Integration of Active Clothing with a Personal Cooling System within the NGIoT Architecture for the Improved Comfort of Construction Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Objects
2.1.1. Clothing Set Design
2.1.2. Dedicated Electronic Controller for TEM Power Supply
- an auxiliary DC/DC switched-mode power converter (SMPC) with an integrated analog controller—to supply the control electronics with a 3.3 V voltage;
- a semiconductor power switch—for turning on and off the auxiliary SMPC;
- a power-button-pressing detector with a latched output state—for controlling the power switch;
- three digitally controlled output DC/DC SMPCs (one per output channel)—for supplying the TEMs in each channel;
- current sensors (one per channel) in the form of shunt resistors with dedicated voltage amplifiers—for measuring the channel output currents;
- a microcontroller;
- a three-button keyboard;
- a light-emitting diode (LED) bar display;
- a Micro Secure Digital (SD) card interface—for configuration and measurement data storage;
- a UWB radio module—for communicating with the rest of the smart work environment infrastructure using the NGIoT architecture.
2.1.3. Thermoelectric Module Arrangement and Supply Voltage
- higher necessary current ratings of the converter’s components; hence, their greater cost and size, as well as, most probably, power losses;
- higher power losses in common wiring, making the efficiency lower and the battery operating time shorter. It must be noted that with worn electronics, the possibility of decreasing losses by increasing the wire diameters is limited by the requirement of flexibility.
2.2. Research Methodology
2.2.1. Test Conditions
2.2.2. Measured Parameters
2.2.3. Research Procedure
3. Results
4. Integration of the PCS with the ASSIST-IoT Reference Architecture
4.1. ASSIST-IoT Smart Worker Safety System
4.2. Concept of AI-Based Personalized Cooling
5. Discussion
6. Conclusions
7. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kjellstrom, T.; Maître, N.; Saget, C.; Otto, M.; Karimova, T. Working on a Warmer Planet: The Effect of Heat Stress on Productivity and Decent Work; International Labour Organization (ILO): Geneva, Switzerland, 2019. [Google Scholar]
- ESOTC 2022. Extreme Heat. Available online: https://climate.copernicus.eu/esotc/2022/extreme-heat#6ccc1ccb-aabc-4716-b375-d77d9620e9cb (accessed on 16 November 2023).
- Ballester, J.; Quijal-Zamorano, M.; Méndez Turrubiates, R.F.; Pegenaute, F.; Herrmann, F.R.; Robine, J.M.; Basagaña, X.; Tonne, C.; Antó, J.M.; Achebak, H. Heat-Related Mortality in Europe during the Summer of 2022. Nat. Med. 2023, 29, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Han, M.; Fang, J. Personal Cooling Garments: A Review. Polymers 2022, 14, 5522. [Google Scholar] [CrossRef]
- Dąbrowska, A.; Kobus, M.; Starzak, Ł.; Pękosławski, B. Evaluation of Performance and Power Consumption of a Thermoelectric Module-Based Personal Cooling System—A Case Study. Energies 2023, 16, 4699. [Google Scholar] [CrossRef]
- Dąbrowska, A.; Kobus, M. Directions of development of protective clothing with active cooling function. Occup. Saf. Sci. Pract. 2023, 3, 10–14. (In Polish) [Google Scholar]
- Casini, M. (Ed.) Construction 4.0. Advanced Technology, Tools and Materials for the Digital Transformation of the Construction Industry; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Sawston, UK, 2022; ISBN 978-0-12-821797-9. [Google Scholar]
- Chen, W.-Y.; Shi, X.-L.; Zou, J.; Chen, Z.-G. Thermoelectric Coolers: Progress, Challenges, and Opportunities. Small Methods 2022, 6, 2101235. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Lee, S.; Chen, G. Comprehensive review of heat transfer in thermoelectric materials and devices. Annu. Rev. Heat Transf. 2014, 17, 425–483. [Google Scholar] [CrossRef]
