A Tunable and Switchable Multi-Wavelength Erbium-Doped Fiber Laser Based on a Curvature Mach–Zehnder Interferometer Filter Using Thin-Core Fiber
Abstract
:1. Introduction
2. MZI Fabrication and Filter Principle
3. Schematic Configuration and Experimental Setup
4. Experimental Investigation of MTEFL Operation
5. MTEFL Experimental Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, H.; Muhammad, F.D.; Pua, C.H.; Thambiratnam, K. Dual-Wavelength Fiber Lasers for the Optical Generation of Microwave and Terahertz Radiation. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 166–173. [Google Scholar] [CrossRef]
- Sun, J.; Dai, Y.; Chen, X.; Zhang, Y.; Xie, S. Stable Dual-Wavelength DFB Fiber Laser With Separate Resonant Cavities and Its Application in Tunable Microwave Generation. IEEE Photonics Technol. Lett. 2006, 18, 2587–2589. [Google Scholar] [CrossRef]
- Zhao, Q.; Pei, L.; Zheng, J.; Tang, M.; Xie, Y.; Li, J.; Ning, T. Switchable multi-wavelength erbium-doped fiber laser with ajustable wavelength interval. J. Lightw. Technol. 2019, 37, 3784–3790. [Google Scholar] [CrossRef]
- Mohd Nasir, M.N.; Yusoff, Z.; Al-Mansoori, M.H.; Rashid, H.A.A.; Choudhury, P.K. Ring caviti multi-wavelength brillouin-erbium fiber laser utilizing a fiber Bragg filter. In Proceedings of the ICSE 2008, Johor Bahru, Malaysia, 25–27 November 2008. [Google Scholar] [CrossRef]
- Sierra-Hernandez, J.M.; Rojas-Laguna, R.; Vargas-Rodriguez, E.; Estudillo-Ayala, J.M.; Mata-Chavez, R.I.; Jauregui-Vazquez, D.; Hernandez-Garcia, J.C.; Andrade-Lucio, J.A.; Gutierrez-Gutierrez, J. A tunable multi-wavelength laser based on a Mach-Zehnder interferometer with photonic crystal fiber. Laser Phys. 2013, 23, 055105. [Google Scholar] [CrossRef]
- Xie, W.G.; Zhang, Y.N.; Wang, P.Z.; Wang, J.Z. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology. Sensors 2018, 18, 505. [Google Scholar] [CrossRef]
- Huang, B.; Sheng, X.; Tang, Z.; Lou, S. High SMSR and widely tunable multi-wavelength erbium doped fiber laser based on cascaded filters. Infrared Phys. Technol. 2022, 122, 104082. [Google Scholar] [CrossRef]
- Sierra-Hernandez, J.M.; Rojas-Laguna, R.; Vargas-Rodriguez, E.; Estudillo-Ayala, J.M.; Jauregui-Vazquez, D.; Guzmán-Chávez, A.D.; Zaca-Moran, P. A tunable multi-wavelength erbium doped fiber laser based on a Mach–Zehnder interferometer and photonic crystal fiber. Laser Phys. 2013, 23, 125103. [Google Scholar] [CrossRef]
- Ahmad, H.; Roslan, N.A.; Zaini, M.K.A.; Samion, M.Z. Tunable multiwavelength Erbium-doped fiber laser based on in-fiber Fabry-Perot interferometer fiber Bragg gratings in linear and ring cavity configurations. Optik 2022, 262, 169359. [Google Scholar] [CrossRef]
- Zhu, L.; He, W.; Zhang, Y.; Luo, F.; Dong, M. Tunable dual-wavelength ring fiber laser with stable output based on saturable absorber and thin core passive fiber. Opt. Fiber Technol. 2014, 20, 487–490. [Google Scholar] [CrossRef]
- He, W.; Zhu, L.; Dong, M.; Lou, F. Tuneable and stable multi-wavelength thulium-doped ring-cavity fibre laser based on Sagnac loop and Mach-Zehnder filter utilizinf thin-core fibre. Laser Phys. 2016, 26, 125102. [Google Scholar] [CrossRef]
- Zhao, X.; Dong, M.; Zhang, Y.; Luo, F.; Zhu, L. Switchable multi-wavelength and tunable wavelength spacing erbium-doped fiber laser based on a phase-shifted fiber Bragg grating combined with a Mach-Zehnder interferometer. Opt. Laser Technol. 2019, 112, 500–507. [Google Scholar] [CrossRef]
