Oncom: A Nutritive Functional Fermented Food Made from Food Process Solid Residue
Abstract
:1. Introduction
2. What Is “Oncom”?
3. From Waste to a Nutritious Food
3.1. Nutrition Composition of Oncom
3.2. Oncom and Nutrient Digestibility
4. Microbiology of Oncom
5. Sensory Characteristics of Oncom: Oncom as an Alternative to Meat
6. A Potential Functional Food? Health-Promoting Properties of Oncom
6.1. Reproductive Health Benefits of Oncom
6.2. Antioxidant Activity of Oncom
6.3. Oncom and Cholesterol Reduction
6.4. Oncom and Preventing of Cardiovascular Disease (CVD)
6.5. Clinical Studies of Oncom
7. Conclusions and Future Development
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Béné, C.; Barange, M.; Subasinghe, R.; Pinstrup-Andersen, P.; Merino, G.; Hemre, G.I.; Williams, M. Feeding 9 Billion by 2050—Putting Fish Back on the Menu. Food Secur. 2015, 7, 261–274. [Google Scholar] [CrossRef]
- FAO. Food Losses and Waste. In The Future of Food and Agriculture: Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; pp. 1951–1960. [Google Scholar]
- Sastraatmadja, D.D.; Tomita, F.; Kasai, T. Production of High-Quality Oncom, a Traditional Indonesian Fermented Food, by the Inoculation with Selected Mold Strains in the Form of Pure Culture and Solid Inoculum. J. Grad. Sch. Agric. Hokkaido Univ. 2002, 70, 111–127. [Google Scholar]
- Sadh, P.K.; Chawla, P.; Duhan, J.S. Fermentation Approach on Phenolic, Antioxidants and Functional Properties of Peanut Press Cake. Food Biosci. 2018, 22, 113–120. [Google Scholar] [CrossRef]
- Chawla, P.; Kumar, V.; Bains, A.; Singh, R.; Sadh, P.K.; Kaushik, R.; Kumar, N. Improvement of Mineral Absorption and Nutritional Properties of Citrullus Vulgaris Seeds Using Solid-State Fermentation. J. Am. Coll. Nutr. 2020, 39, 628–635. [Google Scholar] [CrossRef]
- Arruda, E.H.; Melatto, R.A.P.B.; Levy, W.; de Melo Conti, C. Circular Economy: A Brief Literature Review (2015–2020). Sustain. Oper. Comput. 2021, 2, 79–86. [Google Scholar] [CrossRef]
- Adams, M.R. Why Fermented Foods Can Be Safe. In Fermentation and Food Safety; Aspen Publishers: Gaithersburg, MD, USA, 2001; pp. 9–52. [Google Scholar]
- Li, S.; Chen, Y.; Li, K.; Lei, Z.; Zhang, Z. Characterization of Physicochemical Properties of Fermented Soybean Curd Residue by Morchella Esculenta. Int. Biodeterior. Biodegrad. 2016, 109, 113–118. [Google Scholar] [CrossRef]
- Liu, L.; Chen, X.; Hao, L.; Zhang, G.; Jin, Z.; Li, C.; Yang, Y.; Rao, J.; Chen, B. Traditional Fermented Soybean Products: Processing, Flavor Formation, Nutritional and Biological Activities. Crit. Rev. Food Sci. Nutr. 2022, 62, 1971–1989. [Google Scholar] [CrossRef]
- do Prado, F.G.; Pagnoncelli, M.G.B.; de Melo Pereira, G.V.; Karp, S.G.; Soccol, C.R. Fermented Soy Products and Their Potential Health Benefits: A Review. Microorganisms 2022, 10, 1606. [Google Scholar] [CrossRef]
- Alexander, M.; Turnbaugh, P.J. Deconstructing Mechanisms of Diet-Microbiome-Immune Interactions. Immunity 2020, 53, 264–276. [Google Scholar] [CrossRef]
- Marco, M.L.; Sanders, M.E.; Gänzle, M.; Arrieta, M.C.; Cotter, P.D.; De Vuyst, L.; Hill, C.; Holzapfel, W.; Lebeer, S.; Merenstein, D.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on Fermented Foods. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 196–208. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-Industrial Wastes and Their Utilization Using Solid State Fermentation: A Review. Bioresour. Bioprocess. 2018, 5, 1–15. [Google Scholar] [CrossRef]
- Duhan, J.S.; Chawla, P.; Bains, A.; Kumar, S.; Sadh, P.K. Solid-State Fermented Peanut Press Cake:Assessment of Biochemical Properties, Mineral Bioavailability, and Its Application in Sweetened Yogurt Cheese. Biocatal. Agric. Biotechnol. 2020, 29, 101780. [Google Scholar] [CrossRef]
- Saharan, P.; Sadh, P.K.; Duhan, S.; Duhan, J.S. Bio-Enrichment of Phenolic, Flavonoids Content and Antioxidant Activity of Commonly Used Pulses by Solid-State Fermentation. J. Food Meas. Charact. 2020, 14, 1497–1510. [Google Scholar] [CrossRef]
- Chawla, P.; Bhandari, L.; Sadh, P.K.; Kaushik, R. Impact of Solid-State Fermentation (Aspergillus Oryzae) on Functional Properties and Mineral Bioavailability of Black-Eyed Pea (Vigna Unguiculata) Seed Flour. Cereal Chem. 2017, 94, 437–442. [Google Scholar] [CrossRef]
- Duhan, J.S.; Chawla, P.; Kumar, S.; Bains, A.; Sadh, P.K. Proximate Composition, Polyphenols, and Antioxidant Activity of Solid State Fermented Peanut Press Cake. Prep. Biochem. Biotechnol. 2021, 51, 340–349. [Google Scholar] [CrossRef]
- Beuchat, L.R.; Basha, S.M.M. Protease Production by the Ontjom Fungus, Neurospora Sitophila. Eur. J. Appl. Microbiol. 1976, 2, 195–203. [Google Scholar] [CrossRef]
- Fardiaz, D.; Markakis, P. Degradation of Phytic Acid in Oncom (Fermented Peanut Pressed Cake). J. Food Sci. 1981, 46, 523–525. [Google Scholar] [CrossRef]
- Kumbhare, P. Analysis of Nutritive Value of Peanut Press Cake, Fermented by N. Sitophila NCIM 899 and R. Oligosporus NCIM 1215. Int. J. Res. Biosci. 2014, II, 276–283. [Google Scholar] [CrossRef]
- Surono, I.S. Ethnic Fermented Foods and Beverages of Indonesia. In Ethnic Fermented Foods and Alcoholic Beverages of Asia; Springer: Delhi, India, 2016; pp. 341–382. [Google Scholar] [CrossRef]
- Quinn, M.R.; Beuchat, L.R.; Miller, J.; Young, C.T.; Worthington, R.E. Fungal Fermentation of Peanut Flour: Effects on Chemical Composition and Nutritive Value. J. Food Sci. 1975, 40, 470–474. [Google Scholar] [CrossRef]
- Andayani, S.N.; Lioe, H.N.; Wijaya, C.H.; Ogawa, M. Umami Fractions Obtained from Water-soluble Extracts of Red Oncom and Black Oncom —Indonesian Fermented Soybean and Peanut Products. J. Food Sci. 2020, 85, 657–665. [Google Scholar] [CrossRef]
- Kurnia, F.; Tjandrawinata, R.R.; Yulandi, A.; Suhartono, M.T. Protease of Stenotrophomonas Sp. from Indonesian Fermented Food: Gene Cloning and Analysis. J. Biol. Res. 2018, 90, 70–76. [Google Scholar] [CrossRef]
