Exploring Core Knowledge in Interdisciplinary Research: Insights from Topic Modeling Analysis
Abstract
:1. Introduction
2. Related Works
3. Methods
3.1. Research Approach
3.2. LDA Topic Model
3.3. Perplexity
4. Data Processing and Topic Extraction
4.1. Data Collection and Processing
4.2. Determining the Optimal Number of Topics
4.3. Document–Topic Distribution
4.4. Identification Results
5. Results
5.1. Knowledge Framework and Social Impact of Interdisciplinary Research
5.1.1. Interdisciplinary Research Method and Framework
5.1.2. Impact of Interdisciplinary Research
5.1.3. Interdisciplinary Academic Research
5.1.4. Interdisciplinary Social Application
5.2. Multidisciplinary Approaches in Cancer Treatment and Patient Care
5.2.1. Interdisciplinary Research on Cancer Treatment
5.2.2. Interdisciplinary Research in Clinical Healthcare
5.2.3. Interdisciplinary Research on Health Prevention and Assessment
5.3. Covid-19: Multidisciplinary Care and Rehabilitation
5.3.1. Patient Care and Infection Control
5.3.2. Long-Term Effects and Rehabilitation
5.4. Multidisciplinary AI and Optimization in Industrial Applications
5.4.1. Industry 4.0 and Multidisciplinary Collaboration
5.4.2. AI’s Role in Multidisciplinary Design Optimization
6. Discussion and Conclusions
6.1. Discussion
6.1.1. Interdisciplinary Research’s Contribution to Knowledge Production and Academic Innovation
6.1.2. Interdisciplinary Collaboration in Cancer Treatment and Patient Care
6.1.3. The Importance of Interdisciplinary Collaboration in Public Health Crises
6.1.4. Interdisciplinary Approaches to AI and Emerging Technologies
6.1.5. The Interactions Between Core Topics in Interdisciplinary Research
6.2. Contributions of the Study
6.3. Conclusions
6.4. Future Research Directions
6.4.1. Cultivation and Development of Interdisciplinary Talent
6.4.2. Evaluation Systems and Policy Support for Interdisciplinary Research
6.4.3. International Cooperation and Interdisciplinary Globalization
6.4.4. AI and Interdisciplinary Research Optimization
6.5. Research Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uzzi, B.; Mukherjee, S.; Stringer, M.; Jones, B. Atypical combinations and scientific impact. Science 2013, 342, 468–472. [Google Scholar] [CrossRef]
- Möckl, L.; Lamb, D.C.; Bräuchle, C. Super-resolved fluorescence microscopy: Nobel prize in chemistry 2014 for eric betzig, stefan hell, and william e. moerner. Angew. Chem. Int. Ed. 2014, 53, 13972–13977. [Google Scholar] [CrossRef] [PubMed]
- Ademović, N.; Kevrić, J.; Akšamija, Z. Advanced Technologies, Systems, and Applications VIII: Proceedings of the International Symposium on Innovative and Interdisciplinary Applications of Advanced Technologies (IAT 2023); Springer Nature: Berlin/Heidelberg, Germany, 2023; Volume 644. [Google Scholar]
- Ledford, H. How to solve the world’s biggest problems. Nature 2015, 525, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.A. Defense of Disciplines: Interdisciplinarity and Specialization in the Research University; University of Chicago Press: Chicago, IL, USA, 2014; pp. 54–75. [Google Scholar]
- Lawrence, M.G.; Williams, S.; Nanz, P.; Renn, O. Characteristics, potentials, and challenges of transdisciplinary research. One Earth 2022, 5, 44–61. [Google Scholar] [CrossRef]