- Ding, J.; Zhao, W.; Jin, W.; Di, C.; Zhu, D. Advanced Thermoelectric Materials for Flexible Cooling Application. Adv. Funct. Mater. 2021, 31, 2010695. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Shi, X.-L.; Shi, X.; Chen, L.; Dargusch, M.S.; Zou, J.; Chen, Z.-G. Flexible Thermoelectric Materials and Generators: Challenges and Innovations. Adv. Mater. 2019, 31, 1807916. [Google Scholar] [CrossRef]
- Hong, S.; Gu, Y.; Seo, J.K.; Wang, J.; Liu, P.; Meng, Y.S.; Xu, S.; Chen, R. Wearable Thermoelectrics for Personalized Thermoregulation. Sci. Adv. 2019, 5, eaaw0536. [Google Scholar] [CrossRef]
- Sun, W.; Liu, W.-D.; Liu, Q.; Chen, Z.-G. Advances in Thermoelectric Devices for Localized Cooling. Chem. Eng. J. 2022, 450, 138389. [Google Scholar] [CrossRef]
- Huo, W.; Xia, Z.; Gao, Y.; Guo, R.; Huang, X. Flexible Thermoelectric Devices with Flexible Heatsinks of Phase-Change Materials and Stretchable Interconnectors of Semi-Liquid Metals. ACS Appl. Mater. Interfaces 2023, 15, 29330–29340. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, Z.; Wang, J.; Zhang, M.; Jia, M.; Wang, Q. Man-Portable Cooling Garment with Cold Liquid Circulation Based on Thermoelectric Refrigeration. Appl. Therm. Eng. 2022, 200, 117730. [Google Scholar] [CrossRef]
- Bartkowiak, G.; Dabrowska, A.; Marszalek, A. Assessment of an active liquid cooling garment intended for use in a hot environment. Appl. Ergon. 2017, 58, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Chen, G.; Wang, X.; Chen, Z.; Wang, J.; Lu, Y. Novel Design of a Personal Liquid Cooling Vest for Improving the Thermal Comfort of Pilots Working in Hot Environments. Indoor Air 2023, 2023, e6666182. [Google Scholar] [CrossRef]
- Lu, Y.; Wei, F.; Lai, D.; Shi, W.; Wang, F.; Gao, C.; Song, G. A novel personal cooling system (PCS) incorporated with phase change materials (PCMs) and ventilation fans: An investigation on its cooling efficiency. Therm. Biol. 2015, 52, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Cao, T.; Muehlbauer, J.; Hwang, Y.; Radermacher, R. Experimental study of a personal cooling system integrated with phase change material. Appl. Therm. Eng. 2020, 170, 115026. [Google Scholar] [CrossRef]
- Song, W.; Wang, F. The hybrid personal cooling system (PCS) could effectively reduce the heat strain while exercising in a hot and moderate humid environment. Ergonomics 2016, 59, 1009–1018. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, M.; Yuan, T.; Wang, Q.; Hu, P.; Xu, Y. New wearable thermoelectric cooling garment for relieving the thermal stress of body in high temperature environments. Energy Build. 2023, 278, 112600. [Google Scholar] [CrossRef]
- Itao, K.; Hosaka, H.; Kittaka, K.; Takahashi, M.; Lopez, G. Wearable Equipment Development for Individually Adaptive Temperature-conditioning. J. Jpn. Soc. Precis. Eng. 2016, 82, 919–924. [Google Scholar] [CrossRef]
- Sowiński, P.; Rachwał, K.; Danilenka, A.; Bogacka, K.; Kobus, M.; Dąbrowska, A.; Paszkiewicz, A.; Bolanowski, M.; Ganzha, M.; Paprzycki, M. Frugal Heart Rate Correction Method for Scalable Health and Safety Monitoring in Construction Sites. Sensors 2023, 23, 6464. [Google Scholar] [CrossRef]
- Szmeja, P.; Fornés-Leal, A.; Lacalle, I.; Palau, C.E.; Ganzha, M.; Pawłowski, W.; Paprzycki, M.; Schabbink, J. ASSIST-IoT: A Modular Implementation of a Reference Architecture for the Next Generation Internet of Things. Electronics 2023, 12, 854. [Google Scholar] [CrossRef]
- ISO 20471:2013; High Visibility Clothing—Test Methods and Requirements. ISO—International Organization for Standardization: Geneva, Switzerland, 2013.
- Dąbrowska, A.; Kobus, M.; Starzak, Ł.; Pękosławski, B. Analysis of Efficiency of Thermoelectric Personal Cooling System Based on Utility Tests. Materials 2022, 15, 1115. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Alomari, M.; Sahin, B.; Snelgrove, S.E.; Edwards, J.; Mellinger, A.; Kaya, T. Real-Time Sweat Analysis via Alternating Current Conductivity of Artificial and Human Sweat. Appl. Phys. Lett. 2015, 106, 133702. [Google Scholar] [CrossRef]
- IEC 60479-1:2018; Effects of Current on Human Beings and Livestock—Part 1: General Aspects. IEC—International Electrotechnical Commission: London, UK, 2018.