- Aini, H.A.N.; Laksmi, D.N.D.I.; Setiasih, N.L.E.; Purbantoro, S.D. Pemberian Ekstrak Oncom Hitam Dan Merah Memperpanjang Siklus Estrus Dan Mempertebal Endometrium Tikus Putih. J. Vet. 2020, 21, 558–564. [Google Scholar] [CrossRef]
- Wikanta, W. Membuat Oncom Praktis Dan Aman Aflatoksin; Rajawali Pers: Surabaya, Indonesia, 2019. [Google Scholar]
- Wood, B.J.B. Microbiology of Fermented Foods, 2nd ed.; Springer: New York, NY, USA, 1998. [Google Scholar]
- Sarwono, B. Usaha Membuat Tempe Dan Oncom; Penebar Swadaya: Depok, Indonesia, 2010. [Google Scholar]
- Rohimah, A.; Setiawan, B.; Roosita, K.; Palupi, E. The Effects of Soaking Treatments and Fermentation Process on Nutritional and Aflatoxin Contents of Fermented Peanut Cake (Black Oncom). Pol. J. Nat. Sci. 2021, 36, 59–78. [Google Scholar] [CrossRef]
- Firoh, A.M.; Naibaho, J.; Wijaya, C.H. Sugiono Physico-Chemical Properties and Sensory Characteristics of Red Oncom, a Traditional 2 Fermented Food from Indonesia, from Different Food Processors Affected by the Variability 3 in Ingredients and Processing Steps 4 5. Appl. Food Res. 2024, 4, 100571. [Google Scholar] [CrossRef]
- Hesseltine, C.W.; Wang, H.L. (Eds.) Chapter 18 Glossary of Indigenous Fermented Foods. In Indigenous Fermented Food of Non-Western Origin; Mycologia Memoir; Schweizerbart Science Publishers: Stuttgart, Germany, 1986; pp. 317–344. [Google Scholar]
- Hedger, J. Tempe, Oncom and Other Mycological Oddities. Bull. Br. Mycol. Soc. 1978, 12, 53–55. [Google Scholar] [CrossRef]
- Nuramalia, D.R.; Wijaya, C.H.; Hunaefi, D. The Effect of Physicochemical and Sensory Characteristics of Red and Black Oncom to the Consumer Acceptability. Food Res. 2024; acceptable. [Google Scholar]
- Rohimah, A.; Setiawan, B.; Palupi, E.; Sulaeman, A.; Handharyani, E. Physical Characteristics and Nutritional Contents of Peanut Flour and Black Oncom (Fermented Peanut Meal) Flour. Adv. Biol. Sci. Res. 2021, 13, 366–372. [Google Scholar] [CrossRef]
- Grizotto, R.K.; Rufi, C.R.G.; Yamada, E.A.; Vicente, E. Evaluation of the Quality of a Molded Sweet Biscuit Enriched with Okara Flour. Cienc. E Tecnol. Aliment. 2010, 30, 270–275. [Google Scholar] [CrossRef]
- Rahman, M.M.; Mat, K.; Ishigaki, G.; Akashi, R. A Review of Okara (Soybean Curd Residue) Utilization as Animal Feed: Nutritive Value and Animal Performance Aspects. Anim. Sci. J. 2021, 92, e13594. [Google Scholar] [CrossRef]
- Rahmi, M.; Sifa, A. Rachmatullah Analisis Efisiensi Box Fermentasi Oncom Tahu Dengan Sistem Arduino. Met. J. Sist. Mek. dan Termal 2022, 6, 31. [Google Scholar] [CrossRef]
- Rashad, M.M.; Mahmoud, E.A.; Abdou, M.H.; Nooman, U.M. Improvement of Nutritional Quality and Antioxidant Activities of Yeast Fermented Soybean Curd Residue. Afr. J. Biotechnol. 2011, 10, 5750–5759. [Google Scholar] [CrossRef]
- O’Toole, D.K. Soybean: Soy-Based Fermented Foods, 2nd ed.; Elsevier: Waltham, MA, USA, 2016; Volume 3–4. [Google Scholar] [CrossRef]
- Febrianti, T.; Oedjijono; Iriyanti, N. Peningkatan Nutrien Onggok Dan Dedak Sebagai Bahan Baku Pakan Melalui Fermentasi Menggunakan Azozpirillum sp. JG3 Widyariset 2017, 3, 173–182. [Google Scholar] [CrossRef]
- Puspasari, T.; Andriani, Y.; Hamdani, H. Pemanfaatan Bungkil Kacang Tanah Dalam Pakan Ikan Terhadap Laju Pertumbuhan Ikan Nila (Orechromis Niloticus). J. Perikan. Kelaut. 2015, VI, 91–100. [Google Scholar]
- Ginting, E.; Rahmianna, A.A.; Yusnawan, E. Aflatoxin and Nutrient Contents of Peanut Collected from Local Market and Their Processed Foods. IOP Conf. Ser. Earth Environ. Sci. 2018, 102, 012031. [Google Scholar] [CrossRef]
- Kiramang, K. Potensi Dan Pemanfaatan Onggok Dalam Ransum Unggas. J. Teknosains 2011, 5, 155–163. [Google Scholar]
- Cornelia, M.; Anggraini, B.; Darmawan, A.; Artanti, N.; Jayasena, V.; Kardono, L. The Effects of Cassava on Lupine, Peanut and Velvet Bean Red Oncom Fermentation Using Neurospora Sitophila. J. Food Resour. Sci. 2012, 1, 22–31. [Google Scholar] [CrossRef]
- Mulyani, S.; Wisma, R.W. Analisis Proksimat Dan Sifat Organoleptik “Oncom Merah Alternatif” Dan “Oncom Hitam Alternatif”. J. Kim. Dan Pendidik. Kim. 2016, 1, 41–51. [Google Scholar] [CrossRef]
- Rohimah, A.; Setiawan, B.; Roosita, K.; Palupi, E. The Amino Acid and Mineral Content of Black Oncom Processed with Fermentation Modifications. J. Gizi Pangan 2021, 16, 115–120. [Google Scholar]
- Arifudin, O.; Tanjung, R. Pendampingan Usaha Oncom Dawuan Makanan Khas Kabupaten Subang Jawa Barat. J. Ilm. Pangabdhi 2020, 6, 59–63. [Google Scholar] [CrossRef]
- Cao, Z.H.; Green-Johnson, J.M.; Buckley, N.D.; Lin, Q.Y. Bioactivity of Soy-Based Fermented Foods: A Review. Biotechnol. Adv. 2019, 37, 223–238. [Google Scholar] [CrossRef]
- Varsha, K.K.; Narisetty, V.; Brar, K.K.; Madhavan, A.; Alphy, M.P.; Sindhu, R.; Awasthi, M.K.; Varjani, S.; Binod, P. Bioactive Metabolites in Functional and Fermented Foods and Their Role as Immunity Booster and Anti-Viral Innate Mechanisms. J. Food Sci. Technol. 2023, 60, 2309–2318. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Tang, S.; Shi, Y.; Yu, S.; Wu, H. Comparison of the Amino Acid and Protein Content between Peanut Meal and Fermented Peanut Meal. Adv. Mater. Res. 2012, 343–344, 1042–1048. [Google Scholar] [CrossRef]
- Sukotjo, S.; Syarafina, A.; Irianto, H. The Effect of Seaweed (Eucheuma Cottonii) and Tofu Dregs Formula on Chocolate Pudding. IOP Conf. Ser. Earth Environ. Sci. 2020, 439, 012052. [Google Scholar] [CrossRef]
- Bonku, R.; Yu, J. Health Aspects of Peanuts as an Outcome of Its Chemical Composition. Food Sci. Hum. Wellness 2020, 9, 21–30. [Google Scholar] [CrossRef]
- Kementerian Kesehatan RI. Tabel Komposisi Pangan Indonesia; Kementerian Kesehatan RI: Jakarta, Indonesia, 2018. Available online: https://repository.kemkes.go.id/book/668 (accessed on 10 November 2024).
