Versatility Evaluation of Landslide Risk with Window Sizes and Sampling Techniques Based on Deep Learning
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.1.1. Niigata Prefecture (NIG Area)
2.1.2. Iwate Prefecture, Miyagi Prefecture (IWT-MYG Area)
2.1.3. Hokkaido (HKD Area)
2.2. Historical Landslide Records (HLS)
2.3. Data-Use
- (1)
- Internal Factors: (a) Topography, (b) Lithology, (c) Geological structure
- (2)
- External Factors: (a) Induced Causes: Earthquakes and precipitation, (b) Human Causes, among
3. Method
3.1. Convolutional Neural Network
3.2. CNN Window Sizes
3.3. Sampling Techniques
3.4. Evaluation Method
3.4.1. AUC and ROC
3.4.2. Accuracy, Precision, Recall, and the Matthews Correlation Coefficient (MCC)
3.4.3. Information Gain Ratio (IGR) Method
4. Results and Discussion
4.1. Importance of Features
4.2. Window Size
4.2.1. Window Size and Landslide Scale
4.2.2. Window Size and Whole Study Area
4.3. Sampling Method
4.4. Visualization
4.5. Versatility
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Area | LR | DT | RF | KNN | ANN | MLP | |
---|---|---|---|---|---|---|---|
NIG | ACC | 0.704 | 0.873 | 0.654 | 0.832 | 0.827 | 0.811 |
AUC | 0.744 | 0.873 | 0.654 | 0.931 | 0.919 | 0.914 | |
HKD | ACC | 0.873 | 0.952 | 0.726 | 0.912 | 0.913 | 0.898 |
AUC | 0.873 | 0.952 | 0.839 | 0.967 | 0.969 | 0.958 | |
IWT | ACC | 0.802 | 0.908 | 0.756 | 0.848 | 0.880 | 0.876 |
AUC | 0.769 | 0.961 | 0.844 | 0.927 | 0.938 | 0.942 |
Train Area | Model | Confusion Matrix | ACC | P-Score | R-Score | F-Score | AUC | |||
---|---|---|---|---|---|---|---|---|---|---|
TP | FP | TN | FN | |||||||
HKD (Down) | CNN-3 | 45,835 | 5759 | 43,881 | 3437 | 0.907 | 0.888 | 0.930 | 0.909 | 0.964 |
CNN-7 | 47,525 | 5837 | 43,744 | 1806 | 0.923 | 0.891 | 0.963 | 0.926 | 0.971 | |
CNN-11 | 47,170 | 4520 | 44,981 | 2241 | 0.932 | 0.913 | 0.955 | 0.933 | 0.977 | |
NIG (Down) | CNN-3 | 46,111 | 10,928 | 36,115 | 979 | 0.874 | 0.808 | 0.979 | 0.886 | 0.933 |
CNN-7 | 46,364 | 10,302 | 36,799 | 668 | 0.883 | 0.818 | 0.986 | 0.894 | 0.944 | |
CNN-11 | 46,643 | 10,986 | 36,233 | 271 | 0.880 | 0.809 | 0.994 | 0.892 | 0.945 | |
IWT (Down) | CNN-3 | 106,053 | 15,428 | 98,251 | 7548 | 0.899 | 0.873 | 0.934 | 0.902 | 0.959 |
CNN-7 | 109,538 | 16,030 | 97,962 | 3750 | 0.913 | 0.872 | 0.967 | 0.917 | 0.966 | |
CNN-11 | 109,430 | 14,585 | 99,164 | 4101 | 0.918 | 0.882 | 0.964 | 0.921 | 0.970 |
Test Area | Model | Confusion Matrix | ACC | P-Score | R-Score | F-Score | AUC | |||
---|---|---|---|---|---|---|---|---|---|---|
TP | FP | TN | FN | |||||||
HKD (Down) | CNN-3 | 115,233 | 418,198 | 3,222,142 | 8407 | 0.887 | 0.216 | 0.932 | 0.351 | 0.418 |
CNN-7 | 119,219 | 425,302 | 3,215,038 | 4421 | 0.886 | 0.219 | 0.964 | 0.357 | 0.429 | |
CNN-11 | 118,046 | 336,527 | 3,303,813 | 5594 | 0.909 | 0.260 | 0.955 | 0.408 | 0.472 | |
NIG (Down) | CNN-3 | 115,298 | 344,422 | 1,120,262 | 2368 | 0.781 | 0.251 | 0.980 | 0.399 | 0.430 |
