AI in Context: Harnessing Domain Knowledge for Smarter Machine Learning
Abstract
:1. Introduction
- Introduce a Novel Framework for Integrating Domain Knowledge into AI/ML
- 2.
- Present Comprehensive, Cross-Industry Case Studies with Fresh Perspectives
- 3.
- Offer Practical Guidance and Innovative Tools
- 4.
- Provide Original Analysis of Ethical and Practical Considerations
- 5.
- Forecast Future Trends and Innovations
2. The Synergy of AI/ML and Domain Knowledge
2.1. Understanding Domain Knowledge
2.2. The Crucial Role of Domain Knowledge in AI/ML
2.3. Case Studies
3. Results and Discussion on the Limitations of AI/ML When Used Without Proper Contextual Understanding
3.1. Bridging the Gap Between Data Scientists and Domain Experts
3.2. Strategies to Foster Effective Collaboration and Knowledge Sharing
3.3. Tools and Techniques for Bridging the Gap
4. Methodologies for Integrating Domain Knowledge into AI/ML
4.1. Techniques for Incorporating Domain Expertise
- Feature Engineering
- Exploratory Data Analysis (EDA)
- Model Selection
4.2. Approaches to Encoding Domain Knowledge
- Explainable AI (XAI)
- Prompt Engineering
- Interpretable Models
4.3. Handling Dynamic Domains Where Knowledge Evolves over Time
- Adaptive Learning
- Knowledge Integration
- Collaborative Data Understanding
5. Case Studies: Success Stories and Lessons Learned
5.1. Detailed Case Studies from Various Industries
- Materials Science
- Manufacturing Sector
- Healthcare
- Finance and Accounting
- Energy Sector
- Poverty and Welfare Domain
- Exoskeleton Devices
- Explainable AI (XAI)
- Quantifying the Impact of Domain Knowledge
- Machine Learning Frameworks Incorporating Domain Knowledge
5.2. Discussion on Challenges Faced and How They Were Overcome
5.3. Ethical Considerations and Responsible AI
- Role of Domain Knowledge in Ensuring Ethical AI/ML Practices:
- 2.
- Addressing Bias and Ensuring Fairness:
- 3.
- Legal and Societal Implications:
- 4.
- Importance of Informed, Domain-Aware AI/ML Applications:
5.4. Future
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial Intelligence to Deep Learning: Machine Intelligence Approach for Drug Discovery. Mol. Divers. 2021, 25, 1315–1360. [Google Scholar] [CrossRef] [PubMed]
- Angelov, P.P.; Soares, E.A.; Jiang, R.; Arnold, N.I.; Atkinson, P.M. Explainable Artificial Intelligence: An Analytical Review. WIREs Data Min. Knowl. Discov. 2021, 11, e1424. [Google Scholar] [CrossRef]
- Woschank, M.; Rauch, E.; Zsifkovits, H. A Review of Further Directions for Artificial Intelligence, Machine Learning, and Deep Learning in Smart Logistics. Sustainability 2020, 12, 3760. [Google Scholar] [CrossRef]
- Rädler, S.; Berardinelli, L.; Winter, K.; Rahimi, A.; Rinderle-Ma, S. Bridging MDE and AI: A Systematic Review of Domain-Specific Languages and Model-Driven Practices in AI Software Systems Engineering. Softw. Syst. Model. 2024. [Google Scholar] [CrossRef]
- Jan, Z.; Ahamed, F.; Mayer, W.; Patel, N.; Grossmann, G.; Stumptner, M.; Kuusk, A. Artificial Intelligence for Industry 4.0: Systematic Review of Applications, Challenges, and Opportunities. Expert. Syst. Appl. 2023, 216, 119456. [Google Scholar] [CrossRef]
- Sundberg, L.; Holmström, J. Fusing Domain Knowledge with Machine Learning: A Public Sector Perspective. J. Strateg. Inf. Syst. 2024, 33, 101848. [Google Scholar] [CrossRef]