- Newman, J. Promoting Interdisciplinary Research Collaboration: A Systematic Review, a Critical Literature Review, and a Pathway Forward. Soc. Epistemol. 2024, 38, 135–151. [Google Scholar] [CrossRef]
- Rhoten, D.; Parker, A. Risks and rewards of an interdisciplinary research path. Science 2004, 306, 2046. [Google Scholar] [CrossRef]
- Committee on Science, Public Policy; Committee on Facilitating Interdisciplinary Research. Facilitating Interdisciplinary Research; National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Rafols, I.; Meyer, M. Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics 2009, 82, 263–287. [Google Scholar] [CrossRef]
- Bordons, M.; Morillo, F.; Gómez, I. Analysis of cross-disciplinary research through bibliometric tools. In Handbook of Quantitative Science and Technology Research: The Use of Publication and Patent Statistics in Studies of S&T Systems; Springer: Berlin/Heidelberg, Germany, 2004; pp. 437–456. [Google Scholar]
- Martins, J.R.R.A.; Lambe, A.B. Multidisciplinary Design Optimization: A Survey of Architectures. Aiaa J. 2013, 51, 2049–2075. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustain. Cities Soc. 2017, 31, 183–212. [Google Scholar] [CrossRef]
- Brevik, E.C.; Cerdà, A.; Mataix-Solera, J.; Pereg, L.; Quinton, J.N.; Six, J.; Van Oost, K. The interdisciplinary nature of SOIL. Soil 2015, 1, 117–129. [Google Scholar] [CrossRef]
- Wu, L.; Wang, D.; Evans, J.A. Large teams develop and small teams disrupt science and technology. Nature 2019, 566, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Rafols, I.; Leydesdorff, L.; O’Hare, A.; Nightingale, P.; Stirling, A. How journal rankings can suppress interdisciplinary research: A comparison between innovation studies and business & management. Res. Policy 2012, 41, 1262–1282. [Google Scholar]
- Bromham, L.; Dinnage, R.; Hua, X. Interdisciplinary research has consistently lower funding success. Nature 2016, 534, 684–687. [Google Scholar] [CrossRef] [PubMed]
- Jelodar, H.; Wang, Y.; Yuan, C.; Feng, X.; Jiang, X.; Li, Y.; Zhao, L. Latent Dirichlet allocation (LDA) and topic modeling: Models, applications, a survey. Multimed. Tools Appl. 2019, 78, 15169–15211. [Google Scholar] [CrossRef]
- Jacobi, C.; van Atteveldt, W.; Welbers, K. Quantitative analysis of large amounts of journalistic texts using topic modelling. Digit. J. 2016, 4, 89–106. [Google Scholar] [CrossRef]
- Saura, J.R.; Ribeiro-Soriano, D.; Palacios-Marqués, D. From user-generated data to data-driven innovation: A research agenda to understand user privacy in digital markets. Int. J. Inf. Manag. 2021, 60, 102331. [Google Scholar] [CrossRef]
- Liu, Y.M.; Chen, M. The Knowledge Structure and Development Trend in Artificial Intelligence Based on Latent Feature Topic Model. IEEE Trans. Eng. Manag. 2024, 71, 12593–12604. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Hannigan, T.R.; Haans, R.F.J.; Vakili, K.; Tchalian, H.; Glaser, V.L.; Wang, M.S.; Kaplan, S.; Jennings, P.D. Topic Modeling in Management Research: Rendering New Theory from Textual Data. Acad. Manag. Ann. 2019, 13, 586–632. [Google Scholar] [CrossRef]
- Du, Y.; Yi, Y.; Li, X.; Chen, X.; Fan, Y.; Su, F. Extracting and tracking hot topics of micro-blogs based on improved Latent Dirichlet Allocation. Eng. Appl. Artif. Intell. 2020, 87, 103279. [Google Scholar] [CrossRef]