CNN-7 | 116,072 | 319,706 | 1,144,978 | 1594 | 0.797 | 0.266 | 0.986 | 0.419 | 0.451 | |
CNN-11 | 117,009 | 341,023 | 1,123,661 | 657 | 0.784 | 0.255 | 0.994 | 0.406 | 0.441 | |
IWT (Down) | CNN-3 | 265,495 | 599,087 | 3,789,656 | 18,604 | 0.868 | 0.307 | 0.935 | 0.462 | 0.491 |
CNN-7 | 274,943 | 622,882 | 3,765,861 | 9156 | 0.865 | 0.306 | 0.968 | 0.465 | 0.501 | |
CNN-11 | 274,090 | 567,355 | 3,821,388 | 10,009 | 0.876 | 0.326 | 0.965 | 0.487 | 0.520 |
Train Area | Model | Confusion Matrix | ACC | P-Score | R-Score | F-Score | AUC | |||
---|---|---|---|---|---|---|---|---|---|---|
TP | FP | TN | FN | |||||||
HKD (Over) | CNN-3 | 1,426,211 | 124,347 | 1,331,308 | 30,406 | 0.947 | 0.920 | 0.979 | 0.949 | 0.984 |
CNN-7 | 1,445,542 | 110,236 | 1,345,726 | 10,768 | 0.958 | 0.929 | 0.993 | 0.960 | 0.990 | |
CNN-11 | 1,449,994 | 85,648 | 1,370,168 | 6462 | 0.968 | 0.944 | 0.996 | 0.969 | 0.993 | |
NIG (Over) | CNN-3 | 581,436 | 121,195 | 464,813 | 4304 | 0.893 | 0.828 | 0.993 | 0.903 | 0.952 |
CNN-7 | 581,505 | 98,173 | 487,608 | 4462 | 0.912 | 0.856 | 0.992 | 0.919 | 0.966 | |
CNN-11 | 580,933 | 78,093 | 507,844 | 4878 | 0.929 | 0.882 | 0.992 | 0.933 | 0.974 | |
IWT (Over) | CNN-3 | 1,713,553 | 180,576 | 1,573,831 | 43,035 | 0.936 | 0.905 | 0.976 | 0.939 | 0.979 |
CNN-7 | 1,721,697 | 163,870 | 1,591,188 | 34,240 | 0.944 | 0.913 | 0.981 | 0.946 | 0.983 | |
CNN-11 | 1,737,835 | 149,781 | 1,606,272 | 17,107 | 0.952 | 0.921 | 0.990 | 0.954 | 0.987 |
Test Area | Model | Confusion Matrix | ACC | P-Score | R-Score | F-Score | AUC | |||
---|---|---|---|---|---|---|---|---|---|---|
TP | FP | TN | FN | |||||||
HKD (Over) | 121085 | 311,546 | 3,328,794 | 2555 | 0.917 | 0.280 | 0.979 | 0.435 | 0.499 | 121,085 |
122725 | 274,251 | 3,366,089 | 915 | 0.927 | 0.309 | 0.993 | 0.471 | 0.532 | 122,725 | |
123090 | 212,257 | 3,428,083 | 550 | 0.943 | 0.367 | 0.996 | 0.536 | 0.586 | 123,090 | |
NIG (Over) | CNN-3 | 116,797 | 302,690 | 1,161,994 | 869 | 0.808 | 0.278 | 0.993 | 0.435 | 0.467 |
CNN-7 | 116,759 | 245,016 | 1,219,668 | 907 | 0.845 | 0.323 | 0.992 | 0.487 | 0.515 | |
CNN-11 | 116,676 | 194,057 | 1,270,627 | 990 | 0.877 | 0.375 | 0.992 | 0.545 | 0.567 | |
IWT (Over) | CNN-3 | 277,195 | 450,606 | 3,938,137 | 6904 | 0.902 | 0.381 | 0.976 | 0.548 | 0.575 |
CNN-7 | 278,574 | 408,079 | 3,980,664 | 5525 | 0.911 | 0.406 | 0.981 | 0.574 | 0.599 | |
CNN-11 | 281,337 | 373,809 | 4,014,934 | 2762 | 0.919 | 0.429 | 0.990 | 0.599 | 0.623 |
References
- Jiang, Q. Evaluation Based on ArcGIS for Slopes Geohazards. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2005. [Google Scholar]
- Chen, X. Application of Artificial Intelligence to Assessment of Earthquake-Induced Landslide Susceptibility. Ph.D. Thesis, Institute of Geology, China Earthquake Administration, Beijing, China, 2007. (In Chinese). [Google Scholar]
