Research on Rejoining Bone Stick Fragment Images: A Method Based on Multi-Scale Feature Fusion Siamese Network Guided by Edge Contour
Abstract
:1. Introduction
2. Basic Methods
2.1. Siamese Network
2.2. Resnet Network Model
3. Multi-Scale Feature Fusion Siamese Network Guided by Edge Contour Model Design
3.1. Overall Model Design
3.2. SPADE Model
3.3. Edge Contour-Guided Feature Fusion Residual Network
4. Experimental Analysis
4.1. Dataset Production
4.2. Experimental Configuration and Evaluation Metrics
4.3. Experimental Results and Analysis
4.3.1. Comparative Experiments with Classical Feature Extraction Networks
4.3.2. Complexity Analysis
4.3.3. Different Test Subsets
4.3.4. Comparison with Other Literature Methods
4.3.5. Ablation Experiments
- Comparison of accuracy under different layer feature fusion structures
- 2.
- Validation of SPADE to guide edge contours
4.3.6. Distance Metric Performance
5. Bone Stick Rejoining Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Qi, H. Probe into the Archives of Bone Signet in Han Dynasty. Lantai World Shenyang China 2014, 26, 58–59. [Google Scholar]
- Gao, M. The Bone Sticks of the Weiyang Palace in Chang’an City of Han Dynasty (9 Rules). J. Bohai Univ. (Philos. Soc. Sci. Ed.) 2022, 44, 86–89. [Google Scholar]
- Gao, J. Restudy of the Name and usage of the bone tallies unearthed from the Han period Chang’an city-site. Huaxia Archaeol. 2011, 3, 109–113. [Google Scholar]
- Zhang, C.; Zong, R.; Cao, S.; Men, Y.; Mo, B. AI-powered oracle bone inscriptions recognition and fragments rejoining. In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, Yokohama, Japan, 7–15 January 2021; pp. 5309–5311. [Google Scholar]
- Shi, B.; Li, M. Automatic stitching and restoration algorithm for paper fragments based on angle and edge features. J. Comput. Appl. 2019, 39, 571–576. [Google Scholar]
- Fang, R.; Huang, F.; Xin, H. Local matching for 2-D fragments reassembling. Mod. Electron. Tech. 2015, 38, 54–56. [Google Scholar]
- Zhao, X.; Du, L. An Automatic and Robust Image Mosaic Algorithm. J. Image Graph. 2004, 9, 417–422. [Google Scholar]
- Zhang, K.; Li, X. A graph-based optimization algorithm for fragmented image reassembly. Graph. Models 2014, 76, 484–495. [Google Scholar] [CrossRef]
- Paumard, M.M.; Picard, D.; Tabia, H. Deepzzle: Solving Visual Jigsaw Puzzles With Deep Learning and Shortest Path Optimization. IEEE Trans. Image Process. 2020, 29, 3569–3581. [Google Scholar] [CrossRef] [PubMed]
- Noroozi, M.; Favaro, P. Unsupervised learning of visual representations by solving jigsaw puzzles. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 69–84. [Google Scholar]
- Le, C.; Li, X. JigsawNet: Shredded Image Reassembly Using Convolutional Neural Network and Loop-Based Composition. IEEE Trans. Image Process. 2019, 28, 4000–4015. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.T.; Nguyen, C.T.; Nakagawa, M. A Siamese Network-based Approach For Matching Various Sizes Of Excavated Wooden Fragments. In Proceedings of the 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR), Dortmund, Germany, 8–10 September 2020; pp. 307–312. [Google Scholar]
- Zhang, Z.; Guo, A.; Li, B. Internal Similarity Network for Rejoining Oracle Bone Fragment Images. Symmetry 2022, 14, 1464. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.-T.; Li, B.; Guo, A.; Liu, C.-L. Deep Rejoining Model for Oracle Bone Fragment Image. In Proceedings of the Asian Conference on Pattern Recognition, Jeju Island, Republic of Korea, 9–12 November 2021; pp. 3–15. [Google Scholar]
- Bromley, J.; Guyon, I.; LeCun, Y.; Säckinger, E.; Shah, R. Signature verification using a “siamese” time delay neural network. Adv. Neural Inf. Process. Syst. 1993, 6, 737–744. [Google Scholar] [CrossRef]
- Zagoruyko, S.; Komodakis, N. Learning to compare image patches via convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 4353–4361. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Park, T.; Liu, M.-Y.; Wang, T.-C.; Zhu, J.-Y. Semantic image synthesis with spatially-adaptive normalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2337–2346. [Google Scholar]
- Tan, Z.; Chen, D.; Chu, Q.; Chai, M.; Liao, J.; He, M.; Yuan, L.; Hua, G.; Yu, N. Efficient Semantic Image Synthesis via Class-Adaptive Normalization. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 4852–4866. [Google Scholar] [CrossRef] [PubMed]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Huang, X.; Belongie, S. Arbitrary style transfer in real-time with adaptive instance normalization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1501–1510. [Google Scholar]
