R.; Ingaldi, M. Minimizing Occupational Risk by Automation of the Special Processes—Based on Occupational Risk Assessment. Procedia Comput. Sci. 2023, 217, 1145–1152. [Google Scholar] [CrossRef]
- Adem, A.; Çolak, A.; Dağdeviren, M. An Integrated Model Using SWOT Analysis and Hesitant Fuzzy Linguistic Term Set for Evaluation Occupational Safety Risks in Life Cycle of Wind Turbine. Saf. Sci. 2018, 106, 184–190. [Google Scholar] [CrossRef]
- Gnoni, M.G.; Bragatto, P.A. Integrating Major Accidents Hazard into Occupational Risk Assessment: An Index Approach. J. Loss Prev. Process Ind. 2013, 26, 751–758. [Google Scholar] [CrossRef]
- Moatari-Kazerouni, A.; Chinniah, Y.; Agard, B. A Proposed Occupational Health and Safety Risk Estimation Tool for Manufacturing Systems. Int. J. Prod. Res. 2015, 53, 4459–4475. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Liang, D.; Tang, M. A New Risk Analysis Approach to Seek Best Production Action during New Product Introduction. Int. J. Prod. Econ. 2023, 262, 108911. [Google Scholar] [CrossRef]
- Oliveira, M.D.; Lopes, D.F.; Bana e Costa, C.A. Improving Occupational Health and Safety Risk Evaluation through Decision Analysis. Int. Trans. Oper. Res. 2018, 25, 375–403. [Google Scholar] [CrossRef]
- Özbakır, O. Occupational Health and Safety in Flour Mills: A Research and Risk Assessment. Int. J. Agric. Environ. Food Sci. 2024, 8, 446–459. [Google Scholar] [CrossRef]
- Halabi, Y.; Xu, H.; Long, D.; Chen, Y.; Yu, Z.; Alhaek, F.; Alhaddad, W. Causal Factors and Risk Assessment of Fall Accidents in the U.S. Construction Industry: A Comprehensive Data Analysis (2000–2020). Saf. Sci. 2022, 146, 105537. [Google Scholar] [CrossRef]
- Ridwan, A.; Nuroni, A.; Adelia, A.; Sonda, A. Analysis of Occupational Health and Safety at a Maritime Warehouse Using Hazard Identification, Risk Assessment and Risk Control (HIRARC). J. Ind. Serv. 2022, 8, 187–192. [Google Scholar] [CrossRef]
- Jafari, H.; Ehsanifar, M. Approach to Implementing Health and Environmental Safety System in Construction Projects Using Fuzzy Logic. Int. J. Innov. Eng. 2022, 2, 27–40. [Google Scholar] [CrossRef]
- Yang, M. Risk Management of Prefabricated Building Construction Based on Fuzzy Neural Network. Sci. Program. 2022, 2022, 2420936. [Google Scholar] [CrossRef]
- Mohandes, S.R.; Sadeghi, H.; Fazeli, A.; Mahdiyar, A.; Hosseini, M.R.; Arashpour, M.; Zayed, T. Causal Analysis of Accidents on Construction Sites: A Hybrid Fuzzy Delphi and DEMATEL Approach. Saf. Sci. 2022, 151, 105730. [Google Scholar] [CrossRef]
- Golinko, V.; Cheberyachko, S.; Deryugin, O.; Tretyak, O.; Dusmatova, O. Assessment of the Risks of Occupational Diseases of the Passenger Bus Drivers. Saf. Health Work. 2020, 11, 543–549. [Google Scholar] [CrossRef]
- Saedi, A.M.; Thambirajah, J.J.; Pariatamby, A. A HIRARC Model for Safety and Risk Evaluation at a Hydroelectric Power Generation Plant. Saf. Sci. 2014, 70, 308–315. [Google Scholar] [CrossRef]
- El Morr, C.; Jammal, M.; Ali-Hassan, H.; El-Hallak, W. Data Preprocessing. In Machine Learning for Practical Decision Making: A Multidisciplinary Perspective with Applications from Healthcare, Engineering and Business Analytics; Springer International Publishing: Cham, Switzerland, 2022; pp. 117–163. [Google Scholar]