- Kadavi, P.R.; Lee, C.-W.; Lee, S. Landslide-susceptibility mapping in Gangwon-do, South Korea, using logistic regression and decision tree models. Environ. Earth Sci. 2019, 78, 116. [Google Scholar] [CrossRef]
- Lee, S.; Hong, S.-M.; Jung, H.-S. A support vector machine for landslide susceptibility mapping in Gangwon Province, Korea. Sustainability 2017, 9, 48. [Google Scholar] [CrossRef]
- Sameen, M.I.; Pradhan, B.; Bui, D.T.; Alamri, A.M. Systematic sample subdividing strategy for training landslide susceptibility models. Catena 2020, 187, 104358. [Google Scholar] [CrossRef]
- Adnan, M.S.G.; Rahman, M.S.; Ahmed, N.; Ahmed, B.; Rabbi, M.F.; Rahman, R.M. Improving spatial agreement in machine learning-based landslide susceptibility mapping. Remote Sens. 2020, 12, 3347. [Google Scholar] [CrossRef]
- Wei, R.; Ye, C.; Sui, T.; Zhang, H.; Ge, Y.; Li, Y. A feature enhancement framework for landslide detection. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103521. [Google Scholar] [CrossRef]
- Wei, R.; Ye, C.; Sui, T.; Zhang, H.; Ge, Y.; Li, Y. Combining spatial response features and machine learning classifiers for landslide susceptibility mapping. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102681. [Google Scholar] [CrossRef]
- He, Y.; Zhao, Z.; Yang, W.; Yan, H.; Wang, W.; Yao, S.; Zhang, L.; Liu, T. A unified network of information considering superimposed landslide factors sequence and pixel spatial neighbourhood for landslide susceptibility mapping. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102508. [Google Scholar] [CrossRef]
- Jiang, W.; Xi, J.; Li, Z.; Zang, M.; Chen, B.; Zhang, C.; Liu, Z.; Gao, S.; Zhu, W. Deep Learning for Landslide Detection and Segmentation in High-Resolution Optical Images along the Sichuan-Tibet Transportation Corridor. Remote Sens. 2022, 14, 5490. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, M.; Liu, K. Comparisons of Convolutional Neural Network and Other Machine Learning Methods in Landslide Susceptibility Assessment: A Case Study in Pingwu. Remote Sens. 2023, 15, 798. [Google Scholar] [CrossRef]
- Hussain, M.A.; Chen, Z.; Zheng, Y.; Zhou, Y.; Daud, H. Deep Learning and Machine Learning Models for Landslide Susceptibility Mapping with Remote Sensing Data. Remote Sens. 2023, 15, 4703. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Tiede, D.; Aryal, J. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens. 2019, 11, 196. [Google Scholar] [CrossRef]
- Liu, R.; Yang, X.; Xu, C.; Wei, L.; Zeng, X. Comparative Study of Convolutional Neural Network and Conventional Machine Learning Methods for Landslide Susceptibility Mapping. Remote Sens. 2022, 14, 321. [Google Scholar] [CrossRef]
- National Research Institute for Earth Science and Disaster Resilience, Japan. Landslide Topography GIS Data. Available online: https://www.bosai.go.jp/e/index.html (accessed on 14 October 2024).