- Dąbrowska, A.; Kobus, M. Oczekiwania pracowników sektora kolejowego w odniesieniu do odzieży ochronnej z funkcją chłodzenia—Wyniki badań ankietowych. Przegląd Włókienniczy Włókno Odzież Skóra 2023, 2023, 146617. [Google Scholar] [CrossRef]
- ISO 7330:2005; Ergonomics of the Thermal Environment. Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. ISO—International Organization for Standardization: Geneva, Switzerland, 2005.
- Zhou, J.; Su, Z.; Ni, J.; Wang, Y.; Pan, Y.; Xing, R. Personalized Privacy-Preserving Federated Learning: Optimized Trade-off Between Utility and Privacy. In Proceedings of the GLOBECOM 2022—2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 4872–4877. [Google Scholar]
- Tan, A.Z.; Yu, H.; Cui, L.; Yang, Q. Towards Personalized Federated Learning. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 9587–9603. [Google Scholar] [CrossRef] [PubMed]
- Kaaniche, N.; Laurent, M.; Belguith, S. Privacy Enhancing Technologies for Solving the Privacy-Personalization Paradox: Taxonomy and Survey. J. Netw. Comput. Appl. 2020, 171, 102807. [Google Scholar] [CrossRef]
- Hassan, M.U.; Rehmani, M.H.; Chen, J. Differential Privacy Techniques for Cyber Physical Systems: A Survey. IEEE Commun. Surv. Tutor. 2020, 22, 746–789. [Google Scholar] [CrossRef]
- Dwork, C. Differential Privacy. In Automata, Languages and Programming, Proceedings of the 33rd International Colloquium, Venice, Italy, 10–14 July 2006; Bugliesi, M., Preneel, B., Sassone, V., Wegener, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–12. [Google Scholar]
- Samarati, P.; Sweeney, L. Protecting Privacy When Disclosing Information: K-Anonymity and Its Enforcement through Generalization and Suppression; Electronic Privacy Information Centre: Washington, DC, USA, 1998. [Google Scholar]
- Dwork, C.; McSherry, F.; Nissim, K.; Smith, A. Calibrating Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography, Proceedings of the Third Theory of Cryptography Conference, New York, NY, USA, 4–7 March 2006; Halevi, S., Rabin, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 265–284. [Google Scholar]
- Wagner, I.; Eckhoff, D. Technical Privacy Metrics: A Systematic Survey. ACM Comput. Surv. 2018, 51, 1–38. [Google Scholar] [CrossRef]
- Sparks-DeFriese, B.J. Chapter 29—Vascular Ulcers. In Physical Rehabilitation; Cameron, M.H., Monroe, L.G., Eds.; W.B. Saunders: Saint Louis, MO, USA, 2007; pp. 777–802. ISBN 978-0-7216-0361-2. [Google Scholar]
- Wu, Y.; Cao, B. Recognition and Prediction of Individual Thermal Comfort Requirement Based on Local Skin Temperature. J. Build. Eng. 2022, 49, 104025. [Google Scholar] [CrossRef]
- Liu, W.; Lian, Z.; Deng, Q. Use of Mean Skin Temperature in Evaluation of Individual Thermal Comfort for a Person in a Sleeping Posture under Steady Thermal Environment. Indoor Built Environ. 2015, 24, 489–499. [Google Scholar] [CrossRef]
- Yeom, D.J.; Delogu, F. Local Body Skin Temperature-Driven Thermal Sensation Predictive Model for the Occupant’s Optimum Productivity. Build. Environ. 2021, 204, 108196. [Google Scholar] [CrossRef]
- Baek, S.-O.; Wee, D. Influence of Personal Cooling at Local Body Parts on Workers’ Thermal Comfort Levels under Thermal Environments with Elevated Ambient Temperatures: A Model Study. Int. J. Ind. Ergon. 2023, 95, 103456. [Google Scholar] [CrossRef]
- Zhao, D.; Lu, X.; Fan, T.; Wu, Y.S.; Lou, L.; Wang, Q.; Fan, J.; Yang, R. Personal Thermal Management Using Portable Thermoelectrics for Potential Building Energy Saving. Appl. Energy 2018, 218, 282–291. [Google Scholar] [CrossRef]
