Processes Turning Saline Settling Basins into Freshwater Bodies (Selected Examples from the Upper Silesian Coal Basin)
Abstract
:1. Introduction
- -
- examining the changes in the morphometric parameters and type of water management of settling basins after their decommissioning,
- -
- examining the changes in the mineralisation and chemical composition of the water in settling basins after their decommissioning,
- -
- examining the changes in the physicochemical properties of water in the vertical column of the basins,
- -
- describing the processes (factors) that turned the settling basins into freshwater tanks,
- -
- indicating development directions for brine settling basins facing decommissioning.
2. Materials and Methods
2.1. Location and Characteristics of the Settling Basins
2.2. Water Management in the Settling Basins
2.3. Research Methods
3. Results
3.1. Gliniok Reservoir
3.2. “Hubertus I” Reservoir
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Dowgiałło, J.; Kleczkowski, A.S.; Macioszczyk, T.; Różkowski, A. Hydrogeological Dictionary; Państwowy Instytut Geologiczny: Warsaw, Poland, 2002; p. 328. ISBN 83-86986-57-3. [Google Scholar]
- Rozkowski, A.; Chmura, A.; Gajowiec, B.; Wagner, J. Impact of mining on the groundwater chemistry in the Upper Silesian Coal Basin (Poland). Mine Water Environ. 1993, 12, 95–105. [Google Scholar] [CrossRef]
- Häyrynen, K.; Pongrácz, E.; Väisänen, V.; Pap, N.; Mänttäri, M.; Langwaldt, J.; Keiski, R.L. Concentration of ammonium and nitrate from mine water by reverse osmosis and nanofiltration. Desalination 2009, 240, 280–289. [Google Scholar] [CrossRef]
- Spyra, A.; Cieplok, A.; Kaszyca-Taszakowska, N. From extremely acidic to alkaline: Aquatic invertebrates in forest mining lakes under the pressure of acidification. Int. Rev. Hydrobiol. 2023, 108, 5–16. [Google Scholar] [CrossRef]
- Szlauer-Lukaszewska, A.; Ławicki, Ł.; Engel, J.; Drewniak, E.; Ciężak, K.; Marchowski, D. Quantifying a mass mortality event in freshwater wildlife within the Lower Odra River: Insights from a large European river. Sci. Total Environ. 2023, 907, 167898. [Google Scholar] [CrossRef] [PubMed]
- Anuja, S.A.; Kavitha, P.; Jothi, C.H.; Jemila Rose, R. Seasonal assessment of water quality for irrigation using multiple indices in Thamirabarani river, Kanyakumari district, India. Desalin. Water Treat. 2024, 317, 100206. [Google Scholar] [CrossRef]
- Żurek, R.; Diakiv, V.; Szarek-Gwiazda, E.; Kosiba, J.; Wojtal, A. Unique Pit Lake Created in an Opencast Potassium Salt Mine (Dombrovska Pit Lake in Kalush, Ukraine). Mine Water Environ. 2018, 37, 456–469. [Google Scholar] [CrossRef]
- Edgar, E.; Salazar, V.; Hernández, G.R.; Vargas Saavedra, J.A.; Villegas Romero, H.J. 2024: Ethanol extraction desalination test using pre-treated mine wastewater concentrated by reverse osmosis. Desalin. Water Treat. 2024, 317, 100208. [Google Scholar] [CrossRef]
- Zouhri, N.; Addar, F.Z.; Tahaikt, M.; Elamrani, M.; ELmidaoui, A.; Taky, M. Techno-economic study and optimization of the performance of nanofiltration and reverse osmosis membranes in reducing the salinity of M′rirt water city (Morocco). Desalin. Water Treat. 2024, 317, 100042. [Google Scholar] [CrossRef]
- Molenda, T. Naturalne i Antropogeniczne Uwarunkowania Zmian Właściwości Fizyczno-Chemicznych Wód w Pogórniczych Środowiskach Akwatycznych. Na Przykładzie Regionu Górnośląskiego i Obszarów Ościennych; Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland, 2011. [Google Scholar]
- Molenda, T.; Chmura, D. Seasonal changes in selected physico-chemical parameters of saline water bodies. Ecol. Chem. Eng. 2011, A18, 225–233. [Google Scholar]
- Molenda, T. Impact of Saline Mine Water: Development of a Meromictic Reservoir in Poland. Mine Water Environ. 2014, 33, 327–334. [Google Scholar] [CrossRef]
- Bielańska-Grajner, I.; Cudak, A. Effects of Salinity on Species Diversity of Rotifers in Anthropogenic Water Bodies. Pol. J. Environ. Stud. 2014, 23, 27–34. [Google Scholar]
- Talant, A.; Jilili, A.; Gulnura, I.; Long, M.; Eldiiar, D. Long-Term Dynamics and Seasonal Changes in Hydrochemistry of the Issyk-Kul Lake Basin, Kyrgyzstan. Arid Ecosyst. 2019, 9, 69–76. [Google Scholar] [CrossRef]