- Ramesh, N. Machine Learning for Natural Language Processing: Techniques and Applications. In Cutting-Edge Technologies in Innovations in Computer Science and Engineering; San International Scientific Publications: Kanyakumari, India, 2023. [Google Scholar]
- Pattanayak, S. Natural Language Processing. In Pro Deep Learning with TensorFlow 2.0; Apress: Berkeley, CA, USA, 2023; pp. 293–405. [Google Scholar]
- Bottou, L. Large-Scale Machine Learning with Stochastic Gradient Descent. In Proceedings of COMPSTAT’2010; Physica-Verlag HD: Heidelberg, Germany, 2010; pp. 177–186. [Google Scholar]
- Gerbelot, C.; Troiani, E.; Mignacco, F.; Krzakala, F.; Zdeborová, L. Rigorous Dynamical Mean-Field Theory for Stochastic Gradient Descent Methods. SIAM J. Math. Data Sci. 2024, 6, 400–427. [Google Scholar] [CrossRef]
- Wojtowytsch, S. Stochastic Gradient Descent with Noise of Machine Learning Type Part I: Discrete Time Analysis. J. Nonlinear Sci. 2023, 33, 45. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, Z. Research and Application of Risk-Based Safety Insurance Technology for Petrochemical Plants. ASCE ASME J. Risk Uncertain. Eng. Syst. A Civ. Eng. 2024, 10, 04024054. [Google Scholar] [CrossRef]
- Yüksel, S.; Eti, S.; Dinçer, H.; Gökalp, Y. Comprehensive Risk Analysis and Decision-Making Model for Hydroelectricity Energy Investments. J. Soft Comput. Decis. Anal. 2024, 2, 28–38. [Google Scholar] [CrossRef]
- Yavorska, T.; Kostyuk, O.; Kostiuk, M.; Tsviliy, S.; Ogloblina, V. The Determinants of Neutralizing the Influence of the Production Risks of Agricultural Enterprises on the Competitiveness of the Processing Industry. Zywnosc Nauka Technol. Jakosc/Food Sci. Technol. Qual. 2024, 31, 211–239. [Google Scholar] [CrossRef]
- Shekhar, H.; Agarwal, S. Automated Analysis through Natural Language Processing of DGMS Fatality Reports on Indian Non-Coal Mines. In Proceedings of the 2021 5th International Conference on Information Systems and Computer Networks (ISCON), Mathura, India, 22–23 October 2021; pp. 1–6. [Google Scholar]
Score | Probability | Categorization |
---|---|---|
5 | Very frequent (Once a week, every day), under normal working conditions | Almost certain |
4 | Frequent (Monthly) | Likely |
3 | Occasional (A few events in a year) | Possible |
2 | Remote (Once a year), only in abnormal conditions | Unlikely |
1 | Hardly ever (Once a year) | Rare |
Score | Severity | Result |
---|---|---|
5 | Death, permanent total disability | Catastrophic |
4 | Major injury, requiring long-term treatment and therapy, occupational disease | Major |
3 | Minor injury, requiring inpatient treatment | Moderate |
2 | No loss of working days, requiring outpatient treatment without a lasting impact and requiring first aid | Minor |
1 | No loss of working hours and requiring first aid | Insignificant |
Risk Matrix | Severity (S) | |||||
---|---|---|---|---|---|---|
Insignificant | Minor | Moderate | Major | Catastrophic | ||
Likelihood (P) | Rare 1 | Low 1 | Low 2 | Low 3 | Low 4 | Low 5 |
Unlikely 2 | Low 2 | Low 4 | Low 6 | Moderate 8 | Moderate 10 | |
