VIS/NIR Spectroscopy as a Non-Destructive Method for Evaluation of Quality Parameters of Three Bell Pepper Varieties Based on Soft Computing Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Chemicals
2.2. Vis/NIR Spectroscopy
2.3. Qualitative Property Tests (Destructive)
2.3.1. Firmness
2.3.2. Soluble Solid Content (SSC)
2.3.3. pH
2.3.4. Titratable Acidity (TA)
2.3.5. Ascorbic Acid
2.3.6. Anthocyanin
2.3.7. Total Phenol
2.4. Data Analysis
2.4.1. Principal Component Analysis (PCA) and Outlier Detection
2.4.2. Partial Least Squares Regression (PLSR) and Finding Effective Wavelengths
2.4.3. Modeling Based on Effective Wavelengths
3. Results and Discussion
3.1. Quality Parameters
3.2. Vis-NIR Spectra
3.3. Principal Component Analysis and Outlier Detection
3.4. Partial Least Squares (PLS) Regression
3.5. Effective Wavelengths
3.6. Modeling Based on the Effective Wavelength
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marín, A.; Ferreres, F.; Tomás-Barberán, F.A.; Gil, M.I. Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum annuum L.). J. Agric. Food Chem. 2004, 52, 3861–3869. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT Database. Livestock Products. 2020. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 19 October 2022).
- Gómez-Ladrón de Guevara, R.; Pardo-González, J.E.; Varón-Castellanos, R.; Navarro-Albaladejo, F. Evolution of color during the ripening of selected varieties of paprika pepper (Capsicum annuum L.). J. Agric. Food Chem. 1996, 44, 2049–2052. [Google Scholar] [CrossRef]
- Schmilovitch, Z.e.; Ignat, T.; Alchanatis, V.; Gatker, J.; Ostrovsky, V.; Felföldi, J. Hyperspectral imaging of intact bell peppers. Biosyst. Eng. 2014, 117, 83–93. [Google Scholar] [CrossRef]
- Zsom-Muha, V. Dinamikus Módszerek Kertészeti Termények Jellemzésére. Ph.D. Thesis, Budapesti Corvinus Egyetem Élelmiszertudományi Kar Fizika-Automatika Tanszék, Budapest, Hungary, 2008. [Google Scholar]
- Antoniali, S.; Leal, P.A.M.; Magalhães, A.M.d.; Fuziki, R.T.; Sanches, J. Physico-chemical characterization of ‘Zarco HS’ yellow bell pepper for different ripeness stages. Sci. Agric. 2007, 64, 19–22. [Google Scholar] [CrossRef]
- Camara, B.; Moneger, R. Free and esterified carotenoids in green and red fruits of Capsicum annuum. Phytochemistry 1978, 17, 91–93. [Google Scholar] [CrossRef]
- Deli, J.; Molnar, P. Paprika carotenoids: Analysis, isolation, structure elucidation. Curr. Org. Chem. 2002, 6, 1197–1219. [Google Scholar] [CrossRef]
- Minguez-Mosquera, M.I.; Hornero-Mendez, D. Formation and transformation of pigments during the fruit ripening of Capsicum annuum cv. Bola and Agridulce. J. Agric. Food Chem. 1994, 42, 38–44. [Google Scholar] [CrossRef]
- García-Berná, J.A.; Ouhbi, S.; Benmouna, B.; Garcia-Mateos, G.; Fernández-Alemán, J.L.; Molina-Martínez, J.M. Systematic mapping study on remote sensing in agriculture. Appl. Sci. 2020, 10, 3456. [Google Scholar] [CrossRef]
- Mohi-Alden, K.; Omid, M.; Firouz, M.S.; Nasiri, A. A machine vision-intelligent modelling based technique for in-line bell pepper sorting. Inf. Process. Agric. 2023, 10, 491–503. [Google Scholar] [CrossRef]
- Nasiri, A.; Mohi, K. A machine vision-based system for measuring the chromatic parameters of bell pepper using artificial neural networks. In Proceedings of the 13th Iranian National Congress on Biosystems Engineering and Mechanization, Tehran, Iran, 15–17 September 2021. [Google Scholar]
