Assessment of the Possibility of Using Sugar Beet Pulp with Molasses as By-Product for Enriching Flour and Production of Bread with Pro-Health Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Physico-Chemical Characterization of Raw Materials
- Mc—is the moisture content of the sugar beet pulp sample, %;
- Pc—is the protein content of the sugar beet pulp sample, %;
- Fc—is the fat content of the sugar beet pulp sample, %;
- Ac—is the ash content of the sugar beet pulp sample, %;
- TDFc—is the total dietary fiber content of the sugar beet pulp sample, %.
2.3. Preparation of Flour Mixtures for Baking
2.4. Technological Characteristics of Wheat Flour and Flour Mixtures
2.5. Laboratory Baking Trial
2.6. Technological Characteristics of Bread Baked in Laboratory Conditions
2.7. Chemical Composition and Energy Value of Bread
- P—is the protein content of the bread sample, g/100 g;
- CC—is the carbohydrate content of the bread sample, g/100 g;
- F—is the fat content of the bread sample, g/100 g;
- TDF—is the total dietary fiber content of the bread sample, g/100 g.
2.8. Determination of Total Polyphenol Content and Antioxidant Activity
2.9. Statistical Analysis
3. Results and Discussion
3.1. Chemical Characteristics of Wheat Flour and Sugar Beet Pulp
3.2. Characteristics of Quality Parameters of Wheat Flour and Sugar Beet Pulp Mixtures
3.2.1. Parameters Characterized the Protein Complex of Wheat Flour and Sugar Beet Pulp Mixtures
3.2.2. Parameters Characterized the Starch Complex of Wheat Flour and Sugar Beet Pulp Mixtures
3.3. Baking Test Results
3.3.1. Characteristics of Technological Properties and Color Parameters of Bread
3.3.2. Assessment of Nutritional Value and Health-Promoting Properties of Bread
3.4. Comprehensive Summary of Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McKenzie, F.C.; Williams, J. Sustainable food production: Constraints, challenges and choices by 2050. Food Secur. 2015, 7, 221–233. [Google Scholar] [CrossRef]
- Wróbel-Jędrzejewska, M.; Włodarczyk, E.; Przybysz, Ł. Carbon Footprint of Flour Production in Poland. Sustainability 2024, 16, 4475. [Google Scholar] [CrossRef]
- Wojciechowska-Solis, J.; Smiglak-Krajewska, M. Consumer Education and Food Waste: An Example of the Bakery Market—The Case of Young Consumer. Eur. Res. Stud. J. 2020, 23, 89–96. [Google Scholar] [CrossRef]
- European Commission (EC). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Ensuring Resilient and Sustainable Use of EU’s Natural Resources. 2023. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52023DC0410 (accessed on 30 September 2024).
- Mańkowski, D.R.; Fraś, A.; Gołębiewska, K.; Gołębiewski, D. Consumer Acceptance of Polish Bread Products. Plant Breed. Seed Sci. 2018, 75, 31–43. [Google Scholar] [CrossRef]
- Kušar, A.; Pravst, I.; Kuprovič, U.P.; Grunert, K.G.; Kreft, I.; Hristov, H. Consumers’ Preferences towards Bread Characteristics Based on Food-Related Lifestyles: Insights from Slovenia. Foods 2023, 12, 3766. [Google Scholar] [CrossRef]
- Baryga, A.; Ziobro, R.; Gumul, D.; Rosicka-Kaczmarek, J.; Miśkiewicz, K. Physicochemical Properties and Evaluation of Antioxidant Potential of Sugar Beet Pulp—Preliminary Analysis for Further Use (Future Prospects). Agriculture 2023, 13, 1039. [Google Scholar] [CrossRef]
- Aarabi, A.; Honarvar, M.; Mizani, M.; Faghihian, H. Determination of Total Phenolic Compounds, Antioxidant Activity and Ferulic Acid in Extracts of Sugar Beet Pulp. Hacet. J. Biol. Chem. 2015, 43, 251–257. [Google Scholar] [CrossRef]
- Teimouri Yansari, A. Physical Characteristics and Physically Effectiveness of Beet Pulp for Ruminant. Iran. J. Appl. Anim. Sci. 2016, 6, 317–326. [Google Scholar]
- Dygas, D.; Kręgiel, D.; Bełkowska, J. Sugar Beet Pulp as a Biorefinery Substrate for Designing Feed. Molecules 2023, 28, 2064. [Google Scholar] [CrossRef]
- Tobin, C.; Hoppe, K. Feeding Sugar Beet by Products to Cattle. North Dakota State University (NDSU) 2023, AS1365. Available online: https://www.ndsu.edu/agriculture/extension/publications/feeding-sugarbeet-byproducts-cattle (accessed on 30 September 2024).
