Multi-Platform Point Cloud Registration Method Based on the Coarse-To-Fine Strategy for an Underground Mine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preprocessing of Multi-Platform Laser Point Cloud
2.2. Point Cloud Coarse Registration Based on Control Points
2.3. Identical Area Detection of Multi-Platform Point Cloud
2.4. Multi-Platform Point Cloud Fusion
- (1)
- Setting the search radius, and a local plane is fitted by the least squares algorithm based on the point cloud inside the local circle.
- (2)
- The distance from the original point cloud to the projection of the reference plane is calculated.
- (3)
- The mean value of these distances is calculated to characterize the point cloud roughness.
- (4)
- When the roughness of the point cloud is larger than the setting threshold, the point cloud is removed. On the other hand, if the roughness of the point cloud is less than the setting threshold, the point cloud is preserved.
3. Results
3.1. Study Area
3.2. Overall Registration of TLS and HLS Point Cloud for Simulated Mining
3.3. Overall Registration of the TLS and HLS Point Clouds for Coal Mining
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Y.; Li, G.; Zhang, J. Investigation on jet grouting support strategy for controlling time-dependent deformation in the roadway. Energy Sci. Eng. 2020, 8, 2151–2158. [Google Scholar] [CrossRef]
- Xu, S.; Shi, B.; Xing, W.F. Novel high-performance automatic removal method of interference points for point cloud data in coal mine roadway environment. Int. J. Remote Sens. 2023, 44, 1433–1459. [Google Scholar] [CrossRef]
- Wu, C.; Li, Y.; An, L.; Dong, E.; Han, L. An MLS-based high-accuracy measurement and automatic analysis method for roadway deformation. Tunn. Undergr. Space Technol. 2023, 140, 105306. [Google Scholar] [CrossRef]
- Xu, J.; Wang, E.; Zhou, R. Real-time measuring and warning of surrounding rock dynamic deformation and failure in deep roadway based on machine vision method. Measurement 2020, 149, 107028. [Google Scholar] [CrossRef]
- Singh, S.K.; Banerjee, B.P.; Raval, S. Three dimensional unique identifier based automated georeferencing and coregistration of point clouds in underground environment. Remote Sens. 2021, 13, 3145. [Google Scholar] [CrossRef]
- Xing, Z.; Zhao, S.; Guo, W.; Guo, X.; Wang, S.; Li, M.; Wang, Y.; He, H. Analyzing point cloud of coal mining process in much dust environment based on dynamic graph convolution neural network. Environ. Sci. Pollut. Res. 2023, 30, 4044–4061. [Google Scholar] [CrossRef]
- Polap, D.; Jaszcz, A. Sonar digital twin layer via multiattention networks with feature transfer. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4206910. [Google Scholar] [CrossRef]
- Singh, S.K.; Raval, S.; Banerjee, B. A robust approach to identify roof bolts in 3D point cloud data captured from a mobile laser scanner. Int. J. Min. Sci. Technol. 2021, 031, 303–312. [Google Scholar] [CrossRef]
- Sun, W.; Wang, J.; Jin, F.; Yang, Y. A quality improvement method for 3d laser slam point clouds based on geometric primitives of the scan scene. Int. J. Remote Sens. 2020, 42, 378–388. [Google Scholar] [CrossRef]
- Baek, J.; Park, J.; Cho, S.; Lee, C. 3D global localization in the underground mine environment using mobile LiDAR mapping and point cloud registration. Sensors 2022, 22, 2873. [Google Scholar] [CrossRef]
- Kang, J.; Li, M.; Mao, S.; Fan, Y.; Wu, Z.; Li, B. A coal mine tunnel deformation detection method using point cloud data. Sensors 2024, 24, 2299. [Google Scholar] [CrossRef] [PubMed]
- Thrun, S.; Thayer, S.; Whittaker, W.; Baker, C.; Reverte, C. Autonomous exploration and mapping of abandoned mines. IEEE Robot. Autom. Mag. 2004, 11, 79–91. [Google Scholar] [CrossRef]
- Zlot, R.; Bosse, M. Efficient large-scale three-dimensional mobile mapping for underground mines. J. Field Robot. 2014, 31, 731–752. [Google Scholar] [CrossRef]
