Small-Size Algorithms for Quaternion Discrete Fourier Transform
Abstract
:1. Introduction
2. Preliminary Remarks
- n-th quaternion-valued sample of discrete-time signal with N samples, , ;
- , is m-th quaternion-valued QDFT coefficient, , , is a unit pure quaternion, , .
- is a vector of size N containing quaternion-valued signal samples,
- is a vector of size N containing the QDFT coefficients,
- is a matrix whose entries represent the values of quaternion-valued discrete exponential functions, and , . It is easy to see that these values are quaternion-valued constants. Therefore, if the order of the matrix is known in advance, then its entries can be calculated in advance.
3. Small Size 1D-QDFT Algorithms
3.1. Algorithm 1, N = 2
- is an order two QDFT matrix.
3.2. Algorithm 2, N = 3
- is an order three QDFT matrix, , and symbol (*) denotes the conjugate of a quaternion number.
- , , ,
- ,
- , ,
- is (as we have already noted) the second-order Hadamard matrix, is the order identity matrix, and “”, “” mean the tensor product and direct sum of two matrices, respectively [30].
3.3. Algorithm 3, N = 4
- , .
- , ,
3.4. Algorithm 4, N = 5
3.5. Algorithm 5, N = 6
3.6. Algorithm 6, N = 7
3.7. Algorithm 7, N = 8
4. Discussion of Computation Complexity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Briggs, W.L.; Henson, V.E. The DFT: An Owners’ Manual for the Discrete Fourier Transform; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1987. [Google Scholar]
- Burrus, S.; Parks, T.W.; Potts, J.F. DFT/FFT and Convolution Algorithms and Implementation; John Wiley & Sons: Hoboken, NJ, USA, 1985. [Google Scholar]
- Tolimieri, R.; An, M.; Lu, C. Algorithms for Discrete Fourier Transform and Convolution; Springer: New York, NY, USA, 1989. [Google Scholar]
- Cooley, J.W.; Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Nussbaumer, H.J. Fast Fourier Transform and Convolution Algorithms; Springer: Berlin/Heidelberg, Germany, 1982. [Google Scholar]
- Garg, H.K. Digital Signal Processing Algorithms: Number Theory, Convolution, Fast Fourier Transforms, and Applications; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Bi, G.; Zeng, Y. Transforms and Fast Algorithms for Signal Analysis and Representations; Birkhäuser: Basel, Switzerland, 2004. [Google Scholar]
- Miron, S.; Flamant, J.; Le Bihan, N.; Chainais, P.; Brie, D. Quaternions in signal and image processing: A comprehensive and objective overview. IEEE Signal Process. Mag. 2023, 40, 26–40. [Google Scholar] [CrossRef]
- García-Retuerta, D.; Casado-Vara, R.; Martin-del Rey, A.; De la Prieta, F.; Prieto, J.; Corchado, J.M. Quaternion Neural Networks: State-of-the-Art and Research Challenges. In Proceedings of the Intelligent Data Engineering and Automated Learning—IDEAL, Guimaraes, Portugal, 4–6 November 2020; pp. 456–467. [Google Scholar]
- Vince, J. Quaternions for Computer Graphics; Springer: London, UK, 2011. [Google Scholar]
- Cariow, A.; Cariowa, G.; Majorkowska-Mech, D. An algorithm for quaternion-based 3D rotation. Int. J. Appl. Math. Comput. Sci. 2020, 30, 149–160. [Google Scholar] [CrossRef]
- Mushtaq, E.; Ali, S.; Hassan, S.A. On Decoupled Decoding of Quasi-Orthogonal STBCs using Quaternion Algebra. IEEE Syst. J. 2019, 13, 1580–1586. [Google Scholar] [CrossRef]
- Pӧppelbaum, J.; Schwung, A. Time Series Compression using Quaternion Valued Neural Networks and Quaternion Backpropagation. arXiv 2024, arXiv:2403.11722v2. [Google Scholar]
- Turner, J.D. Quaternion Analysis Tools for Engineering and Scientific Applications. J. Guid. Control Dyn. 2009, 32, 686–693. [Google Scholar] [CrossRef]
- Bülow, T.; Sommer, G. Hypercomplex signals—A novel extension of the analytic signal to the multidimensional case. IEEE Trans. Sign. Proc. 2001, SP-49, 2844–2852. [Google Scholar] [CrossRef]
- Schütte, H.-D.; Wenzel, J. Hypercomplex numbers in digital signal processing. In Proceedings of the ISCAS ’90, New Orleans, LA, USA, 1–3 May 1990; pp. 1557–1560. [Google Scholar]
- Alfsmann, D.; Göckler, H.G.; Sangwine, S.J.; Ell, T.A. Hypercomplex algebras in digital signal processing: Benefits and drawbacks. In Proceedings of the 15th European Signal Processing Conference, Poznań, Poland, 3–7 September 2007. [Google Scholar]
- Ell, T.A.; Sangwine, S.J. Hypercomplex Fourier Transforms of Color Images. IEEE Trans. Image Process. 2007, 16, 22–35. [Google Scholar] [CrossRef]