- Rane, N.L.; Rane, J.; Paramesha, M.; Kaya, Ö. Emerging Trends and Future Research Opportunities in Artificial Intelligence, Machine Learning, and Deep Learning. In Artificial Intelligence and Industry in Society 5.0; Deep Science Publishing: Mumbai, India, 2024. [Google Scholar] [CrossRef]
- Blasch, E.; Pham, T.; Chong, C.-Y.; Koch, W.; Leung, H.; Braines, D.; Abdelzaher, T. Machine Learning/Artificial Intelligence for Sensor Data Fusion–Opportunities and Challenges. IEEE Aerosp. Electron. Syst. Mag. 2021, 36, 80–93. [Google Scholar] [CrossRef]
- Mourtzis, D.; Wang, L. Industry 5.0: Perspectives, Concepts, and Technologies. In Manufacturing from Industry 4.0 to Industry 5.0; Elsevier: Amsterdam, The Netherlands, 2024; pp. 63–96. [Google Scholar] [CrossRef]
- Ijiga, O.M.; Idoko, I.P.; Ebiega, G.I.; Olajide, F.I.; Olatunde, T.I.; Ukaegbu, C. Harnessing Adversarial Machine Learning for Advanced Threat Detection: AI-Driven Strategies in Cybersecurity Risk Assessment and Fraud Prevention. Open Access Res. J. Sci. Technol. 2024, 11, 001–024. [Google Scholar] [CrossRef]
- Tan, X.J.; Mustafa, N.; Mashor, M.Y.; Ab Rahman, K.S.; Wan Muhamad, W.Z.A.; Leow, W.Z.; Cheor, W.L.; Oung, Q.W. Understanding Domain Knowledge in Initialization Method for K-Mean Clustering Algorithm in Medical Images. In Proceedings of the 6th International Conference on Electrical, Control and Computer Engineering: InECCE2021, Kuantan, Malaysia, 23 August 2022; pp. 805–817. [Google Scholar] [CrossRef]
- Dash, T.; Chitlangia, S.; Ahuja, A.; Srinivasan, A. A Review of Some Techniques for Inclusion of Domain-Knowledge into Deep Neural Networks. Sci. Rep. 2022, 12, 1040. [Google Scholar] [CrossRef]
- van den Broek, E.; Sergeeva, A.; Huysman Vrije, M. When the Machine Meets the Expert: An Ethnography of Developing AI for Hiring. MIS Q. 2021, 45, 1557–1580. [Google Scholar] [CrossRef]
- Hwang, G.-J.; Tu, Y.-F. Roles and Research Trends of Artificial Intelligence in Mathematics Education: A Bibliometric Mapping Analysis and Systematic Review. Mathematics 2021, 9, 584. [Google Scholar] [CrossRef]
- Markus, A.F.; Kors, J.A.; Rijnbeek, P.R. The Role of Explainability in Creating Trustworthy Artificial Intelligence for Health Care: A Comprehensive Survey of the Terminology, Design Choices, and Evaluation Strategies. J. Biomed. Inform. 2021, 113, 103655. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhang, L. Roles of Artificial Intelligence in Construction Engineering and Management: A Critical Review and Future Trends. Autom. Constr. 2021, 122, 103517. [Google Scholar] [CrossRef]
- Aggarwal, K.; Mijwil, M.M.; Sonia; Al-Mistarehi, A.-H.; Alomari, S.; Gök, M.; Alaabdin, A.M.Z.; Abdulrhman, S.H. Has the Future Started? The Current Growth of Artificial Intelligence, Machine Learning, and Deep Learning. Iraqi J. Comput. Sci. Math. 2022, 3, 115–123. [Google Scholar] [CrossRef]
- Helm, J.M.; Swiergosz, A.M.; Haeberle, H.S.; Karnuta, J.M.; Schaffer, J.L.; Krebs, V.E.; Spitzer, A.I.; Ramkumar, P.N. Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions. Curr. Rev. Musculoskelet. Med. 2020, 13, 69–76. [Google Scholar] [CrossRef]
- Xie, X.; Niu, J.; Liu, X.; Chen, Z.; Tang, S.; Yu, S. A Survey on Incorporating Domain Knowledge into Deep Learning for Medical Image Analysis. Med. Image Anal. 2021, 69, 101985. [Google Scholar] [CrossRef]
