A Review of Sustainability in Hot Asphalt Production: Greenhouse Gas Emissions and Energy Consumption
Abstract
:1. Introduction
2. Methodology
- Pavement types: analyzing the impact of different pavement types on energy consumption and emissions, highlighting their significance.
- Temperature effects: investigating the influence of temperature on the performance and production efficiency of asphalt mixtures, noting the energy consumption and emissions issues associated with high-temperature production.
- Production processes: providing a detailed description of the production process of asphalt mixtures, emphasizing the energy consumption and emission characteristics at each stage.
- Energy consumption: evaluating the overall energy consumption of asphalt mixtures, identifying high-energy consumption segments, and exploring methods to reduce energy usage.
3. Road Pavement Types
4. Effect of Temperature on Asphalt Mixtures
5. Asphalt Mixture Production
6. Asphalt Mixture Energy Consumption
7. Low-Carbon Green Development of Asphalt Mixtures
7.1. Recycled Material
7.1.1. Recycled Asphalt
7.1.2. Recycled Shredded Rubber
7.1.3. Biochar
7.2. Clean Energy
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gkyrtis, K.; Pomoni, M. An Overview of the Recyclability of Alternative Materials for Building Surface Courses at Pavement Structures. Buildings 2024, 14, 1571. [Google Scholar] [CrossRef]
- Aryan, Y.; Dikshit, A.K.; Shinde, A.M. A critical review of the life cycle assessment studies on road pavements and road infrastructures. J. Environ. Manag. 2023, 336, 117697. [Google Scholar] [CrossRef]
- Jiang, W.; Huang, Y.; Sha, A. A review of eco-friendly functional road materials. Constr. Build. Mater. 2018, 191, 1082–1092. [Google Scholar] [CrossRef]
- Rosli, M.H.M.; Chew, J.-W.; Jamshidi, A.; Yang, X.; Hamzah, M.O. Review of sustainability, pretreatment, and engineering considerations of asphalt modifiers from the industrial solid wastes. J. Traffic Transp. Eng. (Engl. Ed.) 2019, 6, 209–244. [Google Scholar]
- Sivilevičius, H.; Skrickij, V.; Skačkauskas, P. The Correlation between the Number of Asphalt Mixing Plants and the Production of Asphalt Mixtures in European Countries and the Baltic States. Appl. Sci. 2021, 11, 9375. [Google Scholar] [CrossRef]
- Androjic, I.; Kaluder, G.; Androjic, J. Influence of the sun exposure surface area of the solar aggregate stockpiles on the accumulated heat of the stored mineral mixture. Energy 2017, 135, 75–82. [Google Scholar] [CrossRef]
- Almeida, A.; Picado-Santos, L. Asphalt Road Pavements to Address Climate Change Challenges-An Overview. Appl. Sci. 2022, 12, 12515. [Google Scholar] [CrossRef]
- Azadgoleh, M.A.; Mohammadi, M.M.; Ghodrati, A.; Sharifi, S.S.; Palizban, S.M.M.; Ahmadi, A.; Vahidi, E.; Ayar, P. Characterization of contaminant leaching from asphalt pavements: A critical review of measurement methods, reclaimed asphalt pavement, porous asphalt, and waste-modified asphalt mixtures. Water Res. 2022, 219, 118584. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, Z.; Luo, R.; Huang, T.; Xiao, M. Asphalt content prediction model of asphalt mixtures based on dielectric properties. Mater. Struct. 2023, 56, 10. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, Y.; Wu, F.; Zhou, J.; Leng, H. Experimental Study on the Effect of Bottom Ash Powder on the Performance of Porous Asphalt Mixture. J. Chongqing Jiaotong Univ. Nat. Sci. 2022, 41, 93–99. [Google Scholar]