- Molenda, T. Impact of a Saline Mine Water Discharge on the Development of a Meromictic Pond, the Rontok Wielki Reservoir. Mine Water Environ. 2018, 37, 807–814. [Google Scholar] [CrossRef]
- Gutry-Korycka, M.; Werner-Więckowska, H. (Eds.) Przewodnik do Hydrograficznych Badań Terenowych; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1996. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2009. [Google Scholar]
- Herbich, E. Analiza tektoniczna sieci uskokowej Górnośląskiego Zagłębia Węglowego. In Annales Societatis Geologorum Poloniae; Rocznik Polskiego Towarzystwa Geologicznego v. 51—3/4: Kraków, Poland, 1981; pp. 383–434. [Google Scholar]
- Idziak, A.F. A Study of Spatial Distribution of Induced Seismicity in the Upper Silesian Coal Basin. Nat. Hazards 1999, 19, 97–105. [Google Scholar] [CrossRef]
- Idziak, A.; Zuberek, W. Fractal analysis of mining induced seismicity in the Upper Silesian Coal Basin. In Mechanics of Jointed and Faulted Rock (e.d. H_P. Rossmanith); Balkema: Geneva, Switzerland, 1995; pp. 679–682. [Google Scholar]
- Zuberek, W.M.; Teper, L.; Idziak, A.F.; Sagan, G. Seismicity and tectonics in the Upper Silesian Coal Basin, Poland. Papers Pol. Geol. Inst. 1997, 157, 199–207. [Google Scholar]
- Knopik, M.; Zuberek, W.M.; Wojtecki, Ł. Wieloprzyczynowość wysokoenergetycznych wstrząsów górniczych. Przegląd Górniczy 2015, 71, 12–19. [Google Scholar]
- Czaja, S. Zmiany Stosunków Wodnych w Warunkach Silnej Antropopresji (na Przykładzie Konurbacji Katowickiej); Prace Naukowe Uniwersytetu Śląskiego nr 1782: Katowice, Poland, 1999. [Google Scholar]
- Asankulov, T.; Abuduwaili, J.; Issanova, G.T.; Duulatov, E. Analysis of water quality in the coastal zone of the Issyk-kul lake before and after the tourist season. Bull. Natl. Acad. Sci. Repub. Kazakhstan 2018, 4, 6–12. [Google Scholar]
- Czaya, E. Rzeki Kuli Ziemskiej; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1987; p. 288. [Google Scholar]
- Szczepanska-Plewa, J.; Stefaniak, S.; Twardowska, I. Coal mining waste management and its impact on the groundwater chemical status exemplified in the Upper Silesia coal Basin (Poland). Biul. Państwowego Inst. Geol. 2010, 441, 157–166. [Google Scholar]
- Molenda, T.; Jankowska-Nitkiewicz, A. Sulphates (SO42−) and Chlorides (Cl−) as Indicators of Anthropogenic Changes of Surface Waters Quality. Pol. J. Environ. Studies. 2006, 680–684. [Google Scholar]
- Szczepanska, J.; Twardowska, I. Distribution and environmental impact of coal-mining wastes in Upper Silesia, Poland. Environ. Geol. 1999, 38, 249–258. [Google Scholar] [CrossRef]
Reservoir | Ca2+ | Mg2+ | Na+ | K+ | HCO3− | Cl− | SO42− | Hydrochemical Type |
---|---|---|---|---|---|---|---|---|
Gliniok (during operation) | 9.7 | 6.2 | 61 | 0.8 | 1.8 | 75 | 6.9 | Cl–Na |
Gliniok (currently) | 3.8 | 4.5 | 23 | 0.5 | 3.5 | 26 | 3.9 | Cl–Na |
Grunfeld (2008 year) | 2.8 | 2.1 | 0.6 | 0.2 | 2.7 | 1.9 | 1.1 | HCO3–Ca |
Grunfeld (currently) | 2.3 | 2 | 0.6 | 0.2 | 2.4 | 0.6 | 2.4 | HCO3–Ca–SO4–Cl |
Hubertus I (during operation) | 18 | 16.8 | 78 | 1.1 | 5.2 | 110 | 8.5 | Cl–Na |
Hubertus I (currently) | 2.5 | 2.3 | 3.5 | 0.2 | 3.5 | 3.6 | 1.2 | Cl–HCO3–Na |
Hubertus II | 2 | 1.6 | 1.3 | 0.17 | 3.3 | 1.4 | 0.4 | HCO3–Ca |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molenda, T.; Woźniak, G.; Dyczko, A.; Bacler-Żbikowska, B.; Kidawa, J. Processes Turning Saline Settling Basins into Freshwater Bodies (Selected Examples from the Upper Silesian Coal Basin). Appl. Sci. 2024, 14, 10814. https://doi.org/10.3390/app142310814
Molenda T, Woźniak G, Dyczko A, Bacler-Żbikowska B, Kidawa J. Processes Turning Saline Settling Basins into Freshwater Bodies (Selected Examples from the Upper Silesian Coal Basin). Applied Sciences. 2024; 14(23):10814. https://doi.org/10.3390/app142310814
Chicago/Turabian StyleMolenda, Tadeusz, Gabriela Woźniak, Artur Dyczko, Barbara Bacler-Żbikowska, and Joanna Kidawa. 2024. "Processes Turning Saline Settling Basins into Freshwater Bodies (Selected Examples from the Upper Silesian Coal Basin)" Applied Sciences 14, no. 23: 10814. https://doi.org/10.3390/app142310814
APA StyleMolenda, T., Woźniak, G., Dyczko, A., Bacler-Żbikowska, B., & Kidawa, J. (2024). Processes Turning Saline Settling Basins into Freshwater Bodies (Selected Examples from the Upper Silesian Coal Basin). Applied Sciences, 14(23), 10814. https://doi.org/10.3390/app142310814