- Villaseñor-Aguilar, M.-J.; Bravo-Sánchez, M.-G.; Padilla-Medina, J.-A.; Vázquez-Vera, J.L.; Guevara-González, R.-G.; García-Rodríguez, F.-J.; Barranco-Gutiérrez, A.-I. A maturity estimation of bell pepper (Capsicum annuum L.) by artificial vision system for quality control. Appl. Sci. 2020, 10, 5097. [Google Scholar] [CrossRef]
- Jamshidi, B.; Mohajerani, E.; Jamshidi, J.; Minaei, S.; Sharifi, A. Non-destructive detection of pesticide residues in cucumber using visible/near-infrared spectroscopy. Food Addit. Contam. Part A 2015, 32, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Ardila, C.E.C.; Ramirez, L.A.; Ortiz, F.A.P. Spectral analysis for the early detection of anthracnose in fruits of Sugar Mango (Mangifera indica). Comput. Electron. Agric. 2020, 173, 105357. [Google Scholar] [CrossRef]
- Agulheiro-Santos, A.C.; Ricardo-Rodrigues, S.; Laranjo, M.; Melgão, C.; Velázquez, R. Non-destructive prediction of total soluble solids in strawberry using near infrared spectroscopy. J. Sci. Food Agric. 2022, 102, 4866–4872. [Google Scholar] [CrossRef] [PubMed]
- Nizamlioglu, N.M.; Yasar, S.; Bulut, Y. Chemical versus infrared spectroscopic measurements of quality attributes of sun or oven dried fruit leathers from apple, plum and apple-plum mixture. LWT 2022, 153, 112420. [Google Scholar] [CrossRef]
- Kasampalis, D.S.; Tsouvaltzis, P.; Ntouros, K.; Gertsis, A.; Gitas, I.; Siomos, A.S. The use of digital imaging, chlorophyll fluorescence and Vis/NIR spectroscopy in assessing the ripening stage and freshness status of bell pepper fruit. Comput. Electron. Agric. 2021, 187, 106265. [Google Scholar] [CrossRef]
- Pourdarbani, R.; Sabzi, S.; Arribas, J.I. Nondestructive estimation of three apple fruit properties at various ripening levels with optimal Vis-NIR spectral wavelength regression data. Heliyon 2021, 7, e07942. [Google Scholar] [CrossRef]
- Rong, D.; Wang, H.; Ying, Y.; Zhang, Z.; Zhang, Y. Peach variety detection using VIS-NIR spectroscopy and deep learning. Comput. Electron. Agric. 2020, 175, 105553. [Google Scholar] [CrossRef]
- Babellahi, F.; Amodio, M.L.; Marini, F.; Chaudhry, M.M.; de Chiara, M.L.; Mastrandrea, L.; Colelli, G. Using chemometrics to characterise and unravel the near infra-red spectral changes induced in aubergine fruit by chilling injury as influenced by storage time and temperature. Biosyst. Eng. 2020, 198, 137–146. [Google Scholar] [CrossRef]
- Hasanzadeh, B.; Abbaspour-Gilandeh, Y.; Soltani-Nazarloo, A.; Cruz-Gámez, E.D.L.; Hernández-Hernández, J.L.; Martínez-Arroyo, M. Non-destructive measurement of quality parameters of apple fruit by using visible/near-infrared spectroscopy and multivariate regression analysis. Sustainability 2022, 14, 14918. [Google Scholar] [CrossRef]
- Najjar, K.; Abu-Khalaf, N. Non-destructive quality measurement for three varieties of tomato using VIS/NIR spectroscopy. Sustainability 2021, 13, 10747. [Google Scholar] [CrossRef]
- Ayvaz, H.; Temizkan, R.; Menevseoglu, A.; Dogan, M.A.; Nazlim, B.A.; Gunay, E.; Uysal Pala, C. A comprehensive study on the quality characteristics of sweet red pepper paste and the evaluation of near-infrared spectroscopy as a rapid alternative tool. Eur. Food Res. Technol. 2023, 249, 607–618. [Google Scholar] [CrossRef]