- O’Brien, H.L.; Kampen, A.; Cole, A.W.; Brennan, K. The Role of Domain Knowledge in Search as Learning. In Proceedings of the 2020 Conference on Human Information Interaction and Retrieval, New York, NY, USA, 14–18 March 2020; pp. 313–317. [Google Scholar] [CrossRef]
- Jeong, H.; Kim, J.; Jeong, J.; Kim, H. Deep Learning Models with Stratification-Based Loss Function on Domain Knowledge-Based Time Series Data: Hypotension Prediction. In Proceedings of the 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, 17–20 December 2022; pp. 2765–2770. [Google Scholar] [CrossRef]
- Kerrigan, D.; Hullman, J.; Bertini, E. A Survey of Domain Knowledge Elicitation in Applied Machine Learning. Multimodal Technol. Interact. 2021, 5, 73. [Google Scholar] [CrossRef]
- Guo, K.; Yang, Z.; Yu, C.-H.; Buehler, M.J. Artificial Intelligence and Machine Learning in Design of Mechanical Materials. Mater. Horiz. 2021, 8, 1153–1172. [Google Scholar] [CrossRef]
- Zhang, F.; Mei, Y.; Nguyen, S.; Zhang, M. Evolving Scheduling Heuristics via Genetic Programming With Feature Selection in Dynamic Flexible Job-Shop Scheduling. IEEE Trans. Cybern. 2021, 51, 1797–1811. [Google Scholar] [CrossRef]
- Sajid, U.; Khan, R.A.; Shah, S.M.; Arif, S. Breast Cancer Classification Using Deep Learned Features Boosted with Handcrafted Features. Biomed. Signal Process Control 2023, 86, 105353. [Google Scholar] [CrossRef]
- Hossain, S.S.; Ebrahimi, M.R.; Padmanabhan, B.; El Naqa, I.; Kuo, P.C.; Beard, A.; Merkel, S. Robust AI-Enabled Simulation of Treatment Paths with Markov Decision Process for Breast Cancer Patients. In Proceedings of the 2023 IEEE Conference on Artificial Intelligence (CAI), Santa Clara, CA, USA, 5–6 June 2023; pp. 105–108. [Google Scholar] [CrossRef]
- Duggento, A.; Conti, A.; Mauriello, A.; Guerrisi, M.; Toschi, N. Deep Computational Pathology in Breast Cancer. Semin. Cancer Biol. 2021, 72, 226–237. [Google Scholar] [CrossRef]
- Kyono, T.; Gilbert, F.J.; Schaar, M. Multi-View Multi-Task Learning for Improving Autonomous Mammogram Diagnosis. In Proceedings of the Machine Learning for Healthcare Conference, Ann Arbor, MI, USA, 9–10 August 2019; pp. 571–591. [Google Scholar]
- Horváth, D.; Bocsi, K.; Erdős, G.; Istenes, Z. Sim2Real Grasp Pose Estimation for Adaptive Robotic Applications. IFAC-Pap. 2023, 56, 5233–5239. [Google Scholar] [CrossRef]
- Pashevich, A.; Strudel, R.; Kalevatykh, I.; Laptev, I.; Schmid, C. Learning to Augment Synthetic Images for Sim2Real Policy Transfer. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macao, China, 4–8 November 2019; pp. 2651–2657. [Google Scholar] [CrossRef]
- Rizzardo, C.; Katyara, S.; Fernandes, M.; Chen, F. The Importance and the Limitations of Sim2real for Robotic Manipulation in Precision Agriculture. arXiv 2020, arXiv:2008.03983. [Google Scholar]
- Holzinger, A.; Haibe-Kains, B.; Jurisica, I. Why Imaging Data Alone Is Not Enough: AI-Based Integration of Imaging, Omics, and Clinical Data. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2722–2730. [Google Scholar] [CrossRef] [PubMed]
- Kovalerchuk, B.; Andonie, R.; Datia, N.; Nazemi, K.; Banissi, E. Visual Knowledge Discovery with Artificial Intelligence: Challenges and Future Directions. In Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery; Springer: Cham, Switzerland, 2022; pp. 1–27. [Google Scholar] [CrossRef]