- Fadel, J.G.; De Peters, E.J.; Arosemena, A. Composition and digestibility of beet pulp with and without molasses and dried using three methods. Anim. Feed Sci. Technol. 2000, 85, 121–129. [Google Scholar] [CrossRef]
- Kowalski, Z. Dried Sugar Beet Pulp, Molassed. Available online: https://plantatorzy.polski-cukier.pl/438,produkty-uboczne?tresc=2871 (accessed on 30 September 2024).
- Sarafidou, M.; Vittou, O.; Psaki, O.; Filippi, K.; Tsouko, E.; Vardaxi, A.; Pispas, S.; Koutinas, A.; Stylianou, E. Evaluation of alternative sugar beet pulp refining strategies for efficient pectin extraction and poly(3-hydroxybutyrate) production. Biochem. Eng. J. 2024, 208, 109368. [Google Scholar] [CrossRef]
- Usmani, Z.; Sharma, M.; Diwan, D.; Tripathi, M.; Whale, E.; Jayakody, L.N.; Moreau, B.; Thakur, V.K.; Tuohy, M.; Gupta, V.K. Valorization of sugar beet pulp to value-added products: A review. Bioresour. Technol. 2022, 346, 126580. [Google Scholar] [CrossRef] [PubMed]
- Ogrodowczyk, D.; Olejnik, T.P.; Kaźmierczak, M.; Brzeziński, S.; Baryga, A. Economic Analysis for Biogas Plant Working at Sugar Factory. Biotechnol. Food Sci. 2016, 80, 129–136. [Google Scholar] [CrossRef]
- Montenegro-Landívar, M.F.; Tapia-Quirós, P.; Vecino, X.; Reig, M.; Valderrama, C.; Granados, M.; Cortina, J.L.; Saurina, J. Polyphenols and their potential role to fight viral diseases: An overview. Sci. Total Environ. 2021, 801, 149719. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- van der Kamp, J.W.; Jones, J.M.; McCleary, B.V.; Topping, D.L. Dietary Fibre: New Frontiers for Food and Health; Wageningen Academic Publisher: Wageningen, The Netherlands, 2010; p. 592. [Google Scholar] [CrossRef]
- Kowalski, S.; Mikulec, A.; Pustkowiak, H. Sensory Assessment and Physicochemical Properties of Wheat Bread Supplemented with Chia Seeds. Pol. J. Food Nutr. Sci. 2020, 70, 387–397. [Google Scholar] [CrossRef]
- Czubaszek, A.; Wojciechowicz-Budzisz, A.; Spychaj, R.; Kawa-Rygielska, J. Effect and added brewer’s spent grain on the baking value of flour and the quality of wheat bread. Molecules 2022, 27, 1624. [Google Scholar] [CrossRef] [PubMed]
- Cacak-Pietrzak, G.; Dziki, D.; Gawlik-Dziki, U.; Parol-Nadłonek, N.; Kalisz, S.; Krajewska, A.; Stępniewska, S. Wheat Bread Enriched with Black Chokeberry (Aronia melanocarpa L.) Pomace: Physicochemical Properties and Sensory Evaluation. Appl. Sci. 2023, 13, 6936. [Google Scholar] [CrossRef]
- Kaim, U.; Goluch, Z.S. Health Benefits of Bread Fortification: A Systematic Review of Clinical Trials according to the PRISMA Statement. Nutrients 2023, 15, 4459. [Google Scholar] [CrossRef]
- Janssen, A.M.; van Vliet, T.; Vereijken, J.M. Rheological behaviour of wheat glutens at small and large deformations. Comparison of two glutens differing in bread making potential. J. Cereal Sci. 1996, 23, 19–31. [Google Scholar] [CrossRef]