- Lehmusto, J.; Tesfaye, F.; Karlstro, O.; Hupa, L. Ashes from challenging fuels in the circular economy. Waste Manag. 2024, 177, 211–231. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, T.; Zhao, P.; Luo, G.Z.; Deng, Y. Effect of odour-less additive on asphalt flue gas emission and performance of asphalt and asphalt mixture. Case Stud. Constr. Mater. 2024, 20, e03006. [Google Scholar] [CrossRef]
- Li, X.Q.; Wu, S.P.; Wang, F.S.; You, L.Y.; Yang, C.; Cui, P.D.; Zhang, X.M. Quantitative assessments of GHG and VOCs emissions of asphalt pavement contained steel slag. Constr. Build. Mater. 2023, 369, 130606. [Google Scholar] [CrossRef]
- Ma, F.; Sha, A.M.; Lin, R.Y.; Huang, Y.; Wang, C. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China. Int. J. Environ. Res. Public Health 2016, 13, 351. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yi, X.Y.; Falchetto, A.C.; Wang, D.; Yu, B.; Qin, S.Y. Carbon emissions quantification and different models comparison throughout the life cycle of asphalt pavements. Constr. Build. Mater. 2024, 411, 134323. [Google Scholar] [CrossRef]
- Azarijafari, H.; Yahia, A.; Ben Amor, M. Life cycle assessment of pavements: Reviewing research challenges and opportunities. J. Clean. Prod. 2015, 112, 2187–2197. [Google Scholar] [CrossRef]
- Xiang, Q.; Xiao, F.P. Applications of epoxy materials in pavement engineering. Constr. Build. Mater. 2020, 235, 117529. [Google Scholar] [CrossRef]
- Vaitkus, A.; Grazulyte, J.; Sernas, O.; Karbocius, M.; Mickevic, R. Concrete Modular Pavement Structures with Optimized Thickness Based on Characteristics of High Performance Concrete Mixtures with Fibers and Silica Fume. Materials 2021, 14, 3423. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, J.; Lang, H.; Lu, J. Exploring the Efficacy of Sparse Feature in Pavement Distress Image Classification: A Focus on Pavement-Specific Knowledge. Appl. Sci. 2023, 13, 9996. [Google Scholar] [CrossRef]
- Yao, K.; Yan, S.Y.; Li, F.J.; Wei, Y.Y.; Tran, C.C. Exploring the effects of road type on drivers’ eye behavior and workload. Int. J. Occup. Saf. Ergon. 2023, 29, 31–35. [Google Scholar] [CrossRef]
- Paplauskas, P.; Vaitkus, A. Dependency of Pavement Roughness Level on The Type of Road Works. Balt. J. Road Bridge Eng. 2022, 17, 74–97. [Google Scholar] [CrossRef]
- Khan, M.; Rehman, A.; Ali, M. Efficiency of silica-fume content in plain and natural fiber reinforced concrete for concrete road. Constr. Build. Mater. 2020, 244, 118382. [Google Scholar] [CrossRef]
- Jiang, B.; Xu, L.; Cao, Z.; Yang, Y.; Sun, Z.; Xiao, F. Interlayer distress characteristics and evaluations of semi-rigid base asphalt pavements: A review. Constr. Build. Mater. 2024, 431, 136441. [Google Scholar] [CrossRef]
- Zhao, M.; Xu, X.; Liu, Y.; Wu, C.; Sun, Q.; Pei, Y. Microcracking treatment mechanism of semi-rigid base asphalt pavement with discrete-continuous coupling simulation. Case Stud. Constr. Mater. 2024, 20, e02850. [Google Scholar] [CrossRef]
- Zhihao, Y.; Linbing, W.; Dongwei, C.; Yinghao, M.; Hailu, Y. Structural optimization design of semi-rigid base asphalt pavement using modulus matching criterion and multi-indicator range analysis. J. Traffic Transp. Eng. (Engl. Ed.) 2024, 11, 131–159. [Google Scholar]