- Gherbi, E.; Khemissa, H.; Bouchouia, M.; Ayrault, M. From Challenges to Opportunities: A Comprehensive Study of AI-Based In-Vehicle Intrusion Detection Systems. In Proceedings of the IEEE Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 6–9 January 2024. [Google Scholar] [CrossRef]
- Birhane, A.; Isaac, W.; Prabhakaran, V.; Diaz, M.; Elish, M.C.; Gabriel, I.; Mohamed, S. Power to the People? Opportunities and Challenges for Participatory AI. In Proceedings of the Equity and Access in Algorithms, Mechanisms, and Optimization, New York, NY, USA, 6–9 October 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Mylrea, M.; Robinson, N. Artificial Intelligence (AI) Trust Framework and Maturity Model: Applying an Entropy Lens to Improve Security, Privacy, and Ethical AI. Entropy 2023, 25, 1429. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, L. Rethinking Fairness: An Interdisciplinary Survey of Critiques of Hegemonic ML Fairness Approaches. J. Artif. Intell. Res. 2022, 74, 75–109. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Dhaliwal, B.K.; Sarangi, S.K.; Thiyagu, T.M.; Patidar, A.; Pithawa, D. Conversational AI. In Conversational Artificial Intelligence; Wiley: Hoboken, NJ, USA, 2024; pp. 435–457. [Google Scholar] [CrossRef]
- Lu, S.; Christie, G.A.; Nguyen, T.T.; Freeman, J.D.; Hsu, E.B. Applications of Artificial Intelligence and Machine Learning in Disasters and Public Health Emergencies. Disaster Med. Public. Health Prep. 2022, 16, 1674–1681. [Google Scholar] [CrossRef]
- Dunsin, D.; Ghanem, M.C.; Ouazzane, K.; Vassilev, V. A Comprehensive Analysis of the Role of Artificial Intelligence and Machine Learning in Modern Digital Forensics and Incident Response. Forensic Sci. Int. Digit. Investig. 2024, 48, 301675. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Y.; Wang, J.; Cambria, E.; Li, X. Real-Time Video Emotion Recognition Based on Reinforcement Learning and Domain Knowledge. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 1034–1047. [Google Scholar] [CrossRef]
- Wolf, C.T. AI Models and Their Worlds: Investigating Data-Driven, AI/ML Ecosystems Through a Work Practices Lens. In Sustainable Digital Communities, Proceedings of the 15th International Conference, iConference 2020, Boras, Sweden, 23–26 March 2020; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 651–664. [Google Scholar] [CrossRef]
- Pan, S.L.; Nishant, R. Artificial Intelligence for Digital Sustainability: An Insight into Domain-Specific Research and Future Directions. Int. J. Inf. Manag. 2023, 72, 102668. [Google Scholar] [CrossRef]
- Babushkina, D.; Votsis, A. Epistemo-Ethical Constraints on AI-Human Decision Making for Diagnostic Purposes. Ethics Inf. Technol. 2022, 24, 22. [Google Scholar] [CrossRef]
- Bennett, S.J. Transmuting Values in Artificial Intelligence: Investigating the Motivations and Contextual Constraints Shaping the Ethics of Artificial Intelligence Practitioners; The University of Edinburgh: Edinburgh, UK, 2023. [Google Scholar] [CrossRef]
- Akkaya, N.; Ünsal, G.; Orhan, K. Understanding of AI in Dental Field with Technical Aspects. In Artificial Intelligence in Dentistry; Springer International Publishing: Cham, Switzerland, 2023; pp. 9–31. [Google Scholar] [CrossRef]