- Ahrari, A.; Bolourian, S.; Goli-Movahhed, Q. Investigating the application of sugar beet pulp and sourdough on the quantity and quality of baguette bread. J. Food Sci. Technol. 2023, 19, 161–172. [Google Scholar] [CrossRef]
- Šoronja-Simović, D.; Zahorec, J.; Šereš, Z.; Griz, A.; Sterniša, M.; Smole-Možina, S. The food industry by-products in bread making: Single and combined effect of carob pod flour, sugar beet fibers and molasses on dough rheology, quality and food safety. J. Food Sci. Technol. 2022, 59, 1429–1439. [Google Scholar] [CrossRef] [PubMed]
- Filipović, N.; Djuric, M.; Gyura, J. The effect of the type and quantity of sugar-beet fibers on bread characteristics. J. Food Eng. 2007, 78, 1047–1053. [Google Scholar] [CrossRef]
- Šereš, Z.; Gyura, J.; Filipović, N.; Šoronja-Simović, D. Application of decolorization on sugar beet pulp in bread production. Eur. Food Res. Technol. 2005, 221, 54–60. [Google Scholar] [CrossRef]
- Simić, S.; Petrović, J.; Rakić, D.; Pajin, B.; Lončarević, I.; Jozinović, A.; Fišteš, A.; Nikolić, S.; Blažić, M.; Miličević, B. The Influence of Extruded Sugar Beet Pulp on Cookies’ Nutritional, Physical and Sensory Characteristics. Sustainability 2021, 13, 5317. [Google Scholar] [CrossRef]
- Khattab, A.E.; El-khamissi, H.A.Z.; Allam, S.M.; Yousef, K.Y.M. Utilization of Sugar Beet Pulp to Improve Quality of Flat Bread. J. Agric. Chem. Biotechnol. 2021, 12, 113–116. [Google Scholar] [CrossRef]
- ISO 712; Cereals and Cereal Products—Determination of Moisture Content—Reference Method. International Organization for Standardization: Geneva, Switzerland, 2009.
- ISO 20483; Cereals and Pulses—Determination of the Nitrogen Content and Calculation of the Crude Protein Content—Kjeldahl method. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 11085; Cereals, Cereals-Based Products and Animal Feeding Stuff—Determination of Crude Fat and Total Fat Content by the Randall Extraction Method. International Organization for Standardization: Geneva, Switzerland, 2008.
- ISO 2171; Cereals, Pulses and by-Products—Determination of Ash Yield by Incineration. International Organization for Standardization: Geneva, Switzerland, 2023.
- AACC 32-07.01; Soluble, Insoluble, and Total Dietary Fiber in Foods and Food Products. AACC Approved Methods of Analysis. 11th ed. Cereals & Grains Association: St. Paul, MN, USA. Available online: https://www.cerealsgrains.org/resources/Methods/Pages/32Fiber.aspx (accessed on 30 September 2024).
- AOAC 991.43; Total, Soluble, and Insoluble Dietary Fibre in Foods (Official Method). AOAC International: Rockville, MD, USA. Available online: https://acnfp.food.gov.uk/sites/default/files/mnt/drupal_data/sources/files/multimedia/pdfs/annexg.pdf (accessed on 30 September 2024).