- Vaitkus, A.; Grazulyte, J.; Kleiziene, R.; Vorobjovas, V.; Sernas, O. Concrete Modular Pavements—Types, Issues And Challenges. Balt. J. Road Bridge Eng. 2019, 14, 80–103. [Google Scholar] [CrossRef]
- Sahis, M.K.; Biswas, P.P.; Sadhukhan, S.; Saha, G. Mechanistic-empirical Design of Perpetual Road Pavement Using Strain-based Design Approach. Period. Polytech.-Civ. Eng. 2023, 67, 1105–1114. [Google Scholar] [CrossRef]
- Kedar, H.N.; Patel, S. Effect of hydraulic binders on engineering properties of coal ash for utilization in pavement layers. Clean Technol. Environ. Policy 2024, 26, 3313–3331. [Google Scholar] [CrossRef]
- Pan, Q.X.; Hu, J.; Zheng, J.L.; Lv, S.T.; Zhang, J.H.; Wen, P.H.; Song, X.J. Poisson’s ratio testing method and multi-factor influence quantification model of asphalt pavement materials. Constr. Build. Mater. 2024, 425, 136025. [Google Scholar] [CrossRef]
- Xiao, F.P.; Xu, L.; Zhao, Z.F.; Hou, X.D. Recent applications and developments of reclaimed asphalt pavement in China, 2010-2021. Sustain. Mater. Technol. 2023, 37, e00697. [Google Scholar] [CrossRef]
- Araneda, M.E.; Pradena, M.; Silva, R.; Pardo, M. Sustainable paving alternative for low-volume roads using cold recycled asphalt. Proc. Inst. Civ. Eng.-Eng. Sustain. 2022, 175, 293–301. [Google Scholar] [CrossRef]
- Al-Atroush, M.E. Structural behavior of the geothermo-electrical asphalt pavement: A critical review concerning climate change. Heliyon 2022, 8, e12107. [Google Scholar] [CrossRef] [PubMed]
- Androjic, I.; Alduk, Z.D.; Dimter, S.; Rukavina, T. Analysis of impact of aggregate moisture content on energy demand during the production of hot mix asphalt (HMA). J. Clean. Prod. 2020, 244, 118868. [Google Scholar] [CrossRef]
- Antunes, V.; Freire, A.C.; Neves, J. Investigating aged binder mobilization and performance of RAP mixtures for surface courses. Constr. Build. Mater. 2021, 271, 121511. [Google Scholar] [CrossRef]
- Liu, J.N.; Wang, Z.J.; Jing, H.S.; Jia, H.Y.; Zhou, L.; Chen, H.; Zhang, L. Microwave self-healing characteristics of bituminous mixtures with different steel slag aggregate and waste ferrite filler. Constr. Build. Mater. 2023, 407, 133304. [Google Scholar] [CrossRef]
- Hong, Z.; Yan, K.Z.; Wang, M.; Zhang, X.Y. Performance investigation of phenol-formaldehyde resin (PF) and organic montmorillonite (OMMT) compound-modified bituminous mixture. Int. J. Pavement Eng. 2024, 25, 2301451. [Google Scholar] [CrossRef]
- Khater, A.; Luo, D.; Abdelsalam, M.; Yue, Y.C.; Hou, Y.Q.; Ghazy, M. Laboratory Evaluation of Asphalt Mixture Performance Using Composite Admixtures of Lignin and Glass Fibers. Appl. Sci. 2021, 11, 364. [Google Scholar] [CrossRef]
- Enieb, M.; Diab, A.; Yang, X. Short- and long-term properties of glass fiber reinforced asphalt mixtures. Int. J. Pavement Eng. 2021, 22, 64–76. [Google Scholar] [CrossRef]
- Androjic, I.; Marovic, I.; Kaluder, J.; Kaluder, G. Achieving sustainability through the temperature prediction of aggregate stockpiles. J. Clean. Prod. 2019, 219, 451–460. [Google Scholar] [CrossRef]
- Rubio, M.D.; Moreno, F.; Martínez-Echevarría, M.J.; Martínez, G.; Vázquez, J.M. Comparative analysis of emissions from the manufacture and use of hot and half-warm mix asphalt. J. Clean. Prod. 2013, 41, 1–6. [Google Scholar] [CrossRef]