- Madni, A.M. Augmented Intelligence. In Systems Engineering for the Digital Age; Wiley: Hoboken, NJ, USA, 2023; pp. 375–391. [Google Scholar] [CrossRef]
- Crisan, A.; Fiore-Gartland, B.; Tory, M. Passing the Data Baton: A Retrospective Analysis on Data Science Work and Workers. IEEE Trans. Vis. Comput. Graph. 2021, 27, 1860–1870. [Google Scholar] [CrossRef] [PubMed]
- Piorkowski, D.; Park, S.; Wang, A.Y.; Wang, D.; Muller, M.; Portnoy, F. How AI Developers Overcome Communication Challenges in a Multidisciplinary Team. Proc. ACM Hum. Comput. Interact. 2021, 5, 1–25. [Google Scholar] [CrossRef]
- Nahar, N.; Zhou, S.; Lewis, G.; Kästner, C. Collaboration Challenges in Building ML-Enabled Systems. In Proceedings of the 44th International Conference on Software Engineering, New York, NY, USA, 21–29 May 2022; pp. 413–425. [Google Scholar] [CrossRef]
- Martinez, I.; Viles, E.; Olaizola, I.G. Data Science Methodologies: Current Challenges and Future Approaches. Big Data Res. 2021, 24, 100183. [Google Scholar] [CrossRef]
- Pennington, D.; Ebert-Uphoff, I.; Freed, N.; Martin, J.; Pierce, S.A. Bridging Sustainability Science, Earth Science, and Data Science through Interdisciplinary Education. Sustain. Sci. 2020, 15, 647–661. [Google Scholar] [CrossRef]
- Makinen, S.; Skogstrom, H.; Laaksonen, E.; Mikkonen, T. Who Needs MLOps: What Data Scientists Seek to Accomplish and How Can MLOps Help? In Proceedings of the 2021 IEEE/ACM 1st Workshop on AI Engineering—Software Engineering for AI (WAIN), Madrid, Spain, 30–31 May 2021; pp. 109–112. [Google Scholar] [CrossRef]
- Sarker, I.H.; Hoque, M.M.; Uddin, M.K.; Alsanoosy, T. Mobile Data Science and Intelligent Apps: Concepts, AI-Based Modeling and Research Directions. Mob. Netw. Appl. 2021, 26, 285–303. [Google Scholar] [CrossRef]
- Sarker, I.H.; Kayes, A.S.M.; Badsha, S.; Alqahtani, H.; Watters, P.; Ng, A. Cybersecurity Data Science: An Overview from Machine Learning Perspective. J. Big Data 2020, 7, 41. [Google Scholar] [CrossRef]
- Kaur, H.; Nori, H.; Jenkins, S.; Caruana, R.; Wallach, H.; Wortman Vaughan, J. Interpreting Interpretability: Understanding Data Scientists’ Use of Interpretability Tools for Machine Learning. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, 25–30 April 2020; pp. 1–14. [Google Scholar] [CrossRef]
- Latif, S.; Usman, M.; Manzoor, S.; Iqbal, W.; Qadir, J.; Tyson, G.; Castro, I.; Razi, A.; Boulos, M.N.K.; Weller, A.; et al. Leveraging Data Science to Combat COVID-19: A Comprehensive Review. IEEE Trans. Artif. Intell. 2020, 1, 85–103. [Google Scholar] [CrossRef]
- Drozdal, J.; Weisz, J.; Wang, D.; Dass, G.; Yao, B.; Zhao, C.; Muller, M.; Ju, L.; Su, H. Trust in AutoML. In Proceedings of the 25th International Conference on Intelligent User Interfaces, New York, NY, USA, 17 March 2020; pp. 297–307. [Google Scholar]
- Drosos, I.; Barik, T.; Guo, P.J.; DeLine, R.; Gulwani, S. Wrex: A Unified Programming-by-Example Interaction for Synthesizing Readable Code for Data Scientists. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, 21 April 2020; pp. 1–12. [Google Scholar]
- Maier-Hein, L.; Eisenmann, M.; Sarikaya, D.; März, K.; Collins, T.; Malpani, A.; Fallert, J.; Feussner, H.; Giannarou, S.; Mascagni, P.; et al. Surgical Data Science—From Concepts toward Clinical Translation. Med. Image Anal. 2022, 76, 102306. [Google Scholar] [CrossRef]