- Kowalska, H.; Kowalska, J.; Ignaczak, A.; Masiarz, E.; Domian, E.; Galus, S.; Ciurzyńska, A.; Salamon, A.; Zając, A.; Marzec, A. Development of a High-Fibre Multigrain Bar Technology with the Addition of Curly Kale. Molecules 2021, 26, 3939. [Google Scholar] [CrossRef]
- ISO 21415-2; Wheat and Wheat Flour—Gluten Content—Part 2: Determination of Wet Gluten and Gluten Index by Mechanical Means. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 3093; Wheat, Rye and Their Flours, Durum Wheat and Durum Wheat Semolina—Determination of the Falling Number according to Hagberg-Perten. International Organization for Standardization: Geneva, Switzerland, 2009.
- ISO 17718; Wholemeal and Flour from Wheat (Triticum aestivum L.)—Determination of Rheological Behavior as a Function of Mixing and Temperature Increase. International Organization for Standardization: Geneva, Switzerland, 2013.
- Szafrańska, A.; Podolska, G.; Świder, O.; Kotyrba, D.; Aleksandrowicz, E.; Podolska-Charlery, A.; Roszko, M. Factors Influencing the Accumulation of Free Asparagine in Wheat Grain and the Acrylamide Formation in Bread. Agriculture 2024, 14, 207. [Google Scholar] [CrossRef]
- Salamon, A.; Kowalska, H.; Stępniewska, S.; Szafrańska, A. Evaluation of the Possibilities of Using Oat Malt in Wheat Breadmaking. Appl. Sci. 2024, 14, 4101. [Google Scholar] [CrossRef]
- Roszko, M.Ł.; Szczepańska, M.; Szymczyk, K.; Rzepkowska, M. Dietary risk evaluation of acrylamide intake with bread in Poland, determined by two comparable cleanup procedures. Food Addit. Contam. Part B Surveill. 2020, 13, 1–9. [Google Scholar] [CrossRef]
- European Commission (EC). Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. Off. J. Eur. Union 2011, L304, 18–63. Available online: https://data.europa.eu/eli/reg/2011/1169/oj (accessed on 30 September 2024).
- Ignaczak, A.; Salamon, A.; Kowalska, J.; Marzec, A.; Kowalska, H. Influence of Pre-Treatment and Drying Methods on the Quality of Dried Carrot Properties as Snacks. Molecules 2023, 28, 6407. [Google Scholar] [CrossRef] [PubMed]
- Sumińska, T.; Sierakowska, M. Beet pulp as a valuable animal feed. Adv. Sci. Technol. Agric. Food Ind. 2019, 74, 48–59. [Google Scholar]
- Filipčev, B.; Mišan, A.; Šarić, B.; Šimurina, O. Sugar beet molasses as an ingredient to enhance the nutritional and functional properties of gluten-free cookies. Int. J. Food Sci. Nutr. 2016, 67, 249–256. [Google Scholar] [CrossRef]
- Wilkowska, A.; Berlowska, J.; Nowak, A.; Motyl, I.; Antczak-Chrobot, A.; Wojtczak, M.; Kunicka-Styczyńska, A.; Binczarski, M.; Dziugan, P. Combined Yeast Cultivation and Pectin Hydrolysis as an Effective Method of Producing Prebiotic Animal Feed from Sugar Beet Pulp. Biomolecules 2020, 10, 724. [Google Scholar] [CrossRef]
- Mohdaly, A.A.A.; Sarhan, M.A.; Smetanska, I.; Mahmoud, A. Antioxidant properties of various solvent extracts of potato peel, sugar beet pulp and sesame cake. J. Sci. Food Agric. 2010, 90, 218–226. [Google Scholar] [CrossRef]
- Majzoobi, M.; Mesbahi, G.H.; Seriri, F.; Farahnaki, A.; Jamalian, J. The effect of sugar beet pulp on the quality of Barbary bread. Iran. Food Sci. Technol. Res. J. 2010, 6, 17–26. [Google Scholar]
- Wang, J.; Rosell, C.M.; de Barber, C.B. Effect of the addition of different fibres on wheat dough performance and bread quality. Food Chem. 2002, 79, 221–226. [Google Scholar] [CrossRef]