- Mendez, V.E.; Bacon, C.M.; Cohen, R. Agroecology as a Transdisciplinary, Participatory, and Action-Oriented Approach. Agroecol. Sustain. Food Syst. 2013, 37, 3–18. [Google Scholar] [CrossRef]
- Trujillo, C.M.; Long, T.M. Document co-citation analysis to enhance transdisciplinary research. Sci. Adv. 2018, 4, e1701130. [Google Scholar] [CrossRef] [PubMed]
- Acar, O.A.; Tarakci, M.; van Knippenberg, D. Creativity and Innovation Under Constraints: A Cross-Disciplinary Integrative Review. J. Manag. 2019, 45, 96–121. [Google Scholar] [CrossRef]
- Mauser, W.; Klepper, G.; Rice, M.; Schmalzbauer, B.S.; Hackmann, H.; Leemans, R.; Moore, H. Transdisciplinary global change research: The co-creation of knowledge for sustainability. Curr. Opin. Environ. Sustain. 2013, 5, 420–431. [Google Scholar] [CrossRef]
- Gale, N.K.; Heath, G.; Cameron, E.; Rashid, S.; Redwood, S. Using the framework method for the analysis of qualitative data in multi-disciplinary health research. Bmc Med. Res. Methodol. 2013, 13, 117. [Google Scholar] [CrossRef]
- Polk, M. Transdisciplinary co-production: Designing and testing a transdisciplinary research framework for societal problem solving. Futures 2015, 65, 110–122. [Google Scholar] [CrossRef]
- Popa, F.; Guillermin, M.; Dedeurvvaerdere, T. A pragmatist approach to transdisciplinarity in sustainability research: From complex systems theory to reflexive science. Futures 2015, 65, 45–56. [Google Scholar] [CrossRef]
- Brandt, P.; Ernst, A.; Gralla, F.; Luederitz, C.; Lang, D.J.; Newig, J.; Reinert, F.; Abson, D.J.; von Wehrden, H. A review of transdisciplinary research in sustainability science. Ecol. Econ. 2013, 92, 1–15. [Google Scholar] [CrossRef]
- Yegros-Yegros, A.; Rafols, I.; D’Este, P. Does Interdisciplinary Research Lead to Higher Citation Impact? The Different Effect of Proximal and Distal Interdisciplinarity. PLoS ONE 2015, 10, e0135095. [Google Scholar] [CrossRef]
- Huang, Y.; Glänzel, W.; Thijs, B.; Porter, A.L.; Zhang, L. The Comparison of Various Similarity Measurement Approaches on Interdisciplinary Indicators; FEB Research Report MSI_2102; FEB-KU Leuven: Leuven, Belgium, 2021; pp. 1–24. [Google Scholar]
- Leahey, E.; Beckman, C.M.; Stanko, T.L. Prominent but Less Productive: The Impact of Interdisciplinarity on Scientists’ Research. Adm. Sci. Q. 2017, 62, 105–139. [Google Scholar] [CrossRef]
- Harzing, A.-W.; Alakangas, S. Google Scholar, Scopus and the Web of Science: A longitudinal and cross-disciplinary comparison. Scientometrics 2015, 106, 787–804. [Google Scholar] [CrossRef]
- Martin-Martin, A.; Thelwall, M.; Orduna-Malea, E.; Delgado Lopez-Cozar, E. Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: A multidisciplinary Comparison of Coverage via Citations. Scientometrics 2021, 126, 871–906. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Zhuang, S.; Xue, R.; Cao, W.; Tian, J.; Shan, Y. Environmental Finance: An Interdisciplinary Review. Technol. Forecast. Soc. Change 2022, 179, 121639. [Google Scholar] [CrossRef]
- Marrone, M.; Linnenluecke, M.K. Interdisciplinary Research Maps: A new technique for visualizing research topics. PLoS ONE 2020, 15, e0242283. [Google Scholar] [CrossRef]