- Wei, H.; Zhu, L.; Dong, M. All-fiber Mach-Zehnder comb filter based on tapered fibers for wavelength swichable erbium-doped fiber lasers. Int. J. Optomechatron. 2020, 14, 18–28. [Google Scholar] [CrossRef]
- Merza, H.Q.; Al-Hayali, S.K.; Al-Janabi, A.H. All-fiber Mach–Zehnder interferometric comb filter based on macrobend single-mode optical fiber for selecting lasing performance in 1-micron region. Opt. Commun. 2021, 493, 127017. [Google Scholar] [CrossRef]
- Al-Janabi, A.; Merza, H.Q.; Al-Hayali, S.K.; Salman, A.M. Switchable mode-locked ytterbium-doped fiber laser based on macrobending loss tuning of figure-eight knot fiber structure. Opt. Eng. 2024, 63, 046104. [Google Scholar] [CrossRef]
- Zou, H.; Lou, S.; Yin, G.; Su, W. Switchable dual-wavelength PM-EDF ring laser based on a novel filter. IEEE Photonics Technol. Lett. 2013, 25, 1003–1006. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, W.; Bai, Z.; Zhang, H.; Geng, P.; Lin, W.; Li, J. Ultrasensitive Refractive Index Sensor Based on Microfiber-Assisted U-Shape Cavity. IEEE Photonics Technol. Lett. 2013, 25, 1815–1818. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, M.; Wu, J.; Cheng, F.; Liu, J.; Ruan, D.; Chen, Y. Ultra-broadband tunable and switchable multi-wavelength mode-locking tm-doped all-fiber lase. Opt. Laser Technol. 2021, 143, 107364. [Google Scholar] [CrossRef]
- Xiao, Y.X.; Wang, J.; Hou, Y.F.; Zhang, L.H.; Wang, S.S. Mode analysis of in-line Mach-Zehnder interferometer with offset splicing. Opt. Fiber Technol. 2021, 6, 102473. [Google Scholar] [CrossRef]
- Shu, Y.; Li, L.; Gao, J.; Hu, C.; Deng, L.; Jiang, C.; Li, H. Simultaneous measurement three parameters of temperature, strain, and curvature by thin-core fiber based-Mach-Zehnder interferometer. Opt. Fiber Technol. 2023, 80, 103377. [Google Scholar] [CrossRef]
- Wang, Q.; Meng, H.; Fan, X.; Zhou, M.; Liu, F.; Liu, C.; Wei, Z.; Wang, F.; Tan, C. Optical fiber temperature sensor based on a Mach-Zehnder interferometer with single-mode-thin-core-single-mode fiber structure. Rev. Sci. Instrum. 2020, 91, 015006. [Google Scholar] [CrossRef]
- Rong, Q.; Qiao, X.; Wang, R.; Sun, H.; Hu, M.; Feng, Z. High-sensitive fiber-optic refractometer based on a core diameter-mismatch Mach-Zehnder interferometer. IEEE Sens. J. 2012, 12, 2501–2505. [Google Scholar] [CrossRef]
- Niu, P.; Jiang, J.; Wang, S.; Liu, K.; Ma, Z.; Zhang, Y.; Chen, W.; Liu, T. Optical fiber laser refractometer based on an open microcavity Mach-Zehnder interferometer with an ultra-low detection limit. Opt. Express 2020, 28, 30570–30585. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Ma, L.; Kang, Z.; Bin, Y.; Jian, S. Highly sensitive curvature sensor based on a multi-cladding fiber sandwiched dual no-core fibers structure. Appl. Opt. 2014, 53, 6382–6388. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, M.; Liang, X.; Dong, Y.; Xiao, H.; Jian, S. Erbium-doped fiber ring laser based on few-mode-single-mode-few-mode fiber structure for refractive index measurement. Opt. Laser Technol. 2017, 93, 74–78. [Google Scholar] [CrossRef]
- Miao, Y.; Ma, X.; Wu, J.; Song, B.; Zhang, H.; Liu, B.; Yao, J. Photonic crystal fiber modal interferometer based on thin-core-fiber mode exciter. Appl. Opt. 2015, 54, 9415–9418. [Google Scholar] [CrossRef]