- Šoronja-Simović, D.M.; Smole-Možina, S.; Raspor, P.; Maravić, N.R.; Zahorec, J.J.; Luskar, L.; Šereš, Z.I. Corab Flour and Sugar Beet Fiber as Functional Additives in Bread. Acta Period. Technol. 2016, 47, 83–93. [Google Scholar] [CrossRef]
- Li, Q.; Liu, R.; Wu, T.; Zhang, M. Interactions between soluble dietary fibers and wheat gluten in dough studied by confocal laser scanning microscopy. Food Res. Int. 2017, 95, 19–27. [Google Scholar] [CrossRef]
- Szafrańska, A. Predicting the farinograph and alveograph properties of flour based on the results of mixolab parameters. Acta Agrophysica 2015, 22, 457–469. [Google Scholar]
- Rosell, C.M.; Santos, E.; Collar, C. Physical characterization of fiber-enriched bread doughs by dual mixing and temperature constraint using the Mixolab®. Eur. Food Res. Technol. 2010, 231, 535–544. [Google Scholar] [CrossRef]
- Szafrańska, A. Comparison of alpha-amylase activity of wheat flour estimated by traditional and modern techniques. Acta Agrophysica 2014, 21, 493–505. [Google Scholar]
- Bartalné-Berceli, M.; Izsó, E.; Gergely, S.; Salgó, A. Effects of special additives in wheat dough system measured by Mixolab technique. Czech J. Food Sci. 2021, 39, 460–468. [Google Scholar] [CrossRef]
- Schleißinger, M.; Meyer, A.L.; Afsar, N.; György Nagy, Á.; Dieker, V.; Schmitt, J.J. Impact of Dietary Fibers on Moisture and Crumb Firmness of Brown Bread. Adv. J. Food Sci. Technol. 2013, 5, 1281–1284. [Google Scholar] [CrossRef]
- Majzoobi, M.; Raiss Jalali, A.; Farahnaky, A. Impact of Whole Oat Flour on Dough Properties and Quality of Fresh and Stored Part-Baked Bread. J. Food Qual. 2016, 6, 620–626. [Google Scholar] [CrossRef]
- Rubel, I.A.; Perez, E.E.; Manrique, G.D.; Genovese, D.B. Fiber enrichment of wheat bread with Jerusalem artichoke inulin: Effect of dough rheology and bread quality. Food Struct. 2015, 3, 21–29. [Google Scholar] [CrossRef]
- PN-A-74105; Wheat Baked Goods. Polish Committee for Standardization: Warsaw, Poland, 1992.
- Filipčev, B.; Lević, L.; Bodroža-Solarov, M.; Mišljenović, N.; Koprivica, G. Quality Characteristics and Antioxidant Properties of Breads Supplemented with Sugar Beet Molasses-Based Ingredients. Int. J. Food Prop. 2010, 13, 1035–1053. [Google Scholar] [CrossRef]
- Lee, J.S.; Ramalingam, S.; Jo, I.G.; Kwon, Y.S.; Bahuguna, A.; Oh, Y.S.; Kwon, O.J.; Kim, M. Comparative study of the physicochemical, nutritional and antioxidant properties of some commercial rafined and non-centrifugal sugars. Food Res. Int. 2019, 10, 614–625. [Google Scholar] [CrossRef]
- Dessev, T.; Lalanne, V.; Keramat, J.; Jury, V.; Prost, C.; Le-Bail, A. Influence of Baking Conditions on Bread Characteristics and Acrylamide Concentration. J. Food Sci. Nutr. Res. 2020, 3, 291–310. [Google Scholar] [CrossRef]
- Surdyk, N.; Rosén, J.; Andersson, R.; Åman, P. Effects of asparagine, fructose, and baking conditions on acrylamide content in yeast-leavened wheat bread. J. Agric. Food Chem. 2004, 52, 2047–2051. [Google Scholar] [CrossRef] [PubMed]
- Şenyuva, H.Z.; Gökmen, V. Survey of acrylamide in Turkish foods by an in-house validated LC-MS method. Food Addit. Contam. 2005, 22, 204–209. [Google Scholar] [CrossRef] [PubMed]
- European Commission (EC). Commission Regulation No 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Off. J. Eur. Union 2017, L304, 24–44. Available online: https://data.europa.eu/eli/reg/2017/2158/oj (accessed on 30 September 2024).