- Koohang, A.; Nord, J.H.; Ooi, K.-B.; Tan, G.W.-H.; Al-Emran, M.; Aw, E.C.-X.; Baabdullah, A.M.; Buhalis, D.; Cham, T.-H.; Dennis, C. Shaping the metaverse into reality: A holistic multidisciplinary understanding of opportunities, challenges, and avenues for future investigation. J. Comput. Inf. Syst. 2023, 63, 735–765. [Google Scholar] [CrossRef]
- Mahl, D.; Schäfer, M.S.; Zeng, J. Conspiracy theories in online environments: An interdisciplinary literature review and agenda for future research. New Media Soc. 2023, 25, 1781–1801. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Power, B.; Bogard, J.R.; Remans, R.; Fritz, S.; Gerber, J.S.; Nelson, G.; See, L.; Waha, K.; et al. Farming and the geography of nutrient production for human use: A transdisciplinary analysis. Lancet Planet. Health 2017, 1, E33–E42. [Google Scholar] [CrossRef]
- Shen, C. A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resour. Res. 2018, 54, 8558–8593. [Google Scholar] [CrossRef]
- Song, B.; Lin, R.; Lam, C.H.; Wu, H.; Tsui, T.-H.; Yu, Y. Recent advances and challenges of inter-disciplinary biomass valorization by integrating hydrothermal and biological techniques. Renew. Sustain. Energy Rev. 2021, 135, 110370. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, G.; Liang, C.; Tian, Z. Omics-based interdisciplinarity is accelerating plant breeding. Curr. Opin. Plant Biol. 2022, 66, 102167. [Google Scholar] [CrossRef]
- Fried, M.; Yumuk, V.; Oppert, J.-M.; Scopinaro, N.; Torres, A.; Weiner, R.; Yashkov, Y.; Frühbeck, G.; on behalf of International Federation for the Surgery of Obesity and Metabolic Disorders—European Chapter (IFSO-EC) and European Association for the Study of Obesity (EASO). Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes. Surg. 2014, 24, 42–55. [Google Scholar] [CrossRef]
- Prades, J.; Remue, E.; Van Hoof, E.; Borras, J.M. Is it worth reorganising cancer services on the basis of multidisciplinary teams (MDTs)? A systematic review of the objectives and organisation of MDTs and their impact on patient outcomes. Health Policy 2015, 119, 464–474. [Google Scholar] [CrossRef]
- Adam, R.; de Gramont, A.; Figueras, J.; Kokudo, N.; Kunstlinger, F.; Loyer, E.; Poston, G.; Rougier, P.; Rubbia-Brandt, L.; Sobrero, A. Managing synchronous liver metastases from colorectal cancer: A multidisciplinary international consensus. Cancer Treat. Rev. 2015, 41, 729–741. [Google Scholar] [CrossRef]
- van de Velde, C.J.; Boelens, P.G.; Borras, J.M.; Coebergh, J.-W.; Cervantes, A.; Blomqvist, L.; Beets-Tan, R.G.; van den Broek, C.B.; Brown, G.; Van Cutsem, E. EURECCA colorectal: Multidisciplinary management: European consensus conference colon & rectum. Eur. J. Cancer 2014, 50, 1.e1–1.e34. [Google Scholar] [CrossRef]
- Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Basset-Seguin, N.; Bastholt, L.; Bataille, V.; Del Marmol, V.; Dréno, B. European consensus-based interdisciplinary guideline for melanoma. Part 2: Treatment-update 2022. Eur. J. Cancer 2022, 170, 256–284. [Google Scholar] [CrossRef]
- Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Basset-Seguin, N.; Bastholt, L.; Bataille, V.; Del Marmol, V.; Dréno, B. European consensus-based interdisciplinary guideline for melanoma. Part 1: Diagnostics: Update 2022. Eur. J. Cancer 2022, 170, 236–255. [Google Scholar] [CrossRef]
- Garbe, C.; Peris, K.; Hauschild, A.; Saiag, P.; Middleton, M.; Bastholt, L.; Grob, J.-J.; Malvehy, J.; Newton-Bishop, J.; Stratigos, A.J. Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline–Update 2016. Eur. J. Cancer 2016, 63, 201–217. [Google Scholar] [CrossRef]