- Espinoza, J.; Medina, C.; Calabi-Floody, A.; Sanchez-Alonso, E.; Valdes, G.; Quiroz, A. Evaluation of Reductions in Fume Emissions (VOCs and SVOCs) from Warm Mix Asphalt Incorporating Natural Zeolite and Reclaimed Asphalt Pavement for Sustainable Pavements. Sustainability 2020, 12, 9546. [Google Scholar] [CrossRef]
- Peng, B.; Tong, X.; Cao, S.; Li, W.; Xu, G. Carbon Emission Calculation Method and Low-Carbon Technology for Use in Expressway Construction. Sustainability 2020, 12, 3219. [Google Scholar] [CrossRef]
- Zhang, R.; Tang, N.; Zhu, H.; Xi, Y.; Sheng, W.; Li, Z. Short-term emission behavior and evolution law of organic emissions from asphalt binder materials. Constr. Build. Mater. 2024, 433, 136498. [Google Scholar] [CrossRef]
- Martin, H.; Kerstin, Z.; Joachim, M. Reduced emissions of warm mix asphalt during construction. Road Mater. Pavement Des. Int. J. 2019, 20, S568–S577. [Google Scholar] [CrossRef]
- Kumar, R.; Saboo, N.; Kumar, P.; Chandra, S. Effect of warm mix additives on creep and recovery response of conventional and polymer modified asphalt binders. Constr. Build. Mater. 2017, 138, 352–362. [Google Scholar] [CrossRef]
- Autelitano, F.; Bianchi, F.; Giuliani, F. Airborne emissions of asphalt/wax blends for warm mix asphalt production. J. Clean. Prod. 2017, 164, 749–756. [Google Scholar] [CrossRef]
- Jamshidi, A.; Hamzah, M.O.; You, Z. Performance of Warm Mix Asphalt containing Sasobit (R): State-of-the-art. Constr. Build. Mater. 2013, 38, 530–553. [Google Scholar] [CrossRef]
- Ranieri, V.; Kowalski, K.J.; Berloco, N.; Colonna, P.; Perrone, P. Influence of wax additives on the properties of porous asphalts. Constr. Build. Mater. 2017, 145, 261–271. [Google Scholar] [CrossRef]
- Hasan, M.R.M.; You, Z.; Yang, X. A comprehensive review of theory, development, and implementation of warm mix asphalt using foaming techniques. Constr. Build. Mater. 2017, 152, 115–133. [Google Scholar] [CrossRef]
- Zaumanis, M.; Mallick, R.B.; Frank, R. 100% recycled hot mix asphalt: A review and analysis. Resour. Conserv. Recycl. 2014, 92, 230–245. [Google Scholar] [CrossRef]
- Huynh, A.T.; Magee, B.; Woodward, D. A Preliminary Characterisation of Innovative Semi-Flexible Composite Pavement Comprising Geopolymer Grout and Reclaimed Asphalt Planings. Materials 2020, 13, 3644. [Google Scholar] [CrossRef] [PubMed]
- He, J.X.; Ma, Y.T.; Zheng, K.P.; Cheng, Z.Q.; Xie, S.J.; Xiao, R.; Huang, B.S. Quantifying the agglomeration effect of reclaimed asphalt pavement on performance of recycled hot mix asphalt. J. Clean. Prod. 2024, 442, 141044. [Google Scholar] [CrossRef]
- Nanda, H.; Siddagangaiah, A.K. Effect of RAP fractionation and dosage on design and mechanical behaviour of cold asphalt mixes. Constr. Build. Mater. 2024, 422, 135773. [Google Scholar] [CrossRef]
- Franzitta, V.; Longo, S.; Sollazzo, G.; Cellura, M.; Celauro, C. Primary Data Collection and Environmental/Energy Audit of Hot Mix Asphalt Production. Energies 2020, 13, 2045. [Google Scholar] [CrossRef]
- Kharat, D. Emissions from Hot Mix Asphalt Plants and their Impact on Ambient Air Quality. Water Air Soil Pollut. 2022, 233, 464. [Google Scholar] [CrossRef]
- Peinado, D.; Vega, M.D.; García-Hernando, N.; Marugán-Cruz, C. Energy and exergy analysis in an asphalt plant’s rotary dryer. Appl. Therm. Eng. 2011, 31, 1039–1049. [Google Scholar] [CrossRef]