- Minarovičová, L.; Lauková, M.; Kohajdová, Z.; Karovičová, J.; Dobrovická, D.; Kuchtová, V. Qualitative Properties of Pasta Enriched with Celery Root and Sugar Beet By-Products. Czech J. Food Sci. 2018, 36, 66–72. [Google Scholar] [CrossRef]
- European Commission (EC). Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Off. J. Eur. Union 2006, L404, 9–25. Available online: https://data.europa.eu/eli/reg/2006/1924/oj (accessed on 30 September 2024).
- Chlopicka, J.; Pasko, P.; Gorinstein, S.; Jedryas, A.; Zagrodzki, P. Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. LWT-Food Sci. Technol. 2012, 46, 548–555. [Google Scholar] [CrossRef]
- Bueno, C.; Thys, R.; Tischer, B. Potential Effects of the Different Matrices to Enhance the Polyphenolic Content and Antioxidant Activity in Gluten-Free Bread. Foods 2023, 12, 4415. [Google Scholar] [CrossRef]
Quality Characteristics of SBP | umSBP | mSBP |
---|---|---|
Moisture content (%) | 7.2 | 7.5 |
Protein content (%) | 8.6 | 9.6 |
Ash content (%) | 3.6 | 5.0 |
Fat content (%) | 0.24 | 0.26 |
Total dietary fiber content (%) | 57.5 | 42.0 |
Including insoluble dietary fiber content (%) | 39.2 | 29.4 |
soluble dietary fiber content (%) | 18.3 | 12.6 |
Carbohydrate content (%) | 30.2 | 43.2 |
Including sugar content (%) | 14.4 | 26.0 |
Total polyphenol content (mg GAE/100 g d.m.) | 17.3 | 39.1 |
Antioxidant activity (DPPH) (µM Trolox/100 g d.m.) | 8.07 | 14.29 |
Quality Characteristics of SBP Mixtures | Quantity of the SBP Additive (Factor A) | Type of Fortification (Factor B) | Interaction (A × B) | ||||
---|---|---|---|---|---|---|---|
0% | 1% | 5% | 10% | umSBP | mSBP | p-Value | |
Gluten content (%) | 28.3 b | 28.3 b | 27.8 b | 25.8 a | 27.8 B | 27.3 A | 0.1000 |
Gluten Index | 96 b | 93 a | 92 a | 93 a | 93 A | 94 B | 0.0306 * |
Water absorption (%) | 60.0 a | 60.6 a | 64.6 b | 71.0 c | 64.8 B | 63.4 A | 0.0000 * |
Time of dough development, T1 (min) | 1.84 a | 1.88 a | 9.38 b | 9.37 b | 5.92 B | 5.32 A | 0.0000 * |
Stability (min) | 9.56 a | 10.32 b | 11.96 d | 11.58 c | 10.94 B | 10.78 A | 0.0021 * |
Gluten proteins weakening, C2 (N·m) | 0.508 a | 0.532 a | 0.618 b | 0.630 b | 0.594 B | 0.550 A | 0.0340 * |
Protein weakening, C1-C2 (N·m) | 0.590 d | 0.569 c | 0.498 b | 0.475 a | 0.522 A | 0.544 B | 0.0273 * |
Quality Characteristics of SBP Mixtures | Quantity of the SBP Additive (Factor A) | Type of Fortification (Factor B) | Interaction (A × B) | ||||
---|---|---|---|---|---|---|---|
0% | 1% | 5% | 10% | umSBP | mSBP | p-Value | |