- Liu, R.; Sun, N.; Tang, G. Analysis of Geological Environment and Causes of Landslides in Guangdong. Trop. Geogr. 2010, 1, 13–17. [Google Scholar]
- Lee, S.; Min, K. Statistical analysis of landslide susceptibility at Yongin, Korea. Environ. Geol. 2001, 40, 1095–1113. [Google Scholar] [CrossRef]
- Glade, T. Landslide occurrence as a response to land use change: A review of evidence from New Zealand. Catena 2003, 51, 297–314. [Google Scholar] [CrossRef]
- Ray, R.L.; Jacobs, J.M. Relationships among remotely sensed soil moisture, precipitation and landslide events. Nat. Hazards 2007, 43, 211–222. [Google Scholar] [CrossRef]
- Sun, L.; Ma, B.; Pei, L.; Zhang, X.; Zhou, J.L. The relationship of human activities and rainfall-induced landslide and debris flow hazards in Central China. Nat. Hazards 2021, 107, 147–169. [Google Scholar] [CrossRef]
- Larsen, I.J.; Montgomery, D.R. Landslide erosion coupled to tectonics and river incision. Nat. Geosci. 2012, 5, 468–473. [Google Scholar] [CrossRef]
- Tibaldi, A.; Ferrari, L.; Pasquarè, G. Landslides triggered by earthquakes and their relations with faults and mountain slope geometry: An example from Ecuador. Geomorphology 1995, 11, 215–226. [Google Scholar] [CrossRef]
- Gonzalez-Ollauri, A.; Mickovski, S.B. Hydrological effect of vegetation against rainfall-induced landslides. J. Hydrol. 2017, 549, 374–387. [Google Scholar] [CrossRef]
- Catani, F.; Casagli, N.; Ermini, L.; Righini, G.; Menduni, G. Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides 2005, 2, 329–342. [Google Scholar] [CrossRef]
- Yokoyama, R.; Sirasawa, M.; Kikuchi, Y. Representation of topographical features by opennesses. J. Jpn. Soc. Photogramm. Remote Sens. 1999, 38, 26–34. [Google Scholar]
- Ding, A.; Zhang, Q.; Zhou, X.; Dai, B. Automatic recognition of landslide based on CNN and texture change detection. In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016. [Google Scholar]
- Zhang, C.; Sargent, I.; Pan, X.; Li, H.; Gardiner, A.; Hare, J.; Atkinson, P.M. An object-based convolutional neural network (OCNN) for urban land use classification. Remote Sens. Environ. 2018, 216, 57–70. [Google Scholar] [CrossRef]
- Dixit, M.; Kwitt, R.; Niethammer, M.; Vasconcelos, N. Aga: Attribute-guided augmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Liu, B.; Wang, X.; Dixit, M.; Kwitt, R.; Vasconcelos, N. Feature Space Transfer for Data Augmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Wang, Y.; Fang, Z.; Hong, H. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci. Total Environ. 2019, 666, 975–993. [Google Scholar] [CrossRef] [PubMed]