- Androjic, I.; Kaluder, G. Usage of solar aggregate stockpiles in the production of hot mix asphalt. Appl. Therm. Eng. 2016, 108, 131–139. [Google Scholar] [CrossRef]
- Androjic, I.; Marovic, I.; Kaluder, G.; Androjic, J. Application of solar aggregate stockpiles in the process of storing recycled materials. Int. J. Energy Res. 2019, 43, 6269–6282. [Google Scholar] [CrossRef]
- Gruber, M.R.; Hofko, B. Life Cycle Assessment of Greenhouse Gas Emissions from Recycled Asphalt Pavement Production. Sustainability 2023, 15, 4629. [Google Scholar] [CrossRef]
- Ferrotti, G.; Mancinelli, E.; Passerini, G.; Canestrari, F. Comparison of energy and environmental performance between warm and hot mix asphalt concrete production: A case study. Constr. Build. Mater. 2024, 418, 135453. [Google Scholar] [CrossRef]
- Schoenauer, P.; Gruber, M.R.; Hofko, B. Case study of a batch asphalt mix plant: Energy consumption and emission allocation based on primary data. Case Stud. Constr. Mater. 2024, 21, e03669. [Google Scholar] [CrossRef]
- Martisius, M.; Sivilevicius, H. The Modelling of Emissions Evaluation at Asphalt Mixing Plant in Hot Recycling. Transport 2022, 37, 137–144. [Google Scholar] [CrossRef]
- Khare, P.; Machesky, J.; Soto, R.; He, M.G.; Presto, A.A.; Gentner, D.R. Asphalt-related emissions are a major missing nontraditional source of secondary organic aerosol precursors. Sci. Adv. 2020, 6, eabb9785. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Peng, B.; Zhang, B.; Long, K.; Cheng, Z.; Qi, Y. Study of quantitative methods for emission of greenhouse gases during construction period of asphalt pavement and emission reduction countermeasures. J. Dalian Univ. Technol. 2019, 59, 385–392. [Google Scholar]
- Yingli, H.; Zhenhua, Q.; Ying, Z.; Haitao, Z. Life-cycle assessment of carbon dioxide emissions of asphalt pavements in China. Proc. Inst. Civ. Eng.—Eng. Sustain. 2020, 173, 228–240. [Google Scholar] [CrossRef]
- Yaro, N.S.A.; Sutanto, M.H.; Baloo, L.; Habib, N.Z.; Usman, A.; Yousafzai, A.K.; Ahmad, A.; Birniwa, A.H.; Jagaba, A.H.; Noor, A. A Comprehensive Overview of the Utilization of Recycled Waste Materials and Technologies in Asphalt Pavements: Towards Environmental and Sustainable Low-Carbon Roads. Processes 2023, 11, 2095. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Wang, H.; Wang, Y.; Han, S. Integrated Life Cycle Analysis of Cost and CO2 Emissions from Vehicles and Construction Work Activities in Highway Pavement Service Life. Atmosphere 2023, 14, 194. [Google Scholar] [CrossRef]
- Yaro, N.S.A.; Sutanto, M.H.; Habib, N.Z.; Usman, A.; Kaura, J.M.; Murana, A.A.; Birniwa, A.H.; Jagaba, A.H. A Comprehensive Review of Biochar Utilization for Low-Carbon Flexible Asphalt Pavements. Sustainability 2023, 15, 6729. [Google Scholar] [CrossRef]
- Medina, T.; Calmon, J.L.; Vieira, D.; Bravo, A.; Vieira, T. Life Cycle Assessment of Road Pavements That Incorporate Waste Reuse: A Systematic Review and Guidelines Proposal. Sustainability 2023, 15, 14892. [Google Scholar] [CrossRef]
- Ruiz, A.; Guevara, J. Sustainable Decision-Making in Road Development: Analysis of Road Preservation Policies. Sustainability 2020, 12, 872. [Google Scholar] [CrossRef]
- Giani, M.I.; Dotelli, G.; Brandini, N.; Zampori, L. Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling. Resour. Conserv. Recycl. 2015, 104, 224–238. [Google Scholar] [CrossRef]