- Gong, H.; Yang, X.; Ni, K.; Zhao, C.L.; Dong, X. An Optical Fiber Curvature Sensor Based on Two Peanut-Shape Structures Modal Interferometer. IEEE Photon. Technol. Lett. 2014, 26, 22–24. [Google Scholar] [CrossRef]
- Li, H.; Li, H.; Meng, F.; Lou, X.; Zhu, L.Q. All-fiber MZI sensor based on seven-core fiber and fiber ball symmetrical structure. Opt. Lasers Eng. 2018, 112, 1–6. [Google Scholar] [CrossRef]
- Teyo, T.C.; Shah, N.S.M.; Ahmad, H. A study of laser SNR in an erbium-doped fiber laser subject to external injection. Microw. Opt. Technol. Lett. 2002, 35, 40–42. [Google Scholar] [CrossRef]
- Kir’yanov, A.V.; Barmenkov, Y.O.; Sandoval-Romero, G.E.; Escalante-Zarate, L. Er3+ concentration effects in commercial Erbium doped silica fibers fabricated through the MCVD and DND technologies. IEEE J. Quantum Electron. 2013, 49, 511–521. [Google Scholar] [CrossRef]
- Herrera-Piad, L.A.; Jauregui-Vazquez, D.; Lopez-Dieguez, Y.; Estudillo-Ayala, J.M.; Hernandez-Garcia, J.C.; Sierra-Hernandez, J.M.; Bianchetti, M.; Rojas-Laguna, R. Highly stable multi-wavelength erbium-doped fiber linear laser based on modal interference. Laser Phys. 2018, 28, 035101. [Google Scholar] [CrossRef]
- Xia, T.H.; Zhang, A.P.; Gu, B.; Zhu, J.J. Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers. Opt. Commun. 2010, 283, 2136–2139. [Google Scholar] [CrossRef]
- Liu, C.; Sun, D.; Yang, J.; Zhang, H.; Ran, L. Ultra-Sensitive Intensity Modulated Strain Sensor by Tapered Thin-Core Fiber Based Modal Interferometer. Photonics 2021, 8, 372. [Google Scholar] [CrossRef]
- Akita, S.; Sasaki, H.; Watanabe, K.; Seki, A. A humidity sensor based on a hetero-core optical fiber. Sens. Actuators B Chem. 2010, 147, 385–391. [Google Scholar] [CrossRef]
- Sun, X.; Du, H.; Dong, X.; Hu, Y. Simultaneous Curvature and Temperature Sensing Based on a Novel Mach-Zehnder Interferometer. Photonic Sens. 2019, 10, 171–180. [Google Scholar] [CrossRef]
- Ibarra-Escamilla, B.; Hernández-Arriaga, M.V.; Durán-Sánchez, M.; Santiago-Hernández, H.; Bello-Jiménez, M.; Pérez, E.R.; Rodríguez-Morales, L.A.; Kuzin, E.A. Abrupt-tapered fiber filter arrangement for a switchable multi-wavelength and tunable Tm-doped fiber laser. Opt. Express 2018, 26, 14894–14904. [Google Scholar] [CrossRef]
- Martinez-Ramirez, L.G.; Alvarado, E.C.S.; Gallegos-Arellano, E.; Fernandez-Jaramillo, A.A.; Estudillo-Ayala, J.M.; Jauregui-Vazquez, D.; Rojas-Laguna, R.; Sierra-Hernandez, J.M. Select-cutoff Mach-Zehnder interferometer based on waist-enlarged technique and its multi-wavelength fiber laser application. Infrared Phys. Technol. 2023, 128, 104508. [Google Scholar] [CrossRef]
- Tang, Z.; Lou, S. Stable and widely tunable single-/dual-wavelength erbium-doped fiber laser by cascading a twin-core photonic crystal fiber based filter with Mach-Zehnder interferometer. Opt. Laser Technol. 2019, 109, 249–255. [Google Scholar] [CrossRef]
State | Figure | Curvature (m−1) | Emission Lines | Wavelength (nm) | Max Wavelength Fluctuation (nm) | Max Peak Power Fluctuation (dB) | |
---|---|---|---|---|---|---|---|
a | Figure 11 | 2.5871 | Single | λ1 | 1556.40 | 0.10 | 0.87 |
λ89 | 1564.50 | 0.26 | 0.78 | ||||
d | Figure 12 | 0.2670 | Dual narrow | λ1A | 1573.70 | 0.20 | 0.78 |
λ1B | 1564.50 | 0.10 | 1.11 | ||||
λ14A | 1561.30 | 0.09 | 0.81 | ||||
λ14B | 1562.20 | 0.08 | 0.78 | ||||
e | Figure 13 | 0.7453 | Dual | λ1A | 1572.53 | 2.00 | 0.67 |
λ1B | 1585.69 | 2.26 | 0.68 | ||||
λ41A | 1563.68 | 1.97 | 1.01 | ||||