- Zhang, H.; Mao, S.; Li, M. A coal mine excavation tunnels modeling method based on point clouds. Appl. Sci. 2024, 14, 9454. [Google Scholar] [CrossRef]
- Kutimets, K.; Ellmann, A.; Vali, E.; Kanter, S. Underground oil shale mine surveying using handheld mobile laser scanners. Oil Shale 2021, 38, 42. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, X.; Ma, Z.Z. A method for deformation detection and reconstruction of shield tunnel based on point cloud. J. Constr. Eng. Manag. 2024, 150, 1.1–1.13. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, A.; Du, Z.; Chen, Y.; Sun, H.; Zhi, Z. Joint structure detection and multi-scale clustering filtering for tunnel lining extraction from point clouds. IEEE Trans. Intell. Transp. Syst. 2024, 25, 11214–11226. [Google Scholar] [CrossRef]
- Kim, H.; Yoon, J.; Sim, S. Automated bridge component recognition from point clouds using deep learning. Struct. Control. Health Monit. 2020, 27, e2591. [Google Scholar] [CrossRef]
- Truong-Hong, L.; Lindenbergh, R. Automatically extracting surfaces of reinforced concrete bridges from terrestrial laser scanning point clouds. Autom. Constr. 2022, 135, 104127. [Google Scholar] [CrossRef]
- Li, Y.; Liu, P.; Li, H.; Huang, F. A comparison method for 3d laser point clouds in displacement change detection for arch dams. ISPRS Int. J. Geo-Inf. 2021, 10, 184. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Li, F.; Zhao, G.; Qin, Y. 3D cavity detection technique and its application based on cavity auto scanning laser system. J. Cent. South Univ. Technol. 2008, 15, 285–288. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, X.; Zhang, B.; Lu, H.; Li, C. Cavity 3D modeling and correlative techniques based on cavity monitoring. J. Cent. South Univ. Technol. 2008, 15, 639–644. [Google Scholar] [CrossRef]
- Lian, X.; Hu, H. Terrestrial laser scanning monitoring and spatial analysis of ground disaster in Gaoyang coal mine in Shanxi, China: A technical note. Environ. Earth Ences 2017, 76, 287. [Google Scholar] [CrossRef]
- Gallwey, J.; Eyre, M.; Coggan, J. A machine learning approach for the detection of supporting rock bolts from laser scan data in an underground mine. Tunn. Undergr. Space Technol. 2021, 107, 103656. [Google Scholar] [CrossRef]
- Matwij, W.; Gruszczynski, W.; Puniach, E.; Cwiakala, P. Determination of underground mining-induced displacement field using multi-temporal TLS point cloud registration. Measurement 2021, 180, 109482. [Google Scholar] [CrossRef]
- Yang, B.; Zang, Y.; Dong, Z.; Huang, R. An automated method to register airborne and terrestrial laser scanning point clouds. Isprs J. Photogramm. Remote Sens. 2015, 109, 62–76. [Google Scholar] [CrossRef]
- Yang, B.; Zang, Y. Automated registration of dense terrestrial laser-scanning point clouds using curves. ISPRS J. Photogramm. Remote Sens. 2014, 95, 109–121. [Google Scholar] [CrossRef]
- Tai, H.; Xia, Y.; He, X.; Wu, X.; Li, C.; Yan, M.; Kong, X.L.; Yang, M.L. RGB-D camera for 3d laser point cloud hole repair in mine access shaft roadway. Appl. Sci. 2022, 12, 8910. [Google Scholar] [CrossRef]
- Pu, X.; Gan, S.; Yuan, X.; Li, R. Feature analysis of scanning point cloud of structure and research on hole repair technology considering space-ground multi-source 3d data acquisition. Sensors 2022, 22, 9627. [Google Scholar] [CrossRef]
- Li, W.; Wang, C.; Wen, C.; Zhang, Z.; Lin, C.; Li, J. Pairwise registration of TLS point clouds by deep multi-scale local features. Neurocomputing 2020, 386, 232–243. [Google Scholar] [CrossRef]
- Li, W.; Wang, C.; Lin, C.; Xiao, G.; Wen, C.; Li, J. Inlier extraction for point cloud registration via supervoxel guidance and game theory optimization. ISPRS J. Photogramm. Remote Sens. 2020, 163, 284–299. [Google Scholar] [CrossRef]