- Gulotta, T.M.; Mistretta, M.; Pratico, F.G. A life cycle scenario analysis of different pavement technologies for urban roads. Sci. Total Environ. 2019, 673, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xu, D.; Huang, J.; Wan, J. Energy Saving and Emission Reduction Benefit Evaluation of Cold Recycling Technology with Foam Asphalt. Environ. Eng. 2018, 36, 179–183. [Google Scholar]
- Feng, H.; Prozzi, J.A. Evaluation of recycled asphalt pavement using economic, environmental, and energy metrics based on long-term pavement performance sections. Road Mater. Pavement Des. 2018, 19, 1816–1831. [Google Scholar] [CrossRef]
- Jahanbakhsh, H.; Karimi, M.M.; Naseri, H.; Moghadas Nejad, F. Sustainable asphalt concrete containing high reclaimed asphalt pavements and recycling agents: Performance assessment, cost analysis, and environmental impact. J. Clean. Prod. 2020, 244, 118837. [Google Scholar] [CrossRef]
- Oreto, C.; Veropalumbo, R.; Viscione, N.; Biancardo, S.A.; Russo, F. Investigating the environmental impacts and engineering performance of road asphalt pavement mixtures made up of jet grouting waste and reclaimed asphalt pavement. Environ. Res. 2021, 198, 111277. [Google Scholar] [CrossRef]
- Tushar, Q.; Santos, J.; Zhang, G.M.; Bhuiyan, M.A.; Giustozzi, F. Recycling waste vehicle tyres into crumb rubber and the transition to renewable energy sources: A comprehensive life cycle assessment. J. Environ. Manag. 2022, 323, 116289. [Google Scholar] [CrossRef]
- Wang, Q.-Z.; Chen, Z.-D.; Lin, K.-P.; Wang, C.-H. Estimation and Analysis of Energy Conservation and Emissions Reduction Effects of Warm-Mix Crumb Rubber-Modified Asphalts during Construction Period. Sustainability 2018, 10, 4521. [Google Scholar] [CrossRef]
- Wang, Q.-Z.; Wang, N.-N.; Tseng, M.-L.; Huang, Y.-M.; Li, N.-L. Waste tire recycling assessment: Road application potential and carbon emissions reduction analysis of crumb rubber modified asphalt in China. J. Clean. Prod. 2019, 249, 119411. [Google Scholar] [CrossRef]
- Moghimi, S.; Shafabakhsh, G.; Divandari, H. Evaluation of Rutting, Fatigue, and Moisture Resistance of Low-Energy Asphalt Mixtures Modified by Crumb Rubber. Adv. Civ. Eng. 2023, 2023, 1–21. [Google Scholar] [CrossRef]
- Shulman, V.L. 1—An introduction to tires and recycling. In Tire Waste and Recycling; Letcher, T.M., Shulman, V.L., Amirkhanian, S., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 3–14. [Google Scholar]
- Cui, D.; Bi, Z.; Wang, Y.; Gu, Y.; Wang, H.; Gao, X.; Wang, P.; Sun, X.; Chen, W.-Q. Scenario analysis of waste tires from China’s vehicles future. J. Clean. Prod. 2024, 478, 143940. [Google Scholar] [CrossRef]
- Chen, B.; Zheng, D.; Xu, R.; Leng, S.; Han, L.; Zhang, Q.; Liu, N.; Dai, C.; Wu, B.; Yu, G.; et al. Disposal methods for used passenger car tires: One of the fastest growing solid wastes in China. Green Energy Environ. 2022, 7, 1298–1309. [Google Scholar] [CrossRef]
- Hu, H.; Liu, J.; Zhu, Q.; Chen, Q. An integrated supply chain management system for end-of-life tires in China and its promotion barriers: A stakeholder perspective. Resour. Conserv. Recycl. 2021, 164, 105214. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, S.; Evans, S.; Zhang, Z.; Xia, X.; Guo, Y. Automobile recycling for remanufacturing in China: A systematic review on recycling legislations, models and methods. Sustain. Prod. Consum. 2023, 36, 369–385. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, M. A comparison of ELV recycling system in China and Japan and China’s strategies. Resour. Conserv. Recycl. 2011, 57, 15–21. [Google Scholar] [CrossRef]