- Peris, K.; Fargnoli, M.C.; Garbe, C.; Kaufmann, R.; Bastholt, L.; Seguin, N.B.; Bataille, V.; Del Marmol, V.; Dummer, R.; Harwood, C.A. Diagnosis and treatment of basal cell carcinoma: European consensus–based interdisciplinary guidelines. Eur. J. Cancer 2019, 118, 10–34. [Google Scholar] [CrossRef]
- Stratigos, A.J.; Garbe, C.; Dessinioti, C.; Lebbe, C.; Bataille, V.; Bastholt, L.; Dreno, B.; Fargnoli, M.C.; Forsea, A.M.; Frenard, C. European interdisciplinary guideline on invasive squamous cell carcinoma of the skin: Part 2. Treatment. Eur. J. Cancer 2020, 128, 83–102. [Google Scholar] [CrossRef]
- Kim, T.-H.; Kim, I.-H.; Kang, S.J.; Choi, M.; Kim, B.-H.; Eom, B.W.; Kim, B.J.; Min, B.-H.; Choi, C.I.; Shin, C.M. Korean practice guidelines for gastric cancer 2022: An evidence-based, multidisciplinary approach. J. Gastric Cancer 2023, 23, 3. [Google Scholar] [CrossRef]
- Travis, W.D.; Dacic, S.; Wistuba, I.; Sholl, L.; Adusumilli, P.; Bubendorf, L.; Bunn, P.; Cascone, T.; Chaft, J.; Chen, G. IASLC multidisciplinary recommendations for pathologic assessment of lung cancer resection specimens after neoadjuvant therapy. J. Thorac. Oncol. 2020, 15, 709–740. [Google Scholar] [CrossRef]
- Gauci, M.-L.; Aristei, C.; Becker, J.C.; Blom, A.; Bataille, V.; Dreno, B.; Del Marmol, V.; Forsea, A.M.; Fargnoli, M.C.; Grob, J.-J. Diagnosis and treatment of Merkel cell carcinoma: European consensus-based interdisciplinary guideline–Update 2022. Eur. J. Cancer 2022, 171, 203–231. [Google Scholar] [CrossRef]
- Fattori, R.; Cao, P.; De Rango, P.; Czerny, M.; Evangelista, A.; Nienaber, C.; Rousseau, H.; Schepens, M. Interdisciplinary expert consensus document on management of type B aortic dissection. J. Am. Coll. Cardiol. 2013, 61, 1661–1678. [Google Scholar] [CrossRef]
- Campbell, K.L.; Winters-Stone, K.; Wiskemann, J.; May, A.M.; Schwartz, A.L.; Courneya, K.S.; Zucker, D.; Matthews, C.; Ligibel, J.; Gerber, L. Exercise guidelines for cancer survivors: Consensus statement from international multidisciplinary roundtable. Med. Sci. Sports Exerc. 2019, 51, 2375. [Google Scholar] [CrossRef]
- Kulkarni, G.S.; Hermanns, T.; Wei, Y.; Bhindi, B.; Satkunasivam, R.; Athanasopoulos, P.; Bostrom, P.J.; Kuk, C.; Li, K.; Templeton, A.J. Propensity score analysis of radical cystectomy versus bladder-sparing trimodal therapy in the setting of a multidisciplinary bladder cancer clinic. J. Clin. Oncol. 2017, 35, 2299–2305. [Google Scholar] [CrossRef]
- Grossberg, A.J.; Chu, L.C.; Deig, C.R.; Fishman, E.K.; Hwang, W.L.; Maitra, A.; Marks, D.L.; Mehta, A.; Nabavizadeh, N.; Simeone, D.M. Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. CA Cancer J. Clin. 2020, 70, 375–403. [Google Scholar] [CrossRef]
- Kamper, S.J.; Apeldoorn, A.T.; Chiarotto, A.; Smeets, R.J.; Ostelo, R.W.; Guzman, J.; van Tulder, M.W. Multidisciplinary biopsychosocial rehabilitation for chronic low back pain. Cochrane Database Syst. Rev. 2014, 2014, CD000963. [Google Scholar] [CrossRef]
- De Ridder, D.; Schlee, W.; Vanneste, S.; Londero, A.; Weisz, N.; Kleinjung, T.; Shekhawat, G.S.; Elgoyhen, A.B.; Song, J.-J.; Andersson, G. Tinnitus and tinnitus disorder: Theoretical and operational definitions (an international multidisciplinary proposal). Prog. Brain Res. 2021, 260, 1–25. [Google Scholar]