- Sulistiyono, P.; Heriyanto, Y.; Priyadi, I.; Putri, L.F.; Rilkiyanti, O. Analisis Dan Sinkronisasi Tabel Komposisi Pangan Aplikasi Nutrisurvey Versi Indonesia. J. Nutr. 2020, 22, 39–45. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. Nutrient Database for Standard Reference of Raw Sample; U.S. Department of Agriculture: Beltsville, MD, USA, 2018.
- Adli, D.N.; Sjofjan, O. Using Red Oncom (Neurospora Sitophila spp.) and Black Oncom (Rhizopus Oligosporus) in Feed Formulation on Performance and Intestinal Properties of Broiler. J. Nutr. Ternak Trop. 2021, 4, 70–76. [Google Scholar] [CrossRef]
- Winarno, F.G. Biofermentasi Dan Biosintesa Protein; Angkasa: Bandung, Indonesia, 1979. [Google Scholar]
- Simwaka, J.E.; Chamba, M.V.M.; Huiming, Z.; Masamba, K.G.; Luo, Y. Effect of Fermentation on Physicochemical and Antinutritional Factors of Complementary Foods from Millet, Sorghum, Pumpkin and Amaranth Seed Flours. Int. Food Res. J. 2017, 24, 1869–1879. [Google Scholar]
- Elkhalifa, A.E.O.; Schiffler, B.; Bernhardt, R. Effect of Fermentation on the Functional Properties of Sorghum Flour. Food Chem. 2005, 92, 1–5. [Google Scholar] [CrossRef]
- Pranoto, Y.; Anggrahini, S.; Efendi, Z. Effect of Natural and Lactobacillus Plantarum Fermentation on In-Vitro Protein and Starch Digestibilities of Sorghum Flour. Food Biosci. 2013, 2, 46–52. [Google Scholar] [CrossRef]
- Choct, M.; Dersjant-Li, Y.; McLeish, J.; Peisker, M. Soy Oligosaccharides and Soluble Non-Starch Polysaccharides: A Review of Digestion, Nutritive and Anti-Nutritive Effects in Pigs and Poultry. Asian-Aust. J. Anim. Sci 2010, 23, 1386–1398. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant Food Anti-Nutritional Factors and Their Reduction Strategies: An Overview. Food Prod. Process. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
- Tian, L.; Scholte, J.; Scheurink, A.J.W.; van den Berg, M.; Bruggeman, G.; Bruininx, E.; de Vos, P.; Schols, H.A.; Gruppen, H. Effect of Oat and Soybean Rich in Distinct Non-Starch Polysaccharides on Fermentation, Appetite Regulation and Fat Accumulation in Rat. Int. J. Biol. Macromol. 2019, 140, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Fei, B.B.; Ling, L.; Hua, C.; Ren, S.Y. Effects of Soybean Oligosaccharides on Antioxidant Enzyme Activities and Insulin Resistance in Pregnant Women with Gestational Diabetes Mellitus. Food Chem. 2014, 158, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Martos, I.; Rupérez, P. Soybean Oligosaccharides. Potential as New Ingredients in Functional Food. Nutr. Hosp. 2006, 21, 92–96. [Google Scholar]
- Koni, T.N.; Bale-therik, J.; Kale, P.R. Pemanfaatan Kulit Pisang Hasil Fermentasi Rhyzopus Oligosporus Dalam Ransum Terhadap Pertumbuhan Ayam Pedaging. J. Vet. Sept. 2013, 14, 365–370. [Google Scholar]
- Hadanah, S.U.; Widjaja, N.S. Pemanfaatan Tepung Limbah Tempe Fermentasi Sebagai Substitusi Jagung Terhadap Daya Cerna Serat Kasar Dan Bahan Organik Ayam Pedaging Jantan. J. Poult. Sci. 2010, 3, 13–17. [Google Scholar]
- Worthington, R.E.; Beuchat, L.R. Alpha-Galactosidase Activity of Fungi on Intestinal Gas-Forming Peanut Oligosaccharides. J. Agric. Food Chem. 1974, 22, 1063–1066. [Google Scholar] [CrossRef]
- Setiawan, B.; Rohimah, A.; Palupi, E.; Sulaeman, A.; Handharyani, E. Physical-Sensory Characteristics and Nutritional Contents of Black Oncom and Peanut Ingredients-Based Biscuits as an Elderly Supplementary Food. AIMS Agric. Food 2020, 5, 868–881. [Google Scholar] [CrossRef]
- Jang, C.H.; Oh, J.; Lim, J.S.; Kim, H.J.; Kim, J.S. Fermented Soy Products: Beneficial Potential in Neurodegenerative Diseases. Foods 2021, 10, 636. [Google Scholar] [CrossRef]
- Stodolak, B.; Starzyńska-Janiszewska, A.; Bączkowicz, M. Aspergillus Oryzae (Koji Mold) and Neurospora Intermedia (Oncom Mold) Application for Flaxseed Oil Cake Processing. Lwt 2020, 131, 109651. [Google Scholar] [CrossRef]
- Yuan, L.; Chang, J.; Yin, Q.; Lu, M.; Di, Y.; Wang, P.; Wang, Z.; Wang, E.; Lu, F. Fermented Soybean Meal Improves the Growth Performance, Nutrient Digestibility, and Microbial Flora in Piglets. Anim. Nutr. 2017, 3, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Ikram-ul-Haq; Iqbal, J. The Role of Mn++ Ions for High and Consistent Yield of Citric Acid in Recycling Fed-Batch Bioreactor System and Its Novelty on Kinetic Basis. Electron. J. Biotechnol. 2002, 5, 110–117. [Google Scholar] [CrossRef]
- Owens, J.D.; Astuti, M.; Kuswanto, K.R. Tempe and Related Food Product. In Indigenous Fermented Foods of Southeast Asia; CRC Press: Boca Raton, FL, USA, 2015; pp. 1–108. [Google Scholar] [CrossRef]
- Priatni, S.; Devi, A.F.; Kardono, L.B.S.; Jayasena, V. Quality and Sensory Evaluations of Tempe Prepared from Various Particles Sizes of Lupin Beans. J. Teknol. Dan Ind. Pangan 2013, 24, 209–214. [Google Scholar] [CrossRef]
- Damayanti, I. Populasi Mikroba Dan Morfologi Kapang, Khamir, Serta Bakteri Asam Laktat Dari Oncom Merah Dan Oncom Hitam Bogor; Institut Pertanian Bogor: Bogor, Indonesia, 2021. [Google Scholar]
- Hartanti, A.T.; Hanggopertiwi, A.; Gunawan, A.W. Identifikasi Morfologi Rhizopus Pada Oncom Hitam Dari Berbagai Daerah Di Indonesia. J. Mikol. Indones. 2019, 3, 75. [Google Scholar] [CrossRef]
- Damayanti, E.; Shabrina, N.; Prihantoro, F.A.; Shovitri, M. Antifungal Activities of Lactic Acid Bacteria and Yeast Isolated from Various Types of Tempe. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1011, 012021. [Google Scholar] [CrossRef]
- Sulistyaningtyas, A.R.; Baldivia, A.S.; Mukaromah, A.H.; Safitri, R.; Pamaya, D.; Lestari, D.; Friskayanti, R.; Yasin, N.F.; Inayatul, W.O.; Mony, N.; et al. Food-Grade Protease Producing Bacteria Isolated from Indonesian Soybean Tempe Gembus and Red Oncom after Prolonged Fermentation. IOP Conf. Ser. Earth Environ. Sci. 2021, 743, 012008. [Google Scholar] [CrossRef]