λ41B | 1576.88 | 2.57 | 0.78 |
State | Figure | Emission Lines | Wavelength (nm) | Max Wavelength Fluctuation (nm) | Max Peak Power Fluctuation (dB) | |
---|---|---|---|---|---|---|
b | Figure 14 | Quadruple | λ1 | 1557.99 | 0.33 | 1.69 |
λ2 | 1558.89 | 0.53 | 2.68 | |||
λ3 | 1564.02 | 0.49 | 2.85 | |||
λ4 | 1564.78 | 0.41 | 2.34 | |||
c | Figure 15 | Triple | λ2A | 1558.27 | 0.20 | 2.47 |
λ2B | 1558.85 | 0.35 | 1.00 | |||
λ2C | 1564.81 | 0.54 | 1.57 | |||
λ1A | 1558.62 | 0.68 | 1.84 | |||
λ1B | 1564.22 | 0.37 | 2.06 | |||
λ1C | 1563.53 | 0.36 | 2.86 |
Ref. | Main Characteristics | Emission Lines | Tuning (nm) | SMSR (dB) |
---|---|---|---|---|
[7] | Cacade structure—Sagnac loop filter (SLF)/twin core photonic crystal fiber (TCPCF) | 1 | 23.04 | 57 |
2 | 19 | 40 | ||
[8] | MZI (SMF/PCF/SMF) | 1 | 24 | 30 |
2 | 3.43 | |||
3 | - | 28 | ||
[11] | Sagnac loop and MZI filter—SMF/TCF/SMF | 1 | 40 | 32.68 |
2 | 13 | 33.5 | ||
3 | - | 34.51 | ||
[36] | Double SMF tapers/thulium-doped fiber (TDF) from the ASE | 1 | - | 51 |
2 | 12.6 | 55.2 | ||
3 | - | 52 | ||
4 | - | 48 | ||
5 | - | 48 | ||
[37] | MZI—SMF/with a segment of select cutoff fiber (SCF)/SMF | 1 | 4.88 | 55.3 |
[38] | SMF/TCPCF/SMF—MZI | 1 | 23.04 | 45 |
2 | 33.82 | 42 | ||
This work | MZI—core-offset SMF/TCEDF/SMF | 1 | 7.62 | 49.8 |
2-narrow | 2.33 | 40.36 | ||
2 | 8.8 | 42.35 | ||
3 | - | 36.83 | ||
4 | - | 39.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perezcampos-Mayoral, C.; Gutiérrez-Gutiérrez, J.; Cano-Pérez, J.L.; Vargas-Treviño, M.; Tepech-Carrillo, L.; Guerra-Hernández, E.I.; Gallegos-Velasco, I.B.; Hernández-Cruz, P.A.; Pérez-Campos-Mayoral, E.; Ojeda-Meixueiro, V.H.; et al. A Tunable and Switchable Multi-Wavelength Erbium-Doped Fiber Laser Based on a Curvature Mach–Zehnder Interferometer Filter Using Thin-Core Fiber. Appl. Sci. 2024, 14, 11578. https://doi.org/10.3390/app142411578
Perezcampos-Mayoral C, Gutiérrez-Gutiérrez J, Cano-Pérez JL, Vargas-Treviño M, Tepech-Carrillo L, Guerra-Hernández EI, Gallegos-Velasco IB, Hernández-Cruz PA, Pérez-Campos-Mayoral E, Ojeda-Meixueiro VH, et al. A Tunable and Switchable Multi-Wavelength Erbium-Doped Fiber Laser Based on a Curvature Mach–Zehnder Interferometer Filter Using Thin-Core Fiber. Applied Sciences. 2024; 14(24):11578. https://doi.org/10.3390/app142411578
Chicago/Turabian StylePerezcampos-Mayoral, Christian, Jaime Gutiérrez-Gutiérrez, José Luis Cano-Pérez, Marciano Vargas-Treviño, Lorenzo Tepech-Carrillo, Erick Israel Guerra-Hernández, Itandehui Belem Gallegos-Velasco, Pedro Antonio Hernández-Cruz, Eeduardo Pérez-Campos-Mayoral, Victor Hugo Ojeda-Meixueiro, and et al. 2024. "A Tunable and Switchable Multi-Wavelength Erbium-Doped Fiber Laser Based on a Curvature Mach–Zehnder Interferometer Filter Using Thin-Core Fiber" Applied Sciences 14, no. 24: 11578. https://doi.org/10.3390/app142411578
APA StylePerezcampos-Mayoral, C., Gutiérrez-Gutiérrez, J., Cano-Pérez, J. L., Vargas-Treviño, M., Tepech-Carrillo, L., Guerra-Hernández, E. I., Gallegos-Velasco, I. B., Hernández-Cruz, P. A., Pérez-Campos-Mayoral, E., Ojeda-Meixueiro, V. H., Estudillo-Ayala, J. M., Sierra-Hernandez, J. M., & Rojas-Laguna, R. (2024). A Tunable and Switchable Multi-Wavelength Erbium-Doped Fiber Laser Based on a Curvature Mach–Zehnder Interferometer Filter Using Thin-Core Fiber. Applied Sciences, 14(24), 11578. https://doi.org/10.3390/app142411578