- Cameron, I.D.; Fairhall, N.; Langron, C.; Lockwood, K.; Monaghan, N.; Aggar, C.; Sherrington, C.; Lord, S.R.; Kurrle, S.E. A multifactorial interdisciplinary intervention reduces frailty in older people: Randomized trial. Bmc Med. 2013, 11, 65. [Google Scholar] [CrossRef]
- Bishop, D.V.; Snowling, M.J.; Thompson, P.A.; Greenhalgh, T.; CATALISE Consortium. CATALISE: A Multinational and Multidisciplinary Delphi Consensus Study. Identifying Language Impairments in Children. PLoS ONE 2016, 11, e0158753. [Google Scholar] [CrossRef]
- Bishop, D.V.M.; Snowling, M.J.; Thompson, P.A.; Greenhalgh, T.; CATALISE-2 Consortium. Phase 2 of CATALISE: A multinational and multidisciplinary Delphi consensus study of problems with language development: Terminology. J. Child Psychol. Psychiatry 2017, 58, 1068–1080. [Google Scholar] [CrossRef]
- Shamshirsaz, A.A.; Fox, K.A.; Salmanian, B.; Diaz-Arrastia, C.R.; Lee, W.; Baker, B.W.; Ballas, J.; Chen, Q.; Van Veen, T.R.; Javadian, P.; et al. Maternal morbidity in patients with morbidly adherent placenta treated with and without a standardized multidisciplinary approach. Am. J. Obstet. Gynecol. 2015, 212, 218.e1–218.e9. [Google Scholar] [CrossRef]
- Kales, H.C.; Gitlin, L.N.; Lyketsos, C.G.; Detroit Expert Panel on Assessment and Management of Neuropsychiatric Symptoms of Dementia. Management of neuropsychiatric symptoms of dementia in clinical settings: Recommendations from a multidisciplinary expert panel. J. Am. Geriatr. Soc. 2014, 62, 762–769. [Google Scholar] [CrossRef]
- Scullin, M.K.; Bliwise, D.L. Sleep, cognition, and normal aging: Integrating a half century of multidisciplinary research. Perspect. Psychol. Sci. 2015, 10, 97–137. [Google Scholar] [CrossRef]
- Bubu, O.M.; Andrade, A.G.; Umasabor-Bubu, O.Q.; Hogan, M.M.; Turner, A.D.; de Leon, M.J.; Ogedegbe, G.; Ayappa, I.; Jackson, M.L.; Varga, A.W. Obstructive sleep apnea, cognition and Alzheimer’s disease: A systematic review integrating three decades of multidisciplinary research. Sleep Med. Rev. 2020, 50, 101250. [Google Scholar] [CrossRef]
- Sudore, R.L.; Lum, H.D.; You, J.J.; Hanson, L.C.; Meier, D.E.; Pantilat, S.Z.; Matlock, D.D.; Rietjens, J.A.; Korfage, I.J.; Ritchie, C.S. Defining advance care planning for adults: A consensus definition from a multidisciplinary Delphi panel. J. Pain Symptom Manag. 2017, 53, 821–832. [Google Scholar] [CrossRef]
- Sun, J.; He, W.-T.; Wang, L.; Lai, A.; Ji, X.; Zhai, X.; Li, G.; Suchard, M.A.; Tian, J.; Zhou, J.; et al. COVID-19: Epidemiology, Evolution, and Cross-Disciplinary Perspectives. Trends Mol. Med. 2020, 26, 483–495. [Google Scholar] [CrossRef]
- Chams, N.; Chams, S.; Badran, R.; Shams, A.; Araji, A.; Raad, M.; Mukhopadhyay, S.; Stroberg, E.; Duval, E.J.; Barton, L.M. COVID-19: A multidisciplinary review. Front. Public Health 2020, 8, 383. [Google Scholar] [CrossRef]
- Curigliano, G.; Banerjee, S.; Cervantes, A.; Garassino, M.C.; Garrido, P.; Girard, N.; Haanen, J.; Jordan, K.; Lordick, F.; Machiels, J.-P. Managing cancer patients during the COVID-19 pandemic: An ESMO multidisciplinary expert consensus. Ann. Oncol. 2020, 31, 1320–1335. [Google Scholar] [CrossRef]