- Afifah, D.N.; Sulchan, M.; Syah, D.; Yanti; Suhartono, M.T. Isolation and Identification of Fibrinolytic Protease-Producing Microorganisms from Red Oncom and Gembus, Indonesian Fermented Soybean Cakes. Malays. J. Microbiol. 2014, 10, 273–279. [Google Scholar] [CrossRef]
- Afifah, D.N.; Sulchan, M.; Syah, D.; Yanti; Suhartono, M.T. The Use of Red Oncom Powder as Potential Production Media for Fibrinogenolytic Protease Derived from Bacillus Licheniformis RO3. Procedia Food Sci. 2015, 3, 453–464. [Google Scholar] [CrossRef]
- Maini Rekdal, V.; Villalobos-Escobedo, J.M.; Rodriguez-Valeron, N.; Olaizola Garcia, M.; Vásquez, D.P.; Rosales, A.; Sörensen, P.M.; Baidoo, E.E.K.; Calheiros de Carvalho, A.; Riley, R.; et al. Neurospora Intermedia from a Traditional Fermented Food Enables Waste-to-Food Conversion. Nat. Microbiol. 2024, 9, 2666–2683. [Google Scholar] [CrossRef]
- Wang, H.L.; Hesseltine, C.W. Studies on the Extracellular Proteolytic Enzymes of Rhizopus Oligosporus. Can. J. Microbiol. 1965, 11, 727–732. [Google Scholar] [CrossRef]
- Baumann, U.; Bisping, B. Proteolysis during Tempe Fermentation. Food Microbiol. 1995, 12, 39–47. [Google Scholar] [CrossRef]
- Sitanggang, A.B.; Sinaga, W.S.L.; Wie, F.; Fernando, F.; Krusong, W. Enhanced Antioxidant Activity of Okara through Solid State Fermentation of GRAS Fungi. Food Sci. Technol. 2020, 40, 178–186. [Google Scholar] [CrossRef]
- Setyabudi, F.M.C.; Sardjono, I.; Bohm, J. Degradation of Aflatoxin B1 by Neurospora sp. Isolated from Oncom. In Proceedings of the 29th Mycotoxin Workshop, Stuttgart, Germany, 14–16 May 2007. [Google Scholar]
- Jannah, S.N. Penghambatan Pertumbuhan Aspergillus flavus dan Reduksi Aflatoksin oleh Lactobacillus plantarum Pi28a Selama Proses Pembuatan Oncom Hitam. Master’s Thesis, Bogor Agricultural University, Bogor, Indonesia, 2005. [Google Scholar]
- Roubos-Van Den Hil, P.J.; Dalmas, E.; Nout, M.J.R.; Abee, T. Soya Bean Tempe Extracts Show Antibacterial Activity against Bacillus Cereus Cells and Spores. J. Appl. Microbiol. 2010, 109, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.M.; Passoth, V.; Eklund-Jonsson, C.; Alminger, M.L.; Schnürer, J. Rhizopus Oligosporus and Yeast Co-Cultivation during Barley Tempeh Fermentation-Nutritional Impact and Real-Time PCR Quantification of Fungal Growth Dynamics. Food Microbiol. 2007, 24, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Vong, W.C.; Hua, X.Y.; Liu, S.Q. Solid-State Fermentation with Rhizopus Oligosporus and Yarrowia Lipolytica Improved Nutritional and Flavour Properties of Okara. Lwt 2018, 90, 316–322. [Google Scholar] [CrossRef]
- Feng, X.M.; Eriksson, A.R.B.; Schnürer, J. Growth of Lactic Acid Bacteria and Rhizopus Oligosporus during Barley Tempeh Fermentation. Int. J. Food Microbiol. 2005, 104, 249–256. [Google Scholar] [CrossRef]
- Barus, T.; Giovania, G.; Lay, B.W. Lactic Acid Bacteria from Tempeh and Their Ability to Acidify Soybeans in Tempeh Fermentation. Microbiol. Indones. 2020, 14, 149–155. [Google Scholar] [CrossRef]
- Kurniati, T.H.; Rahayu, S.; Nathania, I.R.B.; Sukmawati, D. Antibacterial Activity of Lactic Acid Bacteria Isolated from Oncom, a Traditional Indonesian Fermented Food. AIP Conf. Proc. 2021, 2331, 050017. [Google Scholar] [CrossRef]
- Seumahu, C.A.; Suwanto, A.; Rusmana, I.M.A.N.; Solihin, D.D. Bacterial and Fungal Communities in Tempeh as Reveal by Amplified Ribosomal Intergenic Sequence Analysis. HAYATI J. Biosci. 2013, 20, 65–71. [Google Scholar] [CrossRef]
- Laksmi, D.N.D.I.; Setiasih, N.L.E.; Trilaksana, I.G.N.B. Effect of Oncom Extract on the Level of Estrogen Hormone of Productive White Rats. Bali Med. J. 2021, 10, 559–561. [Google Scholar] [CrossRef]
- Beuchat, L.R. Fungal Fermentation of Peanut Press Cake. Econ. Bot. 1976, 30, 227–234. [Google Scholar] [CrossRef]
- Kurnia, F.L.; Hunaefi, D.; Yuliana, N.D.; Fuhrmann, P.; Smetanska, I.; Yasuda, S. Characterization of Physicochemical Properties and Sensory Profile of Red Oncom in Dramaga District Bogor Regency. Canrea J. Food Technol. Nutr. Culin. J. 2023, 6, 129–141. [Google Scholar] [CrossRef]
- Surya, R.; Romulo, A. Antioxidant Profile of Red Oncom, an Indonesian Traditional Fermented Soyfood. Food Res. 2023, 7, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.; Doyle, S.; Murphy, R. Filamentous Fungi as a Source of Natural Antioxidants. Food Chem. 2015, 185, 389–397. [Google Scholar] [CrossRef] [PubMed]
- de Pascual-Teresa, S.; Moreno, D.A.; García-Viguera, C. Flavanols and Anthocyanins in Cardiovascular Health: A Review of Current Evidence. Int. J. Mol. Sci. 2010, 11, 1679–1703. [Google Scholar] [CrossRef]
- Gmoser, R.; Fristedt, R.; Larsson, K.; Undeland, I.; Taherzadeh, M.J.; Lennartsson, P.R. From Stale Bread and Brewers Spent Grain to a New Food Source Using Edible Filamentous Fungi. Bioengineered 2020, 11, 582–598. [Google Scholar] [CrossRef]
- Dimidi, E.; Cox, S.R.; Rossi, M.; Whelan, K. Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients 2019, 11, 1806. [Google Scholar] [CrossRef]
- Chen, L.; Ko, N.; Chen, K. Isoflavone Supplements for Menopausal Women: A Systematic Review. Nutrients 2019, 11, 2649. [Google Scholar] [CrossRef]
- Zaheer, K.; Akhtar, M.H. An Updated Review of Dietary Isoflavones: Nutrition, Processing, Bioavailability and Impacts on Human Health. Crit. Rev. Food Sci. Nutr. 2017, 57, 1280–1293. [Google Scholar] [CrossRef]
- Leonard, L.M.; Choi, M.S.; Cross, T.W.L. Maximizing the Estrogenic Potential of Soy Isoflavones Through the Gut Microbiome: Implication for Cardiometabolic Health in Postmenopausal Women. Nutrients 2022, 14, 553. [Google Scholar] [CrossRef]