Falling number, (s) | 328 a,b | 339 b | 335 b | 319 a | 331 A | 330 A | 0.0095 * |
Starch gelatinization, C3 (N·m) | 1.986 a | 2.049 b | 2.011 a | 1.992 a | 2.054 B | 1.965 A | 0.0000 * |
Amylase activity, C4 (N·m) | 1.836 b | 1.943 d | 1.868 c | 1.672 a | 1.839 B | 1.820 A | 0.0001 * |
Starch retrogradation, C5 (N·m) | 2.862 c | 2.932 d | 2.629 b | 2.248 a | 2.664 | 2.672 | 0.0000 * |
Initial starch gelatinization temperature, D2 (N·m) | 54.2 a | 54.4 a,b | 54.7 c | 54.6 b,c | 54.4 A | 54.5 A | 0.0000 * |
Final starch gelatinization temperature, D3 (N·m) | 78.0 b | 78.4 c | 78.0 b | 73.9 a | 76.8 A | 77.3 B | 0.0000 * |
Starch gelatinization speed, C3-C2 (N·m) | 1.478 c | 1.517 d | 1.393 b | 1.362 a | 1.460 B | 1.415 A | 0.0000 * |
Amylase degradation speed, C3-C4 (N·m) | 0.150 c | 0.106 a | 0.144 b | 0.319 d | 0.215 B | 0.145 A | 0.0000 * |
Starch retrogradation rate, C5-C4 (N·m) | 1.027 d | 0.990 c | 0.761 b | 0.576 a | 0.825 A | 0.852 B | 0.0000 * |
Quality Characteristics of Bread | Quantity of the SBP Additive (Factor A) | Type of Fortification (Factor B) | Interaction (A × B) | |||||
---|---|---|---|---|---|---|---|---|
0% | 1% | 5% | 10% | umSBP | mSBP | p-Value | ||
Crumb moisture content, MC (%) | 45.45 a | 46.12 a | 47.39 b | 48.22 c | 46.50 A | 47.10 B | 0.2529 | |
Specific volume, BV (cm3/100 g of bread) | 317 c | 312 c | 282 b | 222 a | 279 A | 288 B | 0.0002 * | |
Breadcrumb hardness, BCH (N) | 10.8 a | 28.4 b | 34.0 c | 52.8 d | 29.9 A | 33.1 B | 0.0001 * | |
Color parameters of crumb | Lightness, L* | 71.20 d | 67.06 c | 65.32 b | 60.03 a | 66.67 B | 65.14 A | 0.0000 * |
Redness, a* | 1.40 a | 1.60 b | 1.67 c | 1.69 c | 1.38 A | 1.81 B | 0.0000 * | |
Yellowness, b* | 17.61 d | 16.63 c | 15.94 b | 14.77 a | 15.74 A | 16.74 B | 0.0000 * | |
Chroma, C* | 17.67 d | 16.70 c | 16.03 b | 14.87 a | 15.80 A | 16.84 B | 0.0000 * | |
Color parameters of crust | Lightness, Lc* | 42.41 a,b | 45.44 b | 45.54 b | 40.58 a | 44.42 A | 42.57 A | 0.5449 |
Redness, ac* | 15.15 c | 13.54 b | 13.05 b | 11.60 a | 13.13 A | 13.54 B | 0.1242 | |
Yellowness, bc* | 23.79 b | 23.76 b | 24.08 b | 18.94 a | 23.00 A | 22.29 A | 0.7828 | |
Chroma, Cc* | 28.26 b | 27.38 b | 27.41 b | 22.23 a | 26.53 A | 26.11 A | 0.7374 | |
Acrylamide content, AA (µg/kg d.m.) | 15.7 a,b | 14.7 a | 15.6 a,b | 16.4 b | 13.9 A | 17.3 B | 0.0000 * |
Quality Characteristics of Bread | Quantity of the SBP Additive (Factor A) | Type of Fortification (Factor B) | Interaction (A × B) | ||||
---|---|---|---|---|---|---|---|
0% | 1% | 5% | 10% | umSBP | mSBP | p-Value | |