- Ghorbanzadeh, O.; Meena, S.R.; Abadi, H.S.S.; Piralilou, S.T.; Zhiyong, L.; Blaschke, T. Landslide mapping using two main deep-learning convolution neural network streams combined by the Dempster–Shafer model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 452–463. [Google Scholar] [CrossRef]
- Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta (BBA)-Protein Struct. 1975, 405, 442–451. [Google Scholar] [CrossRef]
- Shirzadi, A.; Solaimani, K.; Roshan, M.H.; Kavian, A.; Chapi, K.; Shahabi, H.; Keesstra, S.; Ahmad, B.B.; Bui, D.T. Uncertainties of prediction accuracy in shallow landslide modeling: Sample size and raster resolution. Catena 2019, 178, 172–188. [Google Scholar] [CrossRef]
Code | Feature | Resource | NIG | HKD | IWT |
---|---|---|---|---|---|
A0 | HLS | NIED 1 | 0,1 | 0,1 | 0,1 |
A1 | DEM (m) | GIAJ 2 | 14 to 1021.5 | 0 to 1016 | 10 to 1627.1 |
A2 | Slope (°) | DEM 3 | 0 to 78.01 | 0 to 76.05 | 0 to 71.32 |
A3 | Aspect | DEM | −1 to 360 | ||
A4 | Curvature | DEM | −84.3 to 115.5 | −63.0 to 57.0 | −80.5 to 76.6 |
A5 | Rain (mm) | JMA 4 | 2185.37 to 2795.37 | 1060.82 to 1215.38 | 1222.54 to 2130.98 |
A6 | River (m) | MLIT 5 | 0 to 2612.16 | 0 to 3560.9 | 0 to 4909.76 |
A7 | Road (m) | MLIT | 0 to 6402.81 | 0 to 16,048.8 | 0 to 23,740.1 |
A8 | Fault (m) | GSJ 6 | 0 to 22,333.4 | 0 to 16,798.8 | 0 to 14,769.6 |
A9 | Land use | MLIT | 11 types | ||
A10 | Soil | MLIT | 37 types | ||
A11 | Lithology | GSJ | 27 types | ||
A12 | Vegetation | BiodiC-J 7 | 33 types | ||
A13 | Catchment Area | DEM | 1 to 6359 | 1 to 13,026 | 1 to 13,460 |
A14 | Openness (down) | DEM | 0 to 88.06 | 4.04 to 87.87 | 0 to 87.6 |
A15 | Openness (up) | DEM | 0 to 77.96 | 4.04 to 76.09 | 0 to 74.78 |
Predicted Category | |||
---|---|---|---|
Positive (1) | Negative (0) | ||
True category | Positive (1) | True positive (TP) 1 | False negative (FN) 4 |
Negative (0) | False positive (FP) 3 | True negative (TN) 2 |
(a) | ||||||||||
Train Area | Model | Confusion Matrix | ACC | P-Score | R-Score | F-Score | AUC | |||
TP | FP | TN | FN | |||||||
HKD (Down) | CNN-15 | 48,138 | 4552 | 44,786 | 1436 | 0.939 | 0.914 | 0.971 | 0.941 | 0.981 |
CNN-19 | 48,015 | 4457 | 45,211 | 1229 | 0.943 | 0.915 | 0.975 | 0.944 | 0.982 | |
CNN-23 | 46,608 | 3179 | 46,189 | 2936 | 0.938 | 0.936 | 0.941 | 0.938 | 0.982 | |
NIG (Down) | CNN-15 | 46,611 | 10,036 | 37,114 | 372 | 0.889 | 0.823 | 0.992 | 0.900 | 0.949 |