- Sánchez, M.T.; Pintado, C.; de la Haba, M.J.; Torres, I.; García, M.; Pérez-Marín, D. In situ ripening stages monitoring of Lamuyo pepper using a new-generation near-infrared spectroscopy sensor. J. Sci. Food Agric. 2020, 100, 1931–1939. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, L.; Zhou, G.; Liu, C.; Ji, Z.; Li, Z.; Li, W. Strategies for the content determination of capsaicin and the identification of adulterated pepper powder using a hand-held near-infrared spectrometer. Food Res. Int. 2023, 163, 112192. [Google Scholar] [CrossRef] [PubMed]
- Khuriyati, N.; Sukartiko, A.; Alfiani, R. Non-destructive measurement of antioxidant activity and water content in chili powder (Capsicum annuum L.) using near-infrared spectroscopy. Int. Food Res. J. 2022, 29, 320–327. [Google Scholar] [CrossRef]
- Hafsah, S.; Ahmad, F.; Arianti, N.D.; Saputra, E.; Hartuti, S. Rapid and non-destructive determination of vitamin C and antioxidant activity of intact red chilies using visible near-infrared spectroscopy and machine learning tools. Case Stud. Chem. Environ. Eng. 2023, 8, 100435. [Google Scholar]
- Kusumiyati, K.; Taira, E.; Maulana, Y.E. Near-infrared Spectroscopy for Direct Investigation of Quality Compounds in Capsicum spp (Capsicum annuum L. and Capsicum frutescens L.). Open Agric. J. 2024, 18. [Google Scholar] [CrossRef]
- Aprilia, Y.; Khuriyati, N.; Sukartiko, A. Classification of chili powder (Capsicum annuum L.) antioxidant activity based on near infrared spectra. Food Res. 2021, 5, 51–56. [Google Scholar] [CrossRef]
- Khuriyati, N.; Sukartiko, A.C.; Falah, M.A.F.; Alfiani, R.N. Determination of Total Carotene and Vitamin C in Chili Powder (Capsicum annuum L.) Non-destructively Using Near-Infrared Spectroscopy. Int. J. Adv. Sci. Eng. Inf. Technol. 2023, 13, 69–76. [Google Scholar] [CrossRef]
- Pratiwi, E.Z.D.; Pahlawan, M.F.; Rahmi, D.N.; Amanah, H.Z.; Masithoh, R.E. Non-destructive evaluation of soluble solid content in fruits with various skin thicknesses using visible–shortwave near-infrared spectroscopy. Open Agric. 2023, 8, 20220183. [Google Scholar] [CrossRef]
- Valero, D.; Díaz-Mula, H.M.; Zapata, P.J.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Serrano, M. Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biol. Technol. 2013, 77, 1–6. [Google Scholar] [CrossRef]
- Sadat Razavi, M.; Golmohammadi, A.; Nematollahzadeh, A.; Ghanbari, A.; Davari, M.; Rovera, C.; Carullo, D.; Farris, S. Impact of Bacterial Cellulose Nanocrystals-Gelatin/Cinnamon Essential Oil Emulsion Coatings on the Quality Attributes of ‘Red Delicious’ Apples. Coatings 2022, 12, 741. [Google Scholar] [CrossRef]
- Jones, J.B. Laboratory Guide for Conducting Soil Tests and Plant Analysis; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Akbari, R.; Tarighi, J.; Razavi, M.S.; Tahmasebi, M.; Carullo, D.; Farris, S. Extending the Shelf-Life of Nectarines through Fish Gelatin/Cellulose Nanocrystals/Cinnamon Essential Oil-Based Edible Coatings. Coatings 2024, 14, 736. [Google Scholar] [CrossRef]
- Fuleki, T.; Francis, F. Quantitative methods for anthocyanins., II. Determination of food anthocyanins and degradation. Index for cramberry juice. J. Food Sci. 1968, 33, 79. [Google Scholar]
- Du, C.-J.; Sun, D.-W. Learning techniques used in computer vision for food quality evaluation: A review. J. Food Eng. 2006, 72, 39–55. [Google Scholar] [CrossRef]