- Sangwine, S.; Ell, T. Hypercomplex auto- and crosscorrelation of color images. In Proceedings of the ICIP 99, Kobe, Japan, 24–28 October 1999; Volume 4, pp. 319–322. [Google Scholar]
- Pei, S.C.; Ding, J.J.; Chang, J.H. Efficient implementation of quaternion Fourier transform, convolution and correlation by 2-D complex FFT. IEEE Trans. Signal Process. 2001, 49, 2783–2797. [Google Scholar]
- Bahri, M.; Toaha, S.; Rahim, A.; Azis, M.I. On One-Dimensional Quaternion Fourier Transform. J. Phys. Conf. Ser. 2019, 1341, 062004. [Google Scholar] [CrossRef]
- Bahri, M.; Azis, M.I.; Firman; Lande, C. Discrete Double-Sided Quaternionic Fourier Transform and Application. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; Volume 1341, p. 06200. [Google Scholar] [CrossRef]
- Ribeiro, G.B.; Lima, J.B. Eigenstructure and fractionalization of the quaternion discrete Fourier transform. Opt.-Int. J. Light Electron Opt. 2020, 208, 163957. [Google Scholar] [CrossRef]
- Grigoryan, A.M.; Agaian, S.S. 2-D Left-Side Quaternion Discrete Fourier Transform: Fast Algorithm. Electron. Imaging 2016, 28, 1–8. [Google Scholar] [CrossRef]
- Grigoryan, A.M.; Agaian, S.S. Tensor transform-based quaternion Fourier transform algorithm. Inf. Sci. 2015, 320, 62–74. [Google Scholar] [CrossRef]
- Ell, T.A.; Sangwine, S.J. Decomposition of 2D hypercomplex Fourier transforms into pairs of complex Fourier transforms. In Proceedings of the 2000 10th European Signal Processing Conference, Tampere, Finland, 1 September 2000; pp. 1–4. [Google Scholar]
- Felsberg, M. Fast Algorithms of Hypercomplex Fourier Transforms. In Geometric Computing with Clifford Algebras; Felsberg, M.M., Bulov, T., Sommer, G., Chernov, V.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 231–254. [Google Scholar]
- Majorkowska-Mech, D.; Cariow, A. One-Dimensional Quaternion Discrete Fourier Transform and an Approach to Its Fast Computation. Electronics 2023, 12, 4974. [Google Scholar] [CrossRef]
- Nakayama, K. A new discrete Fourier transform algorithm using butterfly structure fast convolution. IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 1197–1208. [Google Scholar] [CrossRef]
- Steeb, W.H.; Hardy, Y. Matrix Calculus and Kronecker Product: A Practical Approach to Linear and Multilinear Algebra, 2nd ed.; World Scientific Publishing Company: Singapore, 2011; 324p. [Google Scholar]
- Cariow, A. Strategies for the Synthesis of Fast Algorithms for the Computation of the Matrix-vector Products. J. Signal Process. Theory Appl. 2014, 3, 1–19. [Google Scholar] [CrossRef]
- Deshpande, A.; Draper, J. Squaring units and a comparison with multipliers. In Proceedings of the 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2010), Seattle, WA, USA, 1–4 August 2010; pp. 1266–1269. [Google Scholar] [CrossRef]
- Cariow, A.; Naumowicz, M.; Handkiewicz, A. Structure and Principles of Operation of a Quaternion VLSI Multiplier. Appl. Sci. 2024, 14, 8123. [Google Scholar] [CrossRef]
Size | Naive Methods | Proposed Algorithms | ||
---|---|---|---|---|
N | Number of multiplications | Number of additions | Number of multiplications | Number of additions |
2 | — | 2 | — | 2 |
3 | 4 | 6 | 2 | 8 |
4 | 4 | 12 | 1 | 8 |
5 | 16 | 20 | 5 | 23 |
6 | 16 | 30 | 4 | 22 |
7 | 36 | 42 | 8 | 46 |
8 | 32 | 56 | 4 | 26 |
Size | Naive Methods | Proposed Algorithms | |||
---|---|---|---|---|---|
N | Number of multiplications | Number of additions | Number of multiplications | Number of additions | Number of right or left shifts |
2 | — | 8 | — | 8 | — |
3 | 64 | 72 | — | 40 | 8 |
4 | 64 | 96 | 4 | 40 | — |
5 | 256 | 272 | 12 | 116 | 4 |
6 | 256 | 312 | — | 104 | 16 |
7 | 576 | 600 | 32 | 216 | — |
8 | 512 | 608 | 16 | 128 | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cariow, A.; Majorkowska-Mech, D. Small-Size Algorithms for Quaternion Discrete Fourier Transform. Appl. Sci. 2024, 14, 11142. https://doi.org/10.3390/app142311142
Cariow A, Majorkowska-Mech D. Small-Size Algorithms for Quaternion Discrete Fourier Transform. Applied Sciences. 2024; 14(23):11142. https://doi.org/10.3390/app142311142
Chicago/Turabian StyleCariow, Aleksandr, and Dorota Majorkowska-Mech. 2024. "Small-Size Algorithms for Quaternion Discrete Fourier Transform" Applied Sciences 14, no. 23: 11142. https://doi.org/10.3390/app142311142
APA StyleCariow, A., & Majorkowska-Mech, D. (2024). Small-Size Algorithms for Quaternion Discrete Fourier Transform. Applied Sciences, 14(23), 11142. https://doi.org/10.3390/app142311142