CNN-19 | 46,759 | 10,286 | 36,878 | 210 | 0.888 | 0.820 | 0.996 | 0.899 | 0.950 | |
CNN-23 | 46,402 | 9645 | 37,483 | 603 | 0.891 | 0.828 | 0.987 | 0.901 | 0.953 | |
IWT (Down) | CNN-15 | 109,643 | 13,044 | 100,619 | 3974 | 0.925 | 0.894 | 0.965 | 0.928 | 0.973 |
CNN-19 | 109,426 | 13,511 | 99,928 | 4415 | 0.921 | 0.890 | 0.961 | 0.924 | 0.969 | |
CNN-23 | 109,232 | 13,207 | 100,595 | 4246 | 0.923 | 0.892 | 0.963 | 0.926 | 0.973 | |
(b) | ||||||||||
Test Area | Model | Confusion Matrix | ACC | P-Score | R-Score | F-Score | MCC | |||
TP | FP | TN | FN | |||||||
HKD (Down) | CNN-15 | 120,168 | 336,599 | 3,303,741 | 3472 | 0.910 | 0.263 | 0.972 | 0.414 | 0.480 |
CNN-19 | 120,754 | 324,446 | 3,315,894 | 2886 | 0.913 | 0.271 | 0.977 | 0.425 | 0.490 | |
CNN-23 | 116,595 | 231,030 | 3,409,310 | 7045 | 0.937 | 0.335 | 0.943 | 0.495 | 0.541 | |
NIG (Down) | CNN-15 | 116,790 | 311,512 | 1,153,172 | 876 | 0.803 | 0.273 | 0.993 | 0.428 | 0.461 |
CNN-19 | 117,145 | 319,558 | 1,145,126 | 521 | 0.798 | 0.268 | 0.996 | 0.423 | 0.456 | |
CNN-23 | 116,266 | 298,753 | 1,165,931 | 1400 | 0.810 | 0.280 | 0.988 | 0.437 | 0.468 | |
IWT (Down) | CNN-15 | 274,207 | 503,575 | 3,885,168 | 9892 | 0.890 | 0.353 | 0.965 | 0.516 | 0.546 |
CNN-19 | 273,211 | 520,643 | 3,868,100 | 10,888 | 0.886 | 0.344 | 0.962 | 0.507 | 0.536 | |
CNN-23 | 273,526 | 506,337 | 3,882,406 | 10,573 | 0.889 | 0.351 | 0.963 | 0.514 | 0.543 |
(a) | ||||||||||
Train Area | Model | Confusion Matrix | ACC | P-Score | R-Score | F-Score | AUC | |||
TP | FP | TN | FN | |||||||
HKD (Over) | CNN-15 | 1,452,864 | 74,311 | 1,381,416 | 3681 | 0.973 | 0.951 | 0.997 | 0.974 | 0.995 |
CNN-19 | 1,454,869 | 59,765 | 1,396,738 | 900 | 0.979 | 0.961 | 0.999 | 0.980 | 0.997 | |
CNN-23 | 1,386,938 | 118,275 | 1,338,441 | 68,618 | 0.936 | 0.921 | 0.953 | 0.937 | 0.979 | |
NIG (Over) | CNN-15 | 581,178 | 64,862 | 521,115 | 4593 | 0.941 | 0.900 | 0.992 | 0.944 | 0.981 |
CNN-19 | 584,992 | 68,492 | 516,619 | 1645 | 0.940 | 0.895 | 0.997 | 0.943 | 0.983 | |
CNN-23 | 577,578 | 108,612 | 477,954 | 7604 | 0.901 | 0.842 | 0.987 | 0.909 | 0.955 | |
IWT (Over) | CNN-15 | 1,718,580 | 117,579 | 1,637,565 | 37,271 | 0.956 | 0.936 | 0.979 | 0.957 | 0.986 |
CNN-19 | 1,717,931 | 81,962 | 1,673,660 | 37,442 | 0.966 | 0.954 | 0.979 | 0.966 | 0.991 | |
CNN-23 | 1,750,909 | 273,065 | 1,482,606 | 4415 | 0.921 | 0.865 | 0.997 | 0.927 | 0.972 | |
(b) | ||||||||||
Test Area | Model | Confusion Matrix | ACC | P-Score | R-Score | F-Score | MCC | |||
TP | FP | TN | FN | |||||||