- Chang, C.-W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef]
- Masoudi-Sobhanzadeh, Y.; Motieghader, H.; Masoudi-Nejad, A. FeatureSelect: A software for feature selection based on machine learning approaches. BMC Bioinform. 2019, 20, 170. [Google Scholar] [CrossRef]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef]
- Aruna, S.; Rajagopalan, S. A novel SVM based CSSFFS feature selection algorithm for detecting breast cancer. Int. J. Comput. Appl. 2011, 31, 14–20. [Google Scholar]
- Noble, W.S. Support Vector Machine Applications in Computational Biology; MIT Press: Cambridge, MA, USA, 2004. [Google Scholar]
- McCall, J. Genetic algorithms for modelling and optimisation. J. Comput. Appl. Math. 2005, 184, 205–222. [Google Scholar] [CrossRef]
- Marini, F.; Walczak, B. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst. 2015, 149, 153–165. [Google Scholar] [CrossRef]
- Dorigo, M.; Bonabeau, E.; Theraulaz, G. Ant algorithms and stigmergy. Future Gener. Comput. Syst. 2000, 16, 851–871. [Google Scholar] [CrossRef]
- Atashpaz-Gargari, E.; Lucas, C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 4661–4667. [Google Scholar]
- Rosales, M.A.; Palconit, M.G.B.; Bandala, A.A.; Vicerra, R.R.P.; Dadios, E.P.; Calinao, H. Prediction of total body water using scaled conjugate gradient artificial neural network. In Proceedings of the 2020 IEEE Region 10 Conference (Tencon), Osaka, Japan, 16–19 November 2020; pp. 218–223. [Google Scholar]
- Jamiołkowska, A.; Buczkowska, H.; Thanoon, A.H. Effect of biological preparations on content of saccharides in sweet pepper fruits. Acta Sci. Pol. Hortorum Cultus 2016, 15, 65–75. [Google Scholar]
- Koner, S.; Chatterjee, R.; Datta, S. Effect of planting dates and varieties on growth, fruit yield and quality of bell pepper (Capsicum annuum L.). J. Appl. Nat. Sci. 2015, 7, 734–738. [Google Scholar] [CrossRef]
- Buczkowska, H.; Sałata, A.; Rożek, E. Diversity of the utility and biological value of fruits of some sweet pepper cultivars. Acta Sci. Polonorum. Hortorum Cultus 2014, 13, 49–62. [Google Scholar]
- Ibrahim, A.; Abdel-Razzak, H.; Wahb-Allah, M.; Alenazi, M.; Alsadon, A.; Dewir, Y.H. Improvement in growth, yield, and fruit quality of three red sweet pepper cultivars by foliar application of humic and salicylic acids. HortTechnology 2019, 29, 170–178. [Google Scholar] [CrossRef]
- Clément, A.; Dorais, M.; Vernon, M. Nondestructive measurement of fresh tomato lycopene content and other physicochemical characteristics using visible− NIR spectroscopy. J. Agric. Food Chem. 2008, 56, 9813–9818. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Solovchenko, A.E.; Gitelson, A.A. Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biol. Technol. 2003, 27, 197–211. [Google Scholar] [CrossRef]
- Cozzolino, D.; Cynkar, W.; Shah, N.; Smith, P. Multivariate data analysis applied to spectroscopy: Potential application to juice and fruit quality. Food Res. Int. 2011, 44, 1888–1896. [Google Scholar] [CrossRef]
- Heidari, P.; Rezaei, M.; Sahebi, M.; Khadivi, A. Phenotypic variability of Pyrus boissieriana Buhse: Implications for conservation and breeding. Sci. Hortic. 2019, 247, 1–8. [Google Scholar] [CrossRef]
- CAMO Process AS. The Unscrambler Tutorials. U9. 2006. Available online: https://www.camo.com/downloads (accessed on 18 November 2024).