- Cheng, X.; Cheng, X.; Li, Q.; Ma, L. Automatic registration of terrestrial and airborne point clouds using building outline features. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 628–638. [Google Scholar] [CrossRef]
- Cheng, L.; Wu, Y.; Chen, S.; Zong, W.; Yuan, Y.; Sun, Y.; Zhuang, Q.; Li, M. A symmetry-based method for LiDAR point registration. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 285–299. [Google Scholar] [CrossRef]
- Ge, X.; Wunderlich, T. Surface-based matching of 3D point clouds with variable coordinates in source and target system. ISPRS J. Photogramm. Remote Sens. 2016, 111, 1–12. [Google Scholar] [CrossRef]
- Mills, G.; Fotopoulos, G. Rock surface classification in a mine drift using multiscale geometric features. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1322–1326. [Google Scholar] [CrossRef]
- Yan, L.; Tan, J.; Liu, H. Automatic registration of TLS-TLS and TLS-MLS point clouds using a genetic algorithm. Sensors 2017, 17, 1979. [Google Scholar] [CrossRef]
- Magnusson, M.; Lilienthal, A.; Duckett, T. Scan registration for autonomous mining vehicles using 3D-NDT. J. Field Robot. 2007, 24, 803–827. [Google Scholar] [CrossRef]
- Sun, W.; Wang, J.; Jin, F. An Automatic coordinate unification method of multitemporal point clouds based on virtual reference datum detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3942–3950. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, B.; Wang, J.; Zhang, Y.; Wu, Y.; Chen, Y.; Chen, D. MI-NDT: Multiscale iterative normal distribution transform for registering large-scale outdoor scans. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5705513. [Google Scholar] [CrossRef]
Simulated Mine | |||
---|---|---|---|
TLS Point Cloud | HLS Point Cloud | ||
Number of scans | 22 | — | |
Accuracy | Range | 2 mm | 3 cm |
Angle | <16″ | — | |
Number of points | 49,613,211 | 83,372,881 | |
Uniform downsampling | 4,290,495 | 4,849,716 | |
Point density (points/10 cm2) | 705 | 767 |
Real Coal Mine | |||
---|---|---|---|
TLS Point Cloud | HLS Point Cloud | ||
Number of scans | 13 | 1 | |
Accuracy | Range | 2 mm | 3 cm |
Angle | 80 μrad | — | |
Number of points | 931,042,710 | 43,480,808 | |
Downsampling | 7,025,993 | 7,562,309 | |
Point density (points/10 cm2) | 1418 | 702 |
Method | Advantages | Challenges |
---|---|---|
Pairwise local registration with global optimization | Reduces error propagation, scalable, adaptable to local geometry | Requires overlapping points, needs post-processing optimization |
Feature-based registration with ICP | Accurate for distinct geometries, low initial alignment sensitivity | Feature scarcity in uniform areas, noise sensitivity |
Machine learning | Noise-resistant, adaptable, fast processing post-training | High data/training needs, costly to train, generalizability issues |
Proposed method | Simplifies workflow, requires minimal initial alignment | Computationally intensive, inconsistent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Qu, X.; Wang, J.; Jin, F.; Li, Z. Multi-Platform Point Cloud Registration Method Based on the Coarse-To-Fine Strategy for an Underground Mine. Appl. Sci. 2024, 14, 10620. https://doi.org/10.3390/app142210620
Sun W, Qu X, Wang J, Jin F, Li Z. Multi-Platform Point Cloud Registration Method Based on the Coarse-To-Fine Strategy for an Underground Mine. Applied Sciences. 2024; 14(22):10620. https://doi.org/10.3390/app142210620
Chicago/Turabian StyleSun, Wenxiao, Xinlu Qu, Jian Wang, Fengxiang Jin, and Zhiyuan Li. 2024. "Multi-Platform Point Cloud Registration Method Based on the Coarse-To-Fine Strategy for an Underground Mine" Applied Sciences 14, no. 22: 10620. https://doi.org/10.3390/app142210620
APA StyleSun, W., Qu, X., Wang, J., Jin, F., & Li, Z. (2024). Multi-Platform Point Cloud Registration Method Based on the Coarse-To-Fine Strategy for an Underground Mine. Applied Sciences, 14(22), 10620. https://doi.org/10.3390/app142210620