Protein content, P (% d.m.) | 14.23 d | 14.09 c | 13.98 b | 13.62 a | 14.01 B | 13.95 A | 0.0000 * |
Ash content, A (% d.m.) | 1.01 a | 1.04 a,b | 1.04 a,b | 1.06 b | 1.02 A | 1.06 B | 0.0010 * |
Fat content, F (% d.m.) | 1.23 c | 1.19 c | 1.09 b | 0.98 a | 1.12 A | 1.13 A | 0.2742 |
Total dietary fiber content, TDF (%) | 2.48 a | 2.74 b | 3.71 c | 4.92 d | 3.69 B | 3.26 A | 0.0000 * |
TDF (% d.m.) | 4.56 a | 5.08 b | 7.05 c | 9.50 d | 6.89 B | 6.20 A | 0.0000 * |
of which insoluble dietary fiber content, IN-DF (% d.m.) | 2.92 a | 3.68 b | 4.46 c | 5.75 d | 4.39 B | 4.01 A | 0.0000 * |
Soluble dietary fiber content, S-DF (% d.m.) | 1.64 b | 1.40 a | 2.58 c | 3.75 d | 2.50 B | 2.18 A | 0.0000 * |
Carbohydrate content, CC (% d.m.) | 79.0 d | 78.6 c | 76.8 b | 74.8 a | 77.0 A | 77.7 B | 0.0000 * |
of which sugars content, S (% d.m.) | 6.3 a | 6.3 a | 6.7 b | 7.0 c | 6.4 A | 6.8 B | 0.0065 * |
Energy value, EV (kcal/100 g) | 214 d | 211 c | 204 b | 198 a | 207 A | 206 A | 0.5338 |
Total polyphenol content, TPC (mg GAE/100 g d.m.) | 9.52 a | 9.81 a,b | 10.91 b,c | 12.02 c | 8.88 A | 12.25 B | 0.0012 * |
Antioxidant activity, DPPH (µM Trolox/100 g d.m.) | 4.76 a | 9.59 b | 11.86 c | 12.71 c | 7.66 A | 11.80 B | 0.0004 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salamon, A.; Szafrańska, A.; Baryga, A.; Diowksz, A.; Szymczyk, K.; Kowalska, H. Assessment of the Possibility of Using Sugar Beet Pulp with Molasses as By-Product for Enriching Flour and Production of Bread with Pro-Health Properties. Appl. Sci. 2024, 14, 10570. https://doi.org/10.3390/app142210570
Salamon A, Szafrańska A, Baryga A, Diowksz A, Szymczyk K, Kowalska H. Assessment of the Possibility of Using Sugar Beet Pulp with Molasses as By-Product for Enriching Flour and Production of Bread with Pro-Health Properties. Applied Sciences. 2024; 14(22):10570. https://doi.org/10.3390/app142210570
Chicago/Turabian StyleSalamon, Agnieszka, Anna Szafrańska, Andrzej Baryga, Anna Diowksz, Krystyna Szymczyk, and Hanna Kowalska. 2024. "Assessment of the Possibility of Using Sugar Beet Pulp with Molasses as By-Product for Enriching Flour and Production of Bread with Pro-Health Properties" Applied Sciences 14, no. 22: 10570. https://doi.org/10.3390/app142210570
APA StyleSalamon, A., Szafrańska, A., Baryga, A., Diowksz, A., Szymczyk, K., & Kowalska, H. (2024). Assessment of the Possibility of Using Sugar Beet Pulp with Molasses as By-Product for Enriching Flour and Production of Bread with Pro-Health Properties. Applied Sciences, 14(22), 10570. https://doi.org/10.3390/app142210570