- Aulia, R.S.; Atok, R.M. Penentuan panjang optimal data deret waktu bebas outlier dengan menggunakan metode window time. J. Sains Dan Seni ITS 2017, 6, D129–D136. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Opara, U.L.; Nieuwoudt, H.; Cronje, P.J.; Saeys, W.; Nicolaï, B. NIR spectroscopy applications for internal and external quality analysis of citrus fruit—A review. Food Bioprocess Technol. 2012, 5, 425–444. [Google Scholar] [CrossRef]
- Nturambirwe, J.F.I.; Nieuwoudt, H.H.; Perold, W.J.; Opara, U.L. Non-destructive measurement of internal quality of apple fruit by a contactless NIR spectrometer with genetic algorithm model optimization. Sci. Afr. 2019, 3, e00051. [Google Scholar] [CrossRef]
- Amoghin, M.L.; Abbaspour-Gilandeh, Y.; Tahmasebi, M.; Arribas, J.I. Automatic non-destructive estimation of polyphenol oxidase and peroxidase enzyme activity levels in three bell pepper varieties by Vis/NIR spectroscopy imaging data based on machine learning methods. Chemom. Intell. Lab. Syst. 2024, 250, 105137. [Google Scholar] [CrossRef]
- Rajabi-Sarkhani, M.; Abbaspour-Gilandeh, Y.; Moinfar, A.; Tahmasebi, M.; Martínez-Arroyo, M.; Hernández-Hernández, M.; Hernández-Hernández, J.L. Identifying Optimal Wavelengths from Visible–Near-Infrared Spectroscopy Using Metaheuristic Algorithms to Assess Peanut Seed Viability. Agronomy 2023, 13, 2939. [Google Scholar] [CrossRef]
- Włodarska, K.; Szulc, J.; Khmelinskii, I.; Sikorska, E. Non-destructive determination of strawberry fruit and juice quality parameters using ultraviolet, visible, and near-infrared spectroscopy. J. Sci. Food Agric. 2019, 99, 5953–5961. [Google Scholar] [CrossRef]
- Shao, Y.; He, Y. Nondestructive measurement of the internal quality of bayberry juice using Vis/NIR spectroscopy. J. Food Eng. 2007, 79, 1015–1019. [Google Scholar] [CrossRef]
- Osborne, B.G.; Fearn, T.; Hindle, P.H. Practical NIR Spectroscopy with Applications in Food and Beverage Analysis; Longman Scientific and Technical: New York, NY, USA, 1993. [Google Scholar]
- Wang, N.; Feng, J.; Li, L.; Liu, J.; Sun, Y. Rapid determination of cellulose and hemicellulose contents in corn stover using near-infrared spectroscopy combined with wavelength selection. Molecules 2022, 27, 3373. [Google Scholar] [CrossRef]
- Zdunek, A.; Kozioł, A.; Pieczywek, P.; Cybulska, J. Evaluation of the nanostructure of pectin, hemicellulose and cellulose in the cell walls of pears of different texture and firmness. Food Bioprocess Technol. 2014, 7, 3525–3535. [Google Scholar] [CrossRef]
- Abbas, O.; Compère, G.; Larondelle, Y.; Pompeu, D.; Rogez, H.; Baeten, V. Phenolic compound explorer: A mid-infrared spectroscopy database. Vib. Spectrosc. 2017, 92, 111–118. [Google Scholar] [CrossRef]
- Ali, H.M.; Almagribi, W.; Al-Rashidi, M.N. Antiradical and reductant activities of anthocyanidins and anthocyanins, structure–activity relationship and synthesis. Food Chem. 2016, 194, 1275–1282. [Google Scholar] [CrossRef]
- Wang, H.; Peng, J.; Xie, C.; Bao, Y.; He, Y. Fruit quality evaluation using spectroscopy technology: A review. Sensors 2015, 15, 11889–11927. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Saona, L.E.; Fry, F.S.; McLaughlin, M.A.; Calvey, E.M. Rapid analysis of sugars in fruit juices by FT-NIR spectroscopy. Carbohydr. Res. 2001, 336, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Zhang, J.; Liu, S.; Huang, H.; Zhan, B.; Fan, G.; Zhang, H. Prediction of soluble solid content in Nanfeng mandarin by combining hyperspectral imaging and effective wavelength selection. J. Food Compos. Anal. 2024, 126, 105939. [Google Scholar] [CrossRef]