- Lu, Z.; Bian, Y.; Yang, T.; Ge, Q.; Wang, Y. A New Siamese Heterogeneous Convolutional Neural Networks Based on Attention Mechanism and Feature Pyramid. IEEE Trans. Cybern. 2023, 53, 37021890. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhu, J.; Fu, S.; Mao, S.; Ye, Y. RFPNet: Reorganizing feature pyramid networks for medical image segmentation. Comput. Biol. Med. 2023, 163, 107108. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Jiao, L.; Liu, F.; Hou, B.; Yang, S.; Jian, M. DPFL-Nets: Deep Pyramid Feature Learning Networks for Multiscale Change Detection. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6402–6416. [Google Scholar] [CrossRef]
- Rajevenceltha, J.; Gaidhane, V.H.; Anjana, V. A novel approach for Drowsiness Detection using Local Binary Patterns and Histogram of Gradients. In Proceedings of the 2019 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab Emirates, 19–21 November 2019; pp. 1–6. [Google Scholar]
- Yelampalli, P.K.R.; Nayak, J.; Gaidhane, V.H. A novel binary feature descriptor to discriminate normal and abnormal chest CT images using dissimilarity measures. Pattern Anal. Appl. 2019, 22, 1517–1526. [Google Scholar] [CrossRef]
- Al Sameera, B.N.; Gaidhane, V.H.; Rajevenceltha, J. Image Focus Measure Based on Polynomial Coefficients and Reduced Gerschgorin Circle Approach. IETE Tech. Rev. 2023. [Google Scholar] [CrossRef]
- Chong, G.; Tian-Yuan, Q. Radiance Illumination Prediction of Sky Images Based on Siamese Networks. Inf. Technol. Informatiz. 2023, 1, 150–153. [Google Scholar]
- Gang, D.; Xiang-Ning, W.; Yu-Jiao, D.; Yu, T.; Feng, Z.; Heng, F. PCB Defect Classification Model Based on Siamese Depth Feature Fusion Residual Network. Comput. Syst. Appl. 2023, 32, 211–219. [Google Scholar]
CBSD | Training Set | Validation Set | Test Set | |
---|---|---|---|---|
CBSD_T | CBSD_I | |||
1870 | 1496 | 174 | 200 | 200 + 800 |
Model | Accuracy | Precision | Missed Detection | Loss |
---|---|---|---|---|
Vgg16 | 0.750 | 0.192 | 0.25 | 1.456 |
Resnet34 | 0.890 | 0.301 | 0.11 | 0.369 |
Resnet18 | 0.83 | 0.225 | 0.17 | 0.384 |
DenseNet121 | 0.735 | 0.175 | 0.264 | 0.91 |
MFS-GC | 0.955 | 0.356 | 0.045 | 0.24 |
Model | Number of Parameters | Floating-Point Operations (FLOPs) |
---|---|---|
VGG16 | 138 M | 32.2 |
Densenet121 | 8.1 M | 5.9 |
MFS-GC | 27.6 M | 4.2 |
Accuracy (%) | Precision | Time (s) | |
---|---|---|---|
Literature [28] | 76.4 | 0.16 | 44.86 |
Literature [29] | 83.6 | 0.224 | 23.7 |
Literature [12] | 89.8 | 0.289 | 42.62 |
MFS-GC | 95.5 | 0.356 | 34.6 |
Top-T | Literature [28] | Literature [29] | Literature [12] | MFS-GC |
---|---|---|---|---|
Top-1 | 31.5 | 38.0 | 53.5 | 64.0 |
Top-5 | 48.5 | 55.5 | 69.0 | 75.5 |
Top-10 | 69.0 | 72.5 | 80.5 | 89.0 |
Top-15 | 76.4 | 83.6 | 89.8 | 95.5 |
Feature Fusion Architecture | Accuracy | Missed Detection | Time |
---|---|---|---|
Without R1 | 91.63 | 8.37 | 32.91 |
Without R2 | 87.46 | 12.54 | 27.31 |
Without R3 | 81.33 | 18.67 | 22.68 |
Without R4 | 74.02 | 25.98 | 19.34 |
Only scale4 | 69.96 | 30.04 | 10.66 |
MFS-GC | 95.50 | 4.50 | 35.63 |
SPADE | Resnet50 (Backbone) | Accuracy |
---|---|---|
× | √ | Top-15: 0.895 |
Top-10: 0.745 | ||
Top-5: 0.615 | ||
Top-1: 0.38 | ||
√ | √ | Top-15: 0.955 |
Top-10: 0.89 | ||
Top-5: 0.755 | ||
Top-1: 0.64 |
Bone Stick Pair | Similarity Score | Distance |
---|---|---|
No. 02750_01 No. 02750_02 | 0.91 | 0.6697 |
No. 02816_01 No. 02816_02 | 0.81 | 0.9265 |
No. 03136_01 No. 03136_02 | 0.86 | 0.8246 |
No. 119_01 No. 119_02 | 0.88 | 0.80331 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Wang, H.; Liu, R.; Mao, L.; Wang, K.; Wang, Z.; Wang, T. Research on Rejoining Bone Stick Fragment Images: A Method Based on Multi-Scale Feature Fusion Siamese Network Guided by Edge Contour. Appl. Sci. 2024, 14, 717. https://doi.org/10.3390/app14020717
He J, Wang H, Liu R, Mao L, Wang K, Wang Z, Wang T. Research on Rejoining Bone Stick Fragment Images: A Method Based on Multi-Scale Feature Fusion Siamese Network Guided by Edge Contour. Applied Sciences. 2024; 14(2):717. https://doi.org/10.3390/app14020717
Chicago/Turabian StyleHe, Jingjing, Huiqin Wang, Rui Liu, Li Mao, Ke Wang, Zhan Wang, and Ting Wang. 2024. "Research on Rejoining Bone Stick Fragment Images: A Method Based on Multi-Scale Feature Fusion Siamese Network Guided by Edge Contour" Applied Sciences 14, no. 2: 717. https://doi.org/10.3390/app14020717
APA StyleHe, J., Wang, H., Liu, R., Mao, L., Wang, K., Wang, Z., & Wang, T. (2024). Research on Rejoining Bone Stick Fragment Images: A Method Based on Multi-Scale Feature Fusion Siamese Network Guided by Edge Contour. Applied Sciences, 14(2), 717. https://doi.org/10.3390/app14020717