Possible 3 | Low 3 | Low 6 | Moderate 9 | Moderate 12 | Extreme 15 | |
Likely 4 | Low 4 | Moderate 8 | Moderate 12 | Extreme 16 | Extreme 20 | |
Almost certain 5 | Low 5 | Moderate 10 | Extreme 15 | Extreme 20 | Extreme 25 |
Risk Value | Action and Time Planning |
---|---|
25 | Not tolerable risk. It is the risk group that it is not accepted to start work without any measures. |
15–20 | Significant risk. It is the risk group that is extremely important and should be taken measures immediately |
8–12 | Moderate risk. They are significant risks that need to be taken measures in the short term |
4–6 | Tolerable risk. It is a tolerable risk group that requires attention in the long term. |
1–3 | Insignificant risk. Risks that do not matter much and can be accepted. |
Id | Text | Class |
---|---|---|
1 | Garbage should be collected in leak-proof garbage bags and lidded garbage bins. The lids of garbage bins should always be kept closed. | 1 |
2 | PSYCHOLOGICAL RISK FACTORS—Unplanned work. | 2 |
3 | PRODUCTION AREA—Machinery equipment falling at height stone falling from height. | 2 |
… | … | … |
305 | There should be enough plates, forks, spoons, glasses, etc. for all employees using the cafeteria at the same time. The use of uncleaned materials by employees should be prevented. | 1 |
306 | PRODUCTION AREA/WORKING WITH THE DRILLING MACHINE—Stone flying metal spatter. | 3 |
Id | Text | Class |
---|---|---|
1 | PSYCHOLOGICAL RISK FACTORS—Task uncertainty. | 2 |
2 | The insulation of mobile electrical cables should not be with a damaged or attached device, and terminal connections should not be left open and should be properly insulated. | 5 |
3 | BUSINESS GARDEN—Inappropriate parking spaces in the business/improper parking. | 4 |
… | … | … |
305 | CHEMICAL RISK FACTORS—Waste oils. | 3 |
306 | Before starting, drilling machine care should be taken to ensure that they are fixed correctly, and the strengths of the nails and ropes should be checked. | 4 |
Forecast Values | |||||
---|---|---|---|---|---|
Actual Values | 2 | 3 | 4 | ||
2 | 49 | 1 | 2 | ||
3 | 0 | 37 | 7 | ||
4 | 0 | 2 | 39 |
Forecast Values | |||||
---|---|---|---|---|---|
Actual Values | 2 | 3 | 4 | 5 | |
2 | 41 | 0 | 0 | 0 | |
3 | 0 | 48 | 3 | 0 | |
4 | 0 | 0 | 54 | 0 | |
5 | 0 | 0 | 2 | 53 |
Class | Precision | Recall | F1-Score |
---|---|---|---|
1 | 1.00 | 0.94 | 0.97 |
2 | 0.93 | 0.84 | 0.88 |
3 | 0.81 | 0.95 | 0.88 |
Accuracy: | 0.912 |
Class | Precision | Recall | F1-Score |
---|---|---|---|
2 | 1.00 | 1.00 | 1.00 |
3 | 1.00 | 0.94 | 0.97 |
4 | 0.92 | 1.00 | 0.96 |
5 | 1.00 | 0.96 | 0.98 |
Accuracy: | 0.975 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eker, H. Natural Language Processing Risk Assessment Application Developed for Marble Quarries. Appl. Sci. 2024, 14, 9045. https://doi.org/10.3390/app14199045
Eker H. Natural Language Processing Risk Assessment Application Developed for Marble Quarries. Applied Sciences. 2024; 14(19):9045. https://doi.org/10.3390/app14199045
Chicago/Turabian StyleEker, Hasan. 2024. "Natural Language Processing Risk Assessment Application Developed for Marble Quarries" Applied Sciences 14, no. 19: 9045. https://doi.org/10.3390/app14199045