- Soo, V.K.; Doolan, M.; Compston, P.; Duflou, J.R.; Peeters, J.; Umeda, Y. The influence of end-of-life regulation on vehicle material circularity: A comparison of Europe, Japan, Australia and the US. Resour. Conserv. Recycl. 2021, 168, 105294. [Google Scholar] [CrossRef]
- Lu, Y.; Hussein, A.; Lauzon-Gauthier, J.; Ollevier, T.; Alamdari, H. Biochar as an Additive to Modify Biopitch Binder for Carbon Anodes. Acs Sustain. Chem. Eng. 2021, 9, 12406–12414. [Google Scholar] [CrossRef]
- Saadeh, S.; Al-Zubi, Y.; Katawal, P.; Zaatarah, B.; Fini, E. Biochar effects on the performance of conventional and rubberized HMA. Road Mater. Pavement Des. 2023, 24, 156–172. [Google Scholar] [CrossRef]
- Tripathi, N.; Hills, C.D.; Singh, R.S.; Atkinson, C.J. Biomass waste utilisation in low-carbon products: Harnessing a major potential resource. npj Clim. Atmos. Sci. 2019, 2, 35. [Google Scholar] [CrossRef]
- Zhou, X.; Moghaddam, T.B.; Chen, M.; Wu, S.; Adhikari, S.; Xu, S.; Yang, C. Life Cycle Assessment of Biochar Modified Bioasphalt Derived from Biomass. Acs Sustain. Chem. Eng. 2020, 8, 14568–14575. [Google Scholar] [CrossRef]
- Cui, P.; Schito, G.; Cui, Q. VOC emissions from asphalt pavement and health risks to construction workers. J. Clean. Prod. 2020, 244, 118757. [Google Scholar] [CrossRef]
- Zhou, A.; Tam, L.-h.; Yu, Z.; Lau, D. Effect of moisture on the mechanical properties of CFRP–wood composite: An experimental and atomistic investigation. Compos. Part B Eng. 2015, 71, 63–73. [Google Scholar] [CrossRef]
- Osman, A.I.; Fawzy, S.; Farghali, M.; El-Azazy, M.; Elgarahy, A.M.; Fahim, R.A.; Maksoud, M.I.A.A.; Ajlan, A.A.; Yousry, M.; Saleem, Y.; et al. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: A review. Environ. Chem. Lett. 2022, 20, 2385–2485. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xiang, W.; Wang, B.; Fang, J.; Zou, W.; He, F.; Li, Y.; Tsang, D.C.W.; Ok, Y.S.; Gao, B. Adsorption of acetone and cyclohexane onto CO2 activated hydrochars. Chemosphere 2020, 245, 125664. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, L.; Yang, Z.; Wang, P.; Yan, Y.; Ran, J. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Sep. Purif. Technol. 2020, 235, 116213. [Google Scholar] [CrossRef]
- Yang, J.; Tang, L.-S.; Bai, L.; Bao, R.-Y.; Liu, Z.-Y.; Xie, B.-H.; Yang, M.-B.; Yang, W. High-performance composite phase change materials for energy conversion based on macroscopically three-dimensional structural materials. Mater. Horiz. 2019, 6, 250–273. [Google Scholar] [CrossRef]
- Lehmann, J.; Cowie, A.; Masiello, C.A.; Kammann, C.; Woolf, D.; Amonette, J.E.; Cayuela, M.L.; Camps-Arbestain, M.; Whitman, T. Biochar in climate change mitigation. Nat. Geosci. 2021, 14, 883–892. [Google Scholar] [CrossRef]
- Almeida-Costa, A.; Benta, A. Economic and environmental impact study of warm mix asphalt compared to hot mix asphalt. J. Clean. Prod. 2016, 112, 2308–2317. [Google Scholar] [CrossRef]
- Paranhos, R.S.; Petter, C.O. Multivariate data analysis applied in Hot-Mix asphalt plants. Resour. Conserv. Recycl. 2013, 73, 1–10. [Google Scholar] [CrossRef]