- Popa, D.-S.; Rusu, M.E. Isoflavones: Vegetable Sources, Biological Activity, and Analytical Methods for Their Assessment. In Superfood and Functional Food—The Development of Superfoods and Their Roles as Medicine; InTechOpen: London, UK, 2017; Volume 11, pp. 133–153. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, H.; Holman, C.D.A.J. Dietary Intake of Isoflavones and Breast Cancer Risk by Estrogen and Progesterone Receptor Status. Breast Cancer Res. Treat. 2009, 118, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Kaludjerovic, J.; Ward, W.E. Neonatal Exposure to Daidzein, Genistein, or the Combination Modulates Bone Development in Female CD-1 Mice. J. Nutr. 2009, 139, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Kostelac, D.; Rechkemmer, G.; Briviba, K. Phytoestrogens Modulate Binding Response of Estrogen Receptors α and β to the Estrogen Response Element. J. Agric. Food Chem. 2003, 51, 7632–7635. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.M.; Xu, X.; Veenstra, T.D.; Tooze, J.A.; Wood, C.E.; Register, T.C.; Kock, N.D.; Cline, J.M. Past Oral Contraceptive Use and Current Dietary Soy Isoflavones Influence Estrogen Metabolism in Postmenopausal Monkeys (Macaca Fascicularis). Cancer Epidemiol. Biomark. Prev. 2008, 17, 2594–2602. [Google Scholar] [CrossRef] [PubMed]
- Kurahashi, N.; Inoue, M.; Iwasaki, M.; Tanaka, Y.; Mizokami, M.; Tsugane, S. Isoflavone Consumption and Subsequent Risk of Hepatocellular Carcinoma in a Population-Based Prospective Cohort of Japanese Men and Women. Int. J. Cancer 2009, 124, 1644–1649. [Google Scholar] [CrossRef]
- Kojima, J.; Ito, H.; Thapa, Y.; Hasegawa, E.; Kuji, N.; Isaka, K. Isoflavone Increases the MRNA Expression Levels of IL-6 Signal Transducer Glycoprotein 130 in Human Endometrial Glandular Cells. Clin. Exp. Obstet. Gynecol. 2017, 44, 572–576. [Google Scholar] [CrossRef]
- Hwang, C.S.; Kwak, H.S.; Lim, H.J.; Lee, S.H.; Kang, Y.S.; Choe, T.B.; Hur, H.G.; Han, K.O. Isoflavone Metabolites and Their in Vitro Dual Functions: They Can Act as an Estrogenic Agonist or Antagonist Depending on the Estrogen Concentration. J. Steroid Biochem. Mol. Biol. 2006, 101, 246–253. [Google Scholar] [CrossRef]
- Hodis, H.N.; MacK, W.J.; Kono, N.; Azen, S.P.; Shoupe, D.; Hwang-Levine, J.; Petitti, D.; Whitfield-Maxwell, L.; Yan, M.; Franke, A.A.; et al. Isoflavone Soy Protein Supplementation and Atherosclerosis Progression in Healthy Postmenopausal Women: A Randomized Controlled Trial. Stroke 2011, 42, 3168–3175. [Google Scholar] [CrossRef]
- Athar, F.; Karmani, M.; Templeman, N.M. Metabolic Hormones Are Integral Regulators of Female Reproductive Health and Function. Biosci. Rep. 2024, 44, 1–35. [Google Scholar] [CrossRef]
- Ma, X.; Wu, L.; Wang, Y.; Han, S.; El-Dalatony, M.M.; Feng, F.; Tao, Z.; Yu, L.; Wang, Y. Diet and Human Reproductive System: Insight of Omics Approaches. Food Sci. Nutr. 2022, 10, 1368–1384. [Google Scholar] [CrossRef]
- Nakamura, T.; Imai, Y.; Matsumoto, T.; Sato, S.; Takeuchi, K.; Igarashi, K.; Harada, Y.; Azuma, Y.; Krust, A.; Yamamoto, Y.; et al. Estrogen Prevents Bone Loss via Estrogen Receptor α and Induction of Fas Ligand in Osteoclasts. Cell 2007, 130, 811–823. [Google Scholar] [CrossRef] [PubMed]
- Penttinen-Damdimopoulou, P.E.; Power, K.A.; Hurmerinta, T.T.; Nurmi, T.; van der Saag, P.T.; Mäkelä, S.I. Dietary Sources of Lignans and Isoflavones Modulate Responses to Estradiol in Estrogen Reporter Mice. Mol. Nutr. Food Res. 2009, 53, 996–1006. [Google Scholar] [CrossRef]
- Amadou, I.; Yong-Hui, S.; Sun, J.; Guo-Wei, L. Fermented Soybean Products: Some Methods, Antioxidants Compound Extraction and Their Scavenging Activity. Asian J. Biochem. 2009, 4, 68–76. [Google Scholar] [CrossRef]
- Mustarichie, R.; Moektiwardoyo, M.; Levita, J.; Muhtadi, A.; Subarnas, A.; Udin, L.Z. The Research Evidence of Antioxidant and Anti-Cancer Activity of Genistein Content in The Indonesian Traditional Food (Oncom) Ethanol Extract. Res. J. Pharm. App. Sci. 2012, 2, 65–73. [Google Scholar]
- Sacks, F.M.; Lichtenstein, A.; Van Horn, L.; Harris, W.; Kris-Etherton, P.; Winston, M. Soy Protein, Isoflavones, and Cardiovascular Health: An American Heart Association Science Advisory for Professionals from the Nutrition Committee. Circulation 2006, 113, 1034–1044. [Google Scholar] [CrossRef] [PubMed]
- Starzynska-Janiszewska, A.; Stodolak, B.; Dulinski, R.; Mickowska, B.; Sabat, R. Fermentation of Colored Quinoa Seeds with Neurospora Intermedia to Obtain Oncom-Type Products of Favorable Nutritional and Bioactive Characteristics. Cereal Chem. 2017, 94, 619–624. [Google Scholar] [CrossRef]
- Mace, T.A.; Ware, M.B.; King, S.A.; Loftus, S.; Farren, M.R.; McMichael, E.; Scoville, S.; Geraghty, C.; Young, G.; Carson, W.E.; et al. Soy Isoflavones and Their Metabolites Modulate Cytokine-Induced Natural Killer Cell Function. Sci. Rep. 2019, 9, 5068. [Google Scholar] [CrossRef]
- Shahryari, Z.; Fazaelipoor, M.H.; Ghasemi, Y.; Lennartsson, P.R.; Taherzadeh, M.J. Amylase and Xylanase from Edible Fungus Neurospora Intermedia: Production and Characterization. Molecules 2019, 24, 721. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Jones, P.J.H.; Vanstone, C.A.; Raeini-Sarjaz, M.; St-Onge, M.P. Phytosterols in Low- and Nonfat Beverages as Part of a Controlled Diet Fail to Lower Plasma Lipid Levels. J. Lipid Res. 2003, 44, 1713–1719. [Google Scholar] [CrossRef]
- Calpe-Berdiel, L.; Escolà-Gil, J.C.; Blanco-Vaca, F. Phytosterol-Mediated Inhibition of Intestinal Cholesterol Absorption Is Independent of ATP-Binding Cassette Transporter A1. Br. J. Nutr. 2006, 95, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, M. Plasma Cholesterol Reduction by Defatted Soy Ontjom (Fermented with Neurospora Intermedia) in Rats Fed a Cholesterol-Free Diet. J. Nutr. Sci. Vitaminol. 2000, 46, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Mel’nikov, S.M.; Seijen Ten Hoorn, J.W.M.; Eijkelenboom, A.P.A.M. Effect of Phytosterols and Phytostanols on the Solubilization of Cholesterol by Dietary Mixed Micelles: An in Vitro Study. Chem. Phys. Lipids 2004, 127, 121–141. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, L.M.; Pugliese, C. Phytosterol Supplementation in the Treatment of Dyslipidemia in Children and Adolescents: A Systematic Review. Rev. Paul. Pediatr. 2020, 39, e2019389. [Google Scholar] [CrossRef] [PubMed]