- Narang, K.; Enninga, E.A.L.; Gunaratne, M.D.; Ibirogba, E.R.; Trad, A.T.A.; Elrefaei, A.; Theiler, R.N.; Ruano, R.; Szymanski, L.M.; Chakraborty, R. SARS-CoV-2 infection and COVID-19 during pregnancy: A multidisciplinary review. Mayo Clin. Proc. 2020, 95, 1750–1765. [Google Scholar]
- Puchner, B.; Sahanic, S.; Kirchmair, R.; Pizzini, A.; Sonnweber, B.; Woell, E.; Muehlbacher, A.; Garimorth, K.; Dareb, B.; Ehling, R. Beneficial effects of multi-disciplinary rehabilitation in postacute COVID-19: An observational cohort study. Eur. J. Phys. Rehabil. Med. 2021, 57, 189–198. [Google Scholar] [CrossRef]
- Vanichkachorn, G.; Newcomb, R.; Cowl, C.T.; Murad, M.H.; Breeher, L.; Miller, S.; Trenary, M.; Neveau, D.; Higgins, S. Post–COVID-19 syndrome (long haul syndrome): Description of a multidisciplinary clinic at Mayo clinic and characteristics of the initial patient cohort. Mayo Clin. Proc. 2021, 96, 1782–1791. [Google Scholar]
- Holmes, E.A.; O’Connor, R.C.; Perry, V.H.; Tracey, I.; Wessely, S.; Arseneault, L.; Ballard, C.; Christensen, H.; Cohen Silver, R.; Everall, I.; et al. Multidisciplinary research priorities for the COVID-19 pandemic: A call for action for mental health science. Lancet Psychiatry 2020, 7, 547–560. [Google Scholar] [CrossRef]
- Ivanov, D.; Tang, C.S.; Dolgui, A.; Battini, D.; Das, A. Researchers’ perspectives on Industry 4.0: Multi-disciplinary analysis and opportunities for operations management. Int. J. Prod. Res. 2021, 59, 2055–2078. [Google Scholar] [CrossRef]
- Koopman, P.; Wagner, M. Autonomous Vehicle Safety: An Interdisciplinary Challenge. IEEE Intell. Transp. Syst. Mag. 2017, 9, 90–96. [Google Scholar] [CrossRef]
- Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020, 7, 94. [Google Scholar] [CrossRef]
- Mohseni, S.; Zarei, N.; Ragan, E.D. A multidisciplinary survey and framework for design and evaluation of explainable AI systems. ACM Trans. Interact. Intell. Syst. (TiiS) 2021, 11, 1–45. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 2021, 57, 101994. [Google Scholar] [CrossRef]
- Malik, T.; Dwivedi, Y.; Kshetri, N.; Hughes, L.; Slade, E.L.; Jeyaraj, A.; Kar, A.K.; Baabdullah, A.M.; Koohang, A.; Raghavan, V. “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. Int. J. Inf. Manag. 2023, 71, 102642. [Google Scholar]
- Annan-Diab, F.; Molinari, C. Interdisciplinarity: Practical approach to advancing education for sustainability and for the Sustainable Development Goals. Int. J. Manag. Educ. 2017, 15, 73–83. [Google Scholar] [CrossRef]
- van Lambalgen, R.M.; de Vos, F. Facilitating epistemic fluency of undergraduate students during the interdisciplinary research process. Front. Educ. 2023, 8, 1108344. [Google Scholar] [CrossRef]
- Liu, M.J.; Yang, S.J.; Bu, Y.; Zhang, N. Female early-career scientists have conducted less interdisciplinary research in the past six decades: Evidence from doctoral theses. Humanit. Soc. Sci. Commun. 2023, 10, 918. [Google Scholar] [CrossRef]
- Vantard, M.; Galland, C.; Knoop, M. Interdisciplinary research: Motivations and challenges for researcher careers. Quant. Sci. Stud. 2023, 4, 711–727. [Google Scholar] [CrossRef]
- Mahringer, C.A.; Baessler, F.; Gerchen, M.F.; Haack, C.; Jacob, K.; Mayer, S. Benefits and obstacles of interdisciplinary research: Insights from members of the Young Academy at the Heidelberg Academy of Sciences and Humanities. iScience 2023, 26, 108508. [Google Scholar] [CrossRef]