- Abdalla, A.; Faheem, A.F.; Walters, E. Life cycle assessment of eco-friendly asphalt pavement involving multi-recycled materials: A comparative study. J. Clean. Prod. 2022, 362, 132471. [Google Scholar] [CrossRef]
Reference | Year and Area of Analysis | Result |
---|---|---|
Androjić and KaluCer [57] | 2016 Effect of variable insulation thickness on the use of solar panels. | Solar aggregate piles preheat the mineral mix and reduce moisture content, reducing the energy required to produce warm mix asphalt. |
Androjić et al. [6] | 2017 Use of the stockpiles of solar aggregates—influence of the variable surface area of the stockpiles of solar aggregates exposed to the sun. | Influence of the variable solar surface area of a solar pile on the heat accumulation results of mineral mixtures in different seasons (summer–autumn). For every 10 °C increase in temperature, a potential energy saving of 3.7 kWh can be calculated. |
Androjić et al. [58] | 2019 Utilization of solar aggregate stockpiles—storage of recycled materials. | Influence of time spent in sunlight, type of material stored, method of storage, and time stored. |
Androjić et al. [39] | 2019 Predicting the temperature of stored materials—using solar thermal storage. | Temperature prediction of stored materials using solar aggregate reserve storage. Lower temperatures were predicted for mixtures stored at 0 °C air temperature and higher values at 30 °C air temperature. |
Androjić et al. [33] | 2019 The energy consumption of asphalt mixes is significantly influenced by the moisture content of the aggregates. | Removing 1% water from a mineral mixture requires 7.34 kWh of thermal energy. |
Gruber and Hofko [59] | 2023 Effect of aggregate moisture content on greenhouse gas emissions. | Total greenhouse gas emissions are 47.1 kg CO2e/t for natural aggregates with a moisture content of 5% (0%: 36.6 kg CO2e/t). |
Ferrotti et al. [60] | 2024 Unit drying/heating reduces fuel oil consumption. | Drying/heating units cut PM, Nox, and VOC emissions by around 18 percent, 22 percent, and 35 percent, respectively. |
Asphalt Mixtures | Total Energy Consumption (MJ) | Energy Conserved (%) | Heavy Oil Consumption (kg) | Heavy Oil Conserved (kg) | |
---|---|---|---|---|---|
Hot mixing | CRMA | 300.89 | — | 7.65 | — |
Sa-CRMA | 238.62 | 20.69 | 6.07 | 1.58 | |
Warm mixing | Ev-DAT CRMA | 192.33 | 36.08 | 4.89 | 2.67 |
TOR-CRMA | 245.83 | 18.30 | 6.25 | 1.40 | |
Asp-CRMA | 245.87 | 18.28 | 6.25 | 1.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, Z.; Zhu, Y.; Zhang, H. A Review of Sustainability in Hot Asphalt Production: Greenhouse Gas Emissions and Energy Consumption. Appl. Sci. 2024, 14, 10246. https://doi.org/10.3390/app142210246
Liu Y, Liu Z, Zhu Y, Zhang H. A Review of Sustainability in Hot Asphalt Production: Greenhouse Gas Emissions and Energy Consumption. Applied Sciences. 2024; 14(22):10246. https://doi.org/10.3390/app142210246
Chicago/Turabian StyleLiu, Yancheng, Zhengyi Liu, Youwei Zhu, and Haitao Zhang. 2024. "A Review of Sustainability in Hot Asphalt Production: Greenhouse Gas Emissions and Energy Consumption" Applied Sciences 14, no. 22: 10246. https://doi.org/10.3390/app142210246
APA StyleLiu, Y., Liu, Z., Zhu, Y., & Zhang, H. (2024). A Review of Sustainability in Hot Asphalt Production: Greenhouse Gas Emissions and Energy Consumption. Applied Sciences, 14(22), 10246. https://doi.org/10.3390/app142210246