- Mappiratu, M. Produksi Beta Karoten Pada Limbah Cair Tapioka Dengan Kapang Oncom Merah; Bogor Agricultural University: Bogor, Indonesia, 1990. [Google Scholar]
- Pahlevi, Y.W.; Estiasih, T.; Saparianti, E. Jurusan Microencapsulation of Carotene Extracts from Neurospora sp. Spores with Protein Based Encapsulant Using Spray Drying Method. J. Teknol. Pertan. 2008, 9, 31–39. [Google Scholar]
- Purnamasari, N.; Andriani, M. Kawiji Pengaruh Jenis Pelarut Dan Variasi Suhu Pengering Spray Dryer Terhadap Kadar Karotenoid Kapang Oncom Merah (Neurospora Sp.). J. Teknosains Pangan 2013, 2, 107–114. [Google Scholar]
- Pea, S.I.; Khairuddin; Prismawiryanti. Studi Perbandingan Aktivitas Antioksidan Xantofil Dan Karoten Kapang Oncm Merah Pada Berbagai Waktu Inkubasi. KOVALEN J. Ris. Kim. 2020, 6, 152–157. [Google Scholar] [CrossRef]
- Hornero-méndez, D.; Limón, M.C.; Avalos, J. HPLC Analysis of Carotenoids in Neurosporaxanthin-Producing Fungi. In Microbial Carotenoids: Methods and Protocols, Methods in Molecular Biology; Humana Press: New York, NY, USA, 2016; Volume 1852, pp. 269–281. [Google Scholar] [CrossRef]
- Yuan, J.P.; Peng, J.; Yin, K.; Wang, J.H. Potential Health-Promoting Effects of Astaxanthin: A High-Value Carotenoid Mostly from Microalgae. Mol. Nutr. Food Res. 2011, 55, 150–165. [Google Scholar] [CrossRef]
- Higuera-Ciapara, I.; Félix-Valenzuela, L.; Goycoolea, F.M. Astaxanthin: A Review of Its Chemistry and Applications. Crit. Rev. Food Sci. Nutr. 2006, 46, 185–196. [Google Scholar] [CrossRef]
- Maiani, G.; Castón, M.J.P.; Catasta, G.; Toti, E.; Cambrodón, I.G.; Bysted, A.; Granado-Lorencio, F.; Olmedilla-Alonso, B.; Knuthsen, P.; Valoti, M.; et al. Carotenoids: Actual Knowledge on Food Sources, Intakes, Stability and Bioavailability and Their Protective Role in Humans. Mol. Nutr. Food Res. 2009, 53, 194–218. [Google Scholar] [CrossRef]
- Riccioni, G. Carotenoids and Cardiovascular Disease. Curr. Atheroscler. Rep. 2009, 11, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.L.; Gong, X.; Ji, M.Y.; Wang, C.C.; Wang, J.H.; Li, M.H. Bioactive Compounds from Plant-Based Functional Foods: A Promising Choice for the Prevention and Management of Hyperuricemia. Foods 2020, 9, 973. [Google Scholar] [CrossRef] [PubMed]
- Moghadasian, M.H.; Frohlich, J.J. Effects of Dietary Phytosterols on Cholesterol Metabolism and Atherosclerosis: Clinical and Experimental Evidence. Am. J. Med. 1999, 107, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Jayachandran, M.; Xu, B. An Insight into the Health Benefits of Fermented Soy Products. Food Chem. 2019, 271, 362–371. [Google Scholar] [CrossRef]
- Crimarco, A.; Springfield, S.; Petlura, C.; Streaty, T.; Cunanan, K.; Lee, J.; Fielding-Singh, P.; Carter, M.M.; Topf, M.A.; Wastyk, H.C.; et al. A Randomized Crossover Trial on the Effect of Plant-Based Compared with Animal-Based Meat on Trimethylamine-N-Oxide and Cardiovascular Disease Risk Factors in Generally Healthy Adults: Study with Appetizing Plantfood-Meat Eating Alternative Trial (SWAP). Am. J. Clin. Nutr. 2020, 112, 1188–1199. [Google Scholar] [CrossRef]
- Zhuang, G.; Liu, X.M.; Zhang, Q.X.; Tian, F.W.; Zhang, H.; Zhang, H.P.; Chen, W. Research Advances with Regards to Clinical Outcome and Potential Mechanisms of the Cholesterol-Lowering Effects of Probiotics. Clin. Lipidol. 2012, 7, 501–507. [Google Scholar] [CrossRef]
- Soyata, A.; Hasanah, A.N.; Rusdiana, T. Isoflavones in Soybean as a Daily Nutrient: The Mechanisms of Action and How They Alter the Pharmacokinetics of Drugs. Turkish J. Pharm. Sci. 2021, 18, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, K.; Adhikari, S.; Fujitani, M.; Kishida, T. Dietary Daidzein, but Not Genistein, Has a Hypocholesterolemic Effect in Non-Ovariectomized and Ovariectomized Female Sprague-Dawley Rats on a Cholesterol-Free Diet. Biosci. Biotechnol. Biochem. 2017, 81, 1805–1813. [Google Scholar] [CrossRef]
- Borradaile, N.M.; de Dreu, L.E.; Wilcox, L.J.; Edwards, J.Y.; Huff, M.W. Soya phytoestrogens, genistein and daidzein, decrease apolipoprotein B secretion from HepG2 cells through multiple mechanisms. Biochem. J. 2002, 366, 531–539. [Google Scholar] [CrossRef]
- Takahashi, Y.; Odbayar, T.O.; Ide, T. A Comparative Analysis of Genistein and Daidzein in Affecting Lipid Metabolism in Rat Liver. J. Clin. Biochem. Nutr. 2009, 44, 223–230. [Google Scholar] [CrossRef]
- Hutabarat, L.S.; Greenfield, H.; Mulholland, M. Isoflavones and Coumestrol in Soybeans and Soybean Products from Australia and Indonesia. J. Food Compos. Anal. 2001, 14, 43–58. [Google Scholar] [CrossRef]
- Taku, K.; Umegaki, K.; Ishimi, Y.; Watanabe, S. Effects of Extracted Soy Isoflavones Alone on Blood Total and LDL Cholesterol: Meta-Analysis of Randomized Controlled Trials. Ther. Clin. Risk Manag. 2008, 4, 1097–1103. [Google Scholar] [CrossRef]
- Sirtori, C.R.; Bosisio, R.; Pazzucconi, F.; Bondioli, A.; Gatti, E.; Lovati, M.R.; Murphy, P. Soy Milk with a High Glycitein Content Does Not Reduce Low-Density Lipoprotein Cholesterolemia in Type II Hypercholesterolemic Patients. Ann. Nutr. Metab. 2002, 46, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.Y.; Lim, S.; Lee, J.M.; Kim, D.Y.; Ann, E.S.; Yoona, S. A Combination of Soy Isoflavone Supplementation and Exercise Improves Lipid Profiles and Protects Antioxidant Defense-Systems against Exercise-Induced Oxidative Stress in Ovariectomized Rats. BioFactors 2007, 29, 175–185. [Google Scholar] [CrossRef]