- Mousavi-Avval, S.H.; Rafiee, S.; Sharifi, M.; Hosseinpour, S.; Shah, A. Combined application of life cycle assessment and adaptive neuro-fuzzy inference system for modeling energy and environmental emissions of oilseed production. Renew. Sustain. Energy Rev. 2017, 78, 807–820. [Google Scholar] [CrossRef]
- Malvandi, A.; Kapoor, R.; Feng, H.; Kamruzzaman, M. Non-destructive measurement and real-time monitoring of apple hardness during ultrasonic contact drying via portable NIR spectroscopy and machine learning. Infrared Phys. Technol. 2022, 122, 104077. [Google Scholar] [CrossRef]
- Silalahi, D.D.; Reaño, C.E.; Lansigan, F.P.; Panopio, R.G.; Bantayan, N.C. Using genetic algorithm neural network on near infrared spectral data for ripeness grading of oil palm (Elaeis guineensis Jacq.) fresh fruit. Inf. Process. Agric. 2016, 3, 252–261. [Google Scholar] [CrossRef]
Variety | Firmness (N) | pH | SSC (Brix) | TA (%) | Ascorbic Acid (mg in 100 g) | TP (mg/g) | Anthocyanin (mg/g) | |
---|---|---|---|---|---|---|---|---|
Mean | Red | 14.051 | 4.5263 | 7.963 | 7.627 | 200.49 | 202.27 | 1.6294 |
Yellow | 12.947 | 4.5437 | 9.060 | 8.459 | 208.36 | 200.15 | 1.7149 | |
Orange | 12.229 | 4.41 | 10.542 | 10.811 | 244.98 | 262.03 | 1.165 | |
Minimum | Red | 9.213 | 4.33 | 6.2 | 6.4 | 169.08 | 165 | 0.8013 |
Yellow | 8.212 | 4.39 | 7 | 6.72 | 151.65 | 128.64 | 0.8013 | |
Orange | 6.9 | 4.3 | 8.9 | 6.57 | 190.48 | 146.82 | 0.481 | |
Maximum | Red | 19.250 | 4.77 | 9.1 | 9.6 | 275.88 | 301.36 | 3.0451 |
Yellow | 19.363 | 4.78 | 10.40 | 11.52 | 299.08 | 415 | 2.8849 | |
Orange | 18.625 | 4.52 | 12.30 | 13.44 | 305.94 | 333.18 | 4.007 | |
StDev | Red | 2.249 | 0.0961 | 0.759 | 0.733 | 21.89 | 31.27 | 0.4612 |
Yellow | 2.666 | 0.0845 | 0.828 | 1.062 | 35.02 | 52.44 | 0.5360 | |
Orange | 2.929 | 0.0534 | 0.898 | 3.145 | 30.42 | 40.84 | 0.650 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latifi Amoghin, M.; Abbaspour-Gilandeh, Y.; Tahmasebi, M.; Kaveh, M.; El-Mesery, H.S.; Szymanek, M.; Sprawka, M. VIS/NIR Spectroscopy as a Non-Destructive Method for Evaluation of Quality Parameters of Three Bell Pepper Varieties Based on Soft Computing Methods. Appl. Sci. 2024, 14, 10855. https://doi.org/10.3390/app142310855
Latifi Amoghin M, Abbaspour-Gilandeh Y, Tahmasebi M, Kaveh M, El-Mesery HS, Szymanek M, Sprawka M. VIS/NIR Spectroscopy as a Non-Destructive Method for Evaluation of Quality Parameters of Three Bell Pepper Varieties Based on Soft Computing Methods. Applied Sciences. 2024; 14(23):10855. https://doi.org/10.3390/app142310855
Chicago/Turabian StyleLatifi Amoghin, Meysam, Yousef Abbaspour-Gilandeh, Mohammad Tahmasebi, Mohammad Kaveh, Hany S. El-Mesery, Mariusz Szymanek, and Maciej Sprawka. 2024. "VIS/NIR Spectroscopy as a Non-Destructive Method for Evaluation of Quality Parameters of Three Bell Pepper Varieties Based on Soft Computing Methods" Applied Sciences 14, no. 23: 10855. https://doi.org/10.3390/app142310855
APA StyleLatifi Amoghin, M., Abbaspour-Gilandeh, Y., Tahmasebi, M., Kaveh, M., El-Mesery, H. S., Szymanek, M., & Sprawka, M. (2024). VIS/NIR Spectroscopy as a Non-Destructive Method for Evaluation of Quality Parameters of Three Bell Pepper Varieties Based on Soft Computing Methods. Applied Sciences, 14(23), 10855. https://doi.org/10.3390/app142310855