- Hu, L.; Huang, W.B.; Bu, Y. Interdisciplinary research attracts greater attention from policy documents: Evidence from COVID-19. Humanit. Soc. Sci. Commun. 2024, 11, 383. [Google Scholar] [CrossRef]
- Mattei, F.; Jolly, M.K. Interdisciplinary research in cancer and immunity employing biophysical approaches. iScience 2023, 26, 106507. [Google Scholar] [CrossRef]
- Ly, Y.T.; Arndt, F.; Boschert, A.L.; Pavletic, B.; Webner, F.; Kohl, A.; Grübbel, H.; Soltau, J.; Talai, I.; Diallo, M.D.; et al. After the pandemic is before the pandemic: And how interdisciplinary research can help here. Laryngorhinootologie 2024, 103, 570–577. [Google Scholar] [CrossRef]
- Schneider, F.; Patel, Z.; Paulavets, K.; Buser, T.; Kado, J.; Burkhart, S. Fostering transdisciplinary research for sustainability in the Global South: Pathways to impact for funding programmes. Humanit. Soc. Sci. Commun. 2023, 10, 620. [Google Scholar] [CrossRef]
- Harris, F.; Lyon, F.; Sioen, G.B.; Ebi, K.L. Working with the tensions of transdisciplinary research: A review and agenda for the future of knowledge co-production in the Anthropocene. Glob. Sustain. 2024, 7, e13. [Google Scholar] [CrossRef]
- Longo, L.; Brcic, M.; Cabitza, F.; Choi, J.; Confalonieri, R.; Del Ser, J.; Guidotti, R.; Hayashi, Y.; Herrera, F.; Holzinger, A.; et al. Explainable Artificial Intelligence (XAI) 2.0: A manifesto of open challenges and interdisciplinary research directions. Inf. Fusion 2024, 106, 102301. [Google Scholar] [CrossRef]
Number | Topic Name | Top 10 High-Probability Feature Words in the Topic |
---|---|---|
Topic 1 | Knowledge Framework and Social Impact of Interdisciplinary Research | ‘research’,’ interdisciplinary’, ‘approach’, ‘social’, ‘knowledge’, ‘transdisciplinary’, ‘development’, ‘future’, ‘impact’, ‘framework’ |
Topic 2 | Multidisciplinary Approaches in Cancer Treatment and Patient Care | ‘treatment’, ‘cancer’, ‘patient’, ‘multidisciplinary’, ‘clinical’, ‘consensus’, ‘evidence’, ‘quality’, ‘recommendation’, ‘guideline’ |
Topic 3 | Covid-19: Multidisciplinary Care and Rehabilitation | ‘covid’, ‘covid-19’, ‘infection’, ‘health’, ‘symptom’, ‘mental health’, ‘rehabilitation’, ‘respiratory’, ‘clinic’ |
Topic 4 | Multidisciplinary AI and Optimization in Industrial Applications | ‘design’, ‘optimization’, ‘ai’, ‘machine learning’, ‘application’, ‘industry’, ‘multidisciplinary’, ‘architecture’, ‘manufacturing’, ‘big data’ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Lin, M.; Ji, M.; Wang, T. Exploring Core Knowledge in Interdisciplinary Research: Insights from Topic Modeling Analysis. Appl. Sci. 2024, 14, 10054. https://doi.org/10.3390/app142110054
Wu S, Lin M, Ji M, Wang T. Exploring Core Knowledge in Interdisciplinary Research: Insights from Topic Modeling Analysis. Applied Sciences. 2024; 14(21):10054. https://doi.org/10.3390/app142110054
Chicago/Turabian StyleWu, Shuangyan, Mixin Lin, Mengxiao Ji, and Ting Wang. 2024. "Exploring Core Knowledge in Interdisciplinary Research: Insights from Topic Modeling Analysis" Applied Sciences 14, no. 21: 10054. https://doi.org/10.3390/app142110054
APA StyleWu, S., Lin, M., Ji, M., & Wang, T. (2024). Exploring Core Knowledge in Interdisciplinary Research: Insights from Topic Modeling Analysis. Applied Sciences, 14(21), 10054. https://doi.org/10.3390/app142110054