- Guha, N.; Kwan, M.L.; Quesenberry, C.P.; Weltzien, E.K.; Castillo, A.L.; Caan, B.J. Soy Isoflavones and Risk of Cancer Recurrence in a Cohort of Breast Cancer Survivors: The Life after Cancer Epidemiology Study. Breast Cancer Res. Treat. 2009, 118, 395–405. [Google Scholar] [CrossRef]
- Wresdiyati, T.; Rizaldi, D.A.; Purnawan, T. Hypercholesterolemia and Its Management UsingVarious Bioactive Compounds: A Literature Review. J. Vet. 2023, 24, 406–421. [Google Scholar] [CrossRef]
- Ridges, L.; Sunderland, R.; Moerman, K.; Meyer, B.; Astheimer, L.; Howe, P. Cholesterol Lowering Benefits of Soy and Linseed Enriched Foods. Asia Pac. J. Clin. Nutr. 2001, 10, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, M. Low-Salt O-Miso Produced from Koji Fermentation of Oncom Improves Redox State and Cholesterolemia in Rats More than Low Salt Soybean-Miso. J. Nutr. Sci. Vitaminol. 2004, 50, 362–366. [Google Scholar] [CrossRef]
- Yoon, G.A.; Park, S. Antioxidant Action of Soy Isoflavones on Oxidative Stress and Antioxidant Enzyme Activities in Exercised Rats. Nutr. Res. Pract. 2014, 8, 618–624. [Google Scholar] [CrossRef]
- Gupta, R.; Jeevaratnam, K.; Fatima, A.; Scholar, P.; Graduate, P. Lactic Acid Bacteria: Probiotic Characteristic, Selection Criteria, and Its Role in Human Health (A Review). Jetir 2018, 5, 411–424. [Google Scholar]
- Reis, S.A.; Conceição, L.L.; Rosa, D.D.; Siqueira, N.P.; Peluzio, M.C.G. Mechanisms Responsible for the Hypocholesterolaemic Effect of Regular Consumption of Probiotics. Nutr. Res. Rev. 2017, 30, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Qin, Y. Dyslipidemia and Cardiovascular Disease: Current Knowledge, Existing Challenges, and New Opportunities for Management Strategies. J. Clin. Med. 2023, 12, 363. [Google Scholar] [CrossRef] [PubMed]
- Watzl, B. Anti-Inflammatory Effects of Plant-Based Foods and of Their Constituents. Int. J. Vitam. Nutr. Res. 2008, 78, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Nakamoto, M.; Shuto, E.; Hata, A.; Aki, N.; Shikama, Y.; Bando, Y.; Ichihara, T.; Minamigawa, T.; Kuwamura, Y.; et al. Associations between Intake of Dietary Fermented Soy Food and Concentrations of Inflammatory Markers: A Cross-Sectional Study in Japanese Workers. J. Med. Investig. 2018, 65, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Luque, E.M.; Gutiérrez, G.; Navarro-Sampedro, L.; Olmedo, M.; Rodríguez-Romero, J.; Ruger-Herreros, C.; Tagua, V.G.; Corrochano, L.M. A Relationship between Carotenoid Accumulation and the Distribution of Species of the Fungus Neurospora in Spain. PLoS ONE 2012, 7, e33658. [Google Scholar] [CrossRef] [PubMed]
- Cuamatzin-garcía, L.; Rodríguez-rugarcía, P.; El-kassis, E.G.; Galicia, G.; Meza-jiménez, M.d.L.; Baños-lara, M.D.R.; Zaragoza-maldonado, D.S.; Pérez-armendáriz, B. Traditional Fermented Foods and Beverages from around the World and Their Health Benefits. Microorganisms 2022, 10, 1151. [Google Scholar] [CrossRef]
- Maftei, N.M.; Raileanu, C.R.; Balta, A.A.; Ambrose, L.; Boev, M.; Marin, D.B.; Lisa, E.L. The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties. Microorganisms 2024, 12, 234. [Google Scholar] [CrossRef]
- Parra-Rivero, O.; Paes de Barros, M.; Prado, M.d.M.; Gil, J.-V.; Hornero-Méndez, D.; Zacarías, L.; Rodrigo, M.J.; Limón, M.C.; Avalos, J. Neurosporaxanthin Overproduction by Fusarium fujikuroi and Evaluation of Its Antioxidant Properties. Antioxidants 2020, 9, 528. [Google Scholar] [CrossRef]
- Trøseid, M.; Andersen, G.Ø.; Broch, K.; Hov, J.R. The Gut Microbiome in Coronary Artery Disease and Heart Failure: Current Knowledge and Future Directions. EBioMedicine 2020, 52, 102649. [Google Scholar] [CrossRef]
- Sandmann, G. Antioxidant Protection from UV-and Light-Stress Related to Carotenoid Structures. Antioxidants 2019, 8, 219. [Google Scholar] [CrossRef]
- Zarantonello, D.; Brunori, G. The Role of Plant-Based Diets in Preventing and Mitigating Chronic Kidney Disease: More Light than Shadows. J. Clin. Med. 2023, 12, 6137. [Google Scholar] [CrossRef] [PubMed]
- Montiel, D.G.; Guerrero Barrera, A.L.; Martínez Ávila, G.C.G.; Gonzalez Hernandez, M.D.; Chavez Vela, N.A.; Avelar Gonzalez, F.J.; Ramírez Castillo, F.Y. Influence of the Extraction Method on the Polyphenolic Profile and the Antioxidant Activity of Psidium guajava L. Leaf Extracts. Molecules 2024, 29, 85. [Google Scholar] [CrossRef]
- Vasile, C.; Sivertsvik, M.; Miteluţ, A.C.; Brebu, M.A.; Stoleru, E.; Rosnes, J.T.; Tănase, E.E.; Khan, W.; Pamfil, D.; Cornea, C.P.; et al. Comparative Analysis of the Composition and Active Property Evaluation of Certain Essential Oils to Assess Their Potential Applications in Active Food Packaging. Materials 2017, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Ricketts, M.L.; Moore, D.D.; Banz, W.J.; Mezei, O.; Shay, N.F. Molecular Mechanisms of Action of the Soy Isoflavones Includes Activation of Promiscuous Nuclear Receptors. A Review. J. Nutr. Biochem. 2005, 16, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Alfaddagh, A.; Martin, S.S.; Leucker, T.M.; Michos, E.D.; Blaha, M.J.; Lowenstein, C.J.; Jones, S.R.; Toth, P.P. Inflammation and Cardiovascular Disease: From Mechanisms to Therapeutics. Am. J. Prev. Cardiol. 2020, 4, 100130. [Google Scholar] [CrossRef]
- de Piano, A.; Masquio, D.C.L.; Dâmaso, A.R. The Effects of Soy Products and Isoflavones in Metabolic Syndrome and Nonalcoholic Fatty Liver Disease. Bioact. Food Diet. Interv. Diabetes 2019, 121–136. [Google Scholar] [CrossRef]
- Stephani, L.; Tjandrawinata, R.R.; Afifah, D.N.; Lim, Y.; Ismaya, W.T.; Suhartono, M.T. Food Origin Fibrinolytic Enzyme with Multiple Actions. HAYATI J. Biosci. 2017, 24, 124–130. [Google Scholar] [CrossRef]