HKD (Over) | CNN-15 | 123,334 | 184,167 | 3,456,173 | 306 | 0.951 | 0.401 | 0.998 | 0.572 | 0.616 |
CNN-19 | 123,564 | 147,155 | 3,493,185 | 76 | 0.961 | 0.456 | 0.999 | 0.627 | 0.662 | |
CNN-23 | 117,825 | 294,533 | 3,345,807 | 5815 | 0.920 | 0.286 | 0.953 | 0.440 | 0.498 | |
NIG (Over) | CNN-15 | 116,748 | 159,136 | 1,305,548 | 918 | 0.899 | 0.423 | 0.992 | 0.593 | 0.611 |
CNN-19 | 117,332 | 169,400 | 1,295,284 | 334 | 0.893 | 0.409 | 0.997 | 0.580 | 0.600 | |
CNN-23 | 116,154 | 271,395 | 1,193,289 | 1512 | 0.828 | 0.300 | 0.987 | 0.460 | 0.489 | |
IWT (Over) | CNN-15 | 278,007 | 294,255 | 4,094,488 | 6092 | 0.936 | 0.486 | 0.979 | 0.649 | 0.664 |
CNN-19 | 278,052 | 204,274 | 4,184,469 | 6047 | 0.955 | 0.576 | 0.979 | 0.726 | 0.732 | |
CNN-23 | 283,393 | 683,656 | 3,705,087 | 706 | 0.854 | 0.293 | 0.998 | 0.453 | 0.496 |
Train | Test | Model | Confusion Matrix | ACC | P-Score | R-Score | F-Score | AUC | MCC | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TP | FP | TN | FN | |||||||||
HKD (Over) | IWT | CNN-19 | 126,527 | 524,167 | 3,864,576 | 157,572 | 0.854 | 0.194 | 0.445 | 0.271 | 0.785 | 0.225 |
NIG | 46,008 | 166,957 | 1,297,727 | 71,658 | 0.849 | 0.216 | 0.391 | 0.278 | 0.672 | 0.213 | ||
NIG (Over) | IWT | 71,519 | 582,257 | 3,806,486 | 212,580 | 0.830 | 0.109 | 0.252 | 0.153 | 0.700 | 0.082 | |
HKD | 62,254 | 624,565 | 3,015,775 | 61,386 | 0.818 | 0.091 | 0.504 | 0.154 | 0.785 | 0.153 | ||
IWT (Over) | HKD | 36,024 | 239,514 | 3,400,826 | 87,616 | 0.913 | 0.131 | 0.291 | 0.180 | 0.618 | 0.154 | |
NIG | 4803 | 12,500 | 1,452,184 | 112,863 | 0.921 | 0.278 | 0.041 | 0.071 | 0.385 | 0.081 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, F.; Isobe, K. Versatility Evaluation of Landslide Risk with Window Sizes and Sampling Techniques Based on Deep Learning. Appl. Sci. 2024, 14, 10571. https://doi.org/10.3390/app142210571
Ren F, Isobe K. Versatility Evaluation of Landslide Risk with Window Sizes and Sampling Techniques Based on Deep Learning. Applied Sciences. 2024; 14(22):10571. https://doi.org/10.3390/app142210571
Chicago/Turabian StyleRen, Fudong, and Koichi Isobe. 2024. "Versatility Evaluation of Landslide Risk with Window Sizes and Sampling Techniques Based on Deep Learning" Applied Sciences 14, no. 22: 10571. https://doi.org/10.3390/app142210571
APA StyleRen, F., & Isobe, K. (2024). Versatility Evaluation of Landslide Risk with Window Sizes and Sampling Techniques Based on Deep Learning. Applied Sciences, 14(22), 10571. https://doi.org/10.3390/app142210571