- Luo, M.; Wang, Z.; Zhang, H.; Arens, E.; Filingeri, D.; Jin, L.; Ghahramani, A.; Chen, W.; He, Y.; Si, B. High-density thermal sensitivity maps of the human body. Build. Environ. 2020, 167, 106435. [Google Scholar] [CrossRef]
- Qian, X.; Lan, L.; Xiong, J. Effect of Local Cooling on Thermal Comfort of People in a Sleeping Posture. Procedia Eng. 2017, 205, 3277–3284. [Google Scholar] [CrossRef]
- Chen, M.; Farahani, A.V.; Kilpeläinen, S.; Kosonen, R.; Younes, J.; Ghaddar, N.; Ghali, K.; Melikov, A.K. Thermal comfort chamber study of Nordic elderly people with local cooling devices in warm conditions. Build. Environ. 2023, 235, 110213. [Google Scholar] [CrossRef]
- Wang, Y.; Lian, Z.; Chang, H. The correlation between the overall thermal comfort, the overall thermal sensation and the local thermal comfort in non-uniform environments with local cooling. Indoor Built Environ. 2022, 31, 1822–1833. [Google Scholar] [CrossRef]
- Belyamani, M.A.; Hurley, R.F.; Djamasbi, S.; Somasse, G.B.; Strauss, S.; Zhang, H.; Smith, M.J.; Van Dessel, S.; Liu, S. Local Wearable Cooling May Improve Thermal Comfort, Emotion, and Cognition. Soc. Sci. Res. Netw. 2023, 1–19. [Google Scholar] [CrossRef]
- Dąbrowska, A.; Kobus, M.; Pękosławski, B.; Starzak, Ł. A Comparative Analysis of Thermoelectric Modules for the Purpose of Ensuring Thermal Comfort in Protective Clothing. Appl. Sci. 2021, 11, 8068. [Google Scholar] [CrossRef]
System Type; Garment | Reference | Cooling Power [W] | ΔTmax (Ta) [°C] | COP (ΔT) | Operating Time [min] | Total Weight [kg] |
---|---|---|---|---|---|---|
Cooling liquid distribution; long sleeve underwear | [16] | 300 | 1.9 (30.0) | n/d | >60 | <10 |
Cooling liquid distribution; vest | [17] | 1200–1800 W/m2 | 5.7 (40.0) | n/d | 120 | n/d |
PCM without/with fans; jacket and pants | [18] | 65/315 | 2.4/4.8 (34.0) | n/d | 39/180 | 2.1/3.6 |
Vapor condenser with PCM; no garment (portable device) | [19,20] | 160 | n/d | >2 (n/d) | 270 | 13 |
Flexible TEMs, vest | [12] | 44 | >10 (33.0) | 1.7 (7.0) | 360 * | 0.43 * |
Flexible TEM and PCM heatsink; T-shirt | [14] | n/d | >8 (32.0) | ca. 2 (3.0), ca. 4 (1.0) | >20 | n/d |
Cooling liquid distribution with TEM-based radiator and fan; vest | [15,21] | 220–290 | 2.7–3.2 (40.0) | 3.5–4.7 (ca. 3.0) | >12.5 | n/d |
TEM with water-cooling radiator and fan; neck band | [22] | 10–15 | ca. 10 (40.5) | ca. 1 (10.0) | 30–100 | 0.65 |
Rating | Sensation |
---|---|
−3 | cold |
−2 | cool |
−1 | slightly cool |
0 | neutral |
1 | slightly warm |
2 | warm |
3 | hot |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dąbrowska, A.; Kobus, M.; Sowiński, P.; Starzak, Ł.; Pękosławski, B. Integration of Active Clothing with a Personal Cooling System within the NGIoT Architecture for the Improved Comfort of Construction Workers. Appl. Sci. 2024, 14, 586. https://doi.org/10.3390/app14020586
Dąbrowska A, Kobus M, Sowiński P, Starzak Ł, Pękosławski B. Integration of Active Clothing with a Personal Cooling System within the NGIoT Architecture for the Improved Comfort of Construction Workers. Applied Sciences. 2024; 14(2):586. https://doi.org/10.3390/app14020586
Chicago/Turabian StyleDąbrowska, Anna, Monika Kobus, Piotr Sowiński, Łukasz Starzak, and Bartosz Pękosławski. 2024. "Integration of Active Clothing with a Personal Cooling System within the NGIoT Architecture for the Improved Comfort of Construction Workers" Applied Sciences 14, no. 2: 586. https://doi.org/10.3390/app14020586
APA StyleDąbrowska, A., Kobus, M., Sowiński, P., Starzak, Ł., & Pękosławski, B. (2024). Integration of Active Clothing with a Personal Cooling System within the NGIoT Architecture for the Improved Comfort of Construction Workers. Applied Sciences, 14(2), 586. https://doi.org/10.3390/app14020586