- da Silva, A.V.; do Nascimento, J.M.; Rodrigues, C.H.; Silva Nascimento, D.C.; Pedrosa Brandão Costa, R.M.; de Araújo Viana Marques, D.; Lima Leite, A.C.; do Vale Barreto Figueiredo, M.; Pastrana, L.; Converti, A.; et al. Partial Purification of Fibrinolytic and Fibrinogenolytic Protease from Gliricidia sepium Seeds by Aqueous Two-Phase System. Biocatal. Agric. Biotechnol. 2020, 27, 101669. [Google Scholar] [CrossRef]
- Kotb, E. Activity Assessment of Microbial Fibrinolytic Enzymes. Appl. Microbiol. Biotechnol. 2013, 97, 6647–6665. [Google Scholar] [CrossRef]
- Eser, N.; Kartlaşmiş, K.; Uçar, Y.; Kökbaş, U. Total Fenolic Contents of Ferula Elaeochytris Root Extract and Its Effect on Glucose Levels. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi Ve Folk. Tıp Derg. 2020, 10, 154–161. [Google Scholar] [CrossRef]
Fungi Type | Water Content (%) * | Reducing Sugar Content (mg/g) * | Nitrogen Content (%) * | |
---|---|---|---|---|
Total | Dissolved | |||
Neurospora sp. | No significant change | No data | + | ++ |
Mucor sp. | - | ++ | - | ++ |
Rhizopus sp. | + | +++ | No data | +++ |
Parameter | Red Oncom | Black Oncom |
---|---|---|
Fungi type | Neurospora | Rhizopus and Mucor |
Materials | A mixture of peanut press cake, tapioca solid waste, and tofu dreg (okara) | Peanut press cake |
Regions of production in Indonesia | Bandung, Sumedang, Subang, and Bogor | Bogor and Jakarta |
Production scale | Small and medium-sized industries | Home industry |
Type of Ingredient | Moisture (%w/w wb) 1 | Ash (%w/w db) 2 | Crude Proteins (%w/w db) | Fats (%w/w db) | Carbohydrates (%w/w db) |
---|---|---|---|---|---|
Tofu dreg (okara) | 14.79 | 3.98 | 24.93 | 12.77 | 43.53 |
Peanut press cake | 4.31–6.2 | 3.33–4.8 | 33.31–44.90 | 8.8–9.2 | 35.30–35.87 |
Tapioca solid waste | 14 | 1.2 | 1.57 | 0.26 | 72.49–85.99 |
Composition | Red Oncom | Black Oncom |
---|---|---|
Moisture (%w/w wb) 1 | 80.56 | 52.98 |
39.11–66.11 | na 2 | |
na 2 | 70.51 | |
67.4–72.0 | 56.7–68.6 | |
Ash (%w/w db) 3 | 4.14 | 2.38 |
0.27–0.98 | na 2 | |
na 2 | 6.53 | |
Crude proteins (%w/w db) 3 | 24.16 | 40.60 |
20.67–22.77 | na 2 | |
na 2 | 28.87 | |
2.78 | 1.88 | |
55.2 | 54.4 | |
4.6 | 8.6 | |
Fats (%w/w db) 3 | 16.10 | 40.47 |
0.8–24.18 | na 2 | |
na 2 | 31.07 | |
2.31 | 1.9 | |
2.0 | 1.6 | |
2.3 | 3.6 | |
Carbohydrates (%w/w db) 3 | 55.56 | 16.55 |
12.15–23.83 | na 2 | |
na 2 | 33.53 | |
25.5 | 27.0 | |
Calcium (mg/100 g db) 3 | na 2 | 123.55 |
Zinc (mg/100 g db) 3 | na 2 | 3.29 |
Iron (mg/100 g db) 3 | na 2 | 9.90 |
Nutrition Composition | Red Oncom | Black Oncom |
---|---|---|
Water (g) | 80.9 | 65.0 |
Energy (kcal) | 76 | 132 |
Protein (g) | 5.2 | 12.7 |
Fat (g) | 1.8 | 3.8 |
Carbohydrate (g) | 10.6 | 13.7 |
Fibre (g) | 2.2 | 3.1 |
Ash (g) | 1.5 | 4.8 |
Calcium (mg) | 215 | 133 |
Phosphorus (mg) | 66 | 355 |
Fe (mg) | 12.5 | 34.4 |
Total carotene (mcg) | 268 | 10 |
Vitamin B1 (mg) | 0.11 | 0.08 |
Vitamin B2 (mg) | na 1 | 0.20 |
Niacin (mg) | na 1 | 0.7 |
Sensory Characteristics | Red Oncom | Black Oncom |
---|---|---|
Colour | Shiny orange colour, reddish yellow, salmon pink, golden yellow, brownish yellow, blackish brown, orange, red | Greyish black colour, black with white hyphae, greyish black, ash grey |
Odour | Minced meat when cooked, beany, musty, fermented, sour | Pleasant fruity odour, musty, nutty aroma |
Taste and flavour | Savoury/umami, bland, bitter, sourness, lower intensity of umami taste than in black oncom | Umami taste, higher intensity of umami taste than in red oncom |
Flavour of minced meat when fried, or almonds | ||
Fruity, alcoholic flavour | ||
Aftertaste | Bitterness, sourness, and tartness | Bitterness |
Texture | Compact and soft texture (Bandung red oncom), juicy, soft, fibrous, chewiness, has high springiness, cohesiveness, less hardness | Thick, has a semi-solid and homogeneous texture, high hardness |
Acceptability | Taste and texture are accepted by consumers (Bandung red oncom); red oncom is more preferred than their original waste without fermentation, with a stronger preference for red oncom, driven by its umami taste and red than black colour | Black oncom was rated as more acceptable than red oncom |
Type and Amount of Oncom | How Oncom Was Applied | Duration of Use | Study Group | Effect Observed |
---|---|---|---|---|
Black and red oncom 0.005 g/g (w/w) | Orally feeding extract | 14 days | Twenty-one three-to-four-month-old fertile female rats | Influence the length of oestrous cycle and endometrium thickness |
Black and red oncom | Orally feeding formulated feed | 35 days | One hundred (unsex) twenty-day-old Lohmann broilers | Positive result on broiler intestinal properties |
Red oncom | Ethanol extract of oncom | 3 days | In vitro test used breast cancer (MCF-7) | Antioxidant, anti-inflammatory, and anti-cancer properties |
O-Miso with 9:1 soy oncom–okara oncom | Orally feeding formulated feed with O-miso | 14 days | Ten 4-week-old male Wistar ST rats | High antioxidative activity and antimutagenicity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijaya, C.H.; Nuraida, L.; Nuramalia, D.R.; Hardanti, S.; Świąder, K. Oncom: A Nutritive Functional Fermented Food Made from Food Process Solid Residue. Appl. Sci. 2024, 14, 10702. https://doi.org/10.3390/app142210702
Wijaya CH, Nuraida L, Nuramalia DR, Hardanti S, Świąder K. Oncom: A Nutritive Functional Fermented Food Made from Food Process Solid Residue. Applied Sciences. 2024; 14(22):10702. https://doi.org/10.3390/app142210702
Chicago/Turabian StyleWijaya, Christofora Hanny, Lilis Nuraida, Dwiarti Rachma Nuramalia, Sri Hardanti, and Katarzyna Świąder. 2024. "Oncom: A Nutritive Functional Fermented Food Made from Food Process Solid Residue" Applied Sciences 14, no. 22: 10702. https://doi.org/10.3390/app142210702
APA StyleWijaya, C. H., Nuraida, L., Nuramalia, D. R., Hardanti, S., & Świąder, K. (2024). Oncom: A Nutritive Functional Fermented Food Made from Food Process Solid Residue. Applied Sciences, 14(22), 10702. https://doi.org/10.3390/app142210702