- Wang, C.; Hu, Q. Knowledge Sharing in Supply Chain Networks: Effects of Collaborative Innovation Activities and Capability on Innovation Performance. Technovation 2020, 94, 102010. [Google Scholar] [CrossRef]
- Shahzad, M.; Qu, Y.; Zafar, A.U.; Appolloni, A. Does the Interaction between the Knowledge Management Process and Sustainable Development Practices Boost Corporate Green Innovation? Bus. Strategy Environ. 2021, 30, 4206–4222. [Google Scholar] [CrossRef]
- Chowdhury, S.; Budhwar, P.; Dey, P.K.; Joel-Edgar, S.; Abadie, A. AI-Employee Collaboration and Business Performance: Integrating Knowledge-Based View, Socio-Technical Systems and Organisational Socialisation Framework. J. Bus. Res. 2022, 144, 31–49. [Google Scholar] [CrossRef]
- Chowdhury, S.; Dey, P.; Joel-Edgar, S.; Bhattacharya, S.; Rodriguez-Espindola, O.; Abadie, A.; Truong, L. Unlocking the Value of Artificial Intelligence in Human Resource Management through AI Capability Framework. Human. Resour. Manag. Rev. 2023, 33, 100899. [Google Scholar] [CrossRef]
- Kim, J. Leading Teachers’ Perspective on Teacher-AI Collaboration in Education. Educ. Inf. Technol. 2023, 29, 8693–8724. [Google Scholar] [CrossRef]
- Sowa, K.; Przegalinska, A.; Ciechanowski, L. Cobots in Knowledge Work. J. Bus. Res. 2021, 125, 135–142. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.P.C.; Adabre, M.A.; Edwards, D.J.; Hosseini, M.R.; Ameyaw, E.E. Artificial Intelligence in the AEC Industry: Scientometric Analysis and Visualization of Research Activities. Autom. Constr. 2020, 112, 103081. [Google Scholar] [CrossRef]
- Zhang, R.; McNeese, N.J.; Freeman, G.; Musick, G. An Ideal Human. Proc. ACM Hum. Comput. Interact. 2021, 4, 1–25. [Google Scholar] [CrossRef]
- Korteling, J.E. (Hans); van de Boer-Visschedijk, G.C.; Blankendaal, R.A.M.; Boonekamp, R.C.; Eikelboom, A.R. Human- versus Artificial Intelligence. Front. Artif. Intell. 2021, 4, 622364. [Google Scholar] [CrossRef]
- Makarius, E.E.; Mukherjee, D.; Fox, J.D.; Fox, A.K. Rising with the Machines: A Sociotechnical Framework for Bringing Artificial Intelligence into the Organization. J. Bus. Res. 2020, 120, 262–273. [Google Scholar] [CrossRef]
- Allioui, H.; Mourdi, Y. Unleashing the Potential of AI: Investigating Cutting-Edge Technologies That Are Transforming Businesses. Int. J. Comput. Eng. Data Sci. (IJCEDS) 2023, 3, 1–12. [Google Scholar]
- Musick, G.; O’Neill, T.A.; Schelble, B.G.; McNeese, N.J.; Henke, J.B. What Happens When Humans Believe Their Teammate Is an AI? An Investigation into Humans Teaming with Autonomy. Comput. Human. Behav. 2021, 122, 106852. [Google Scholar] [CrossRef]
- Akata, Z.; Balliet, D.; de Rijke, M.; Dignum, F.; Dignum, V.; Eiben, G.; Fokkens, A.; Grossi, D.; Hindriks, K.; Hoos, H.; et al. A Research Agenda for Hybrid Intelligence: Augmenting Human Intellect With Collaborative, Adaptive, Responsible, and Explainable Artificial Intelligence. Computer 2020, 53, 18–28. [Google Scholar] [CrossRef]
- Sjödin, D.; Parida, V.; Palmié, M.; Wincent, J. How AI Capabilities Enable Business Model Innovation: Scaling AI through Co-Evolutionary Processes and Feedback Loops. J. Bus. Res. 2021, 134, 574–587. [Google Scholar] [CrossRef]
- Reim, W.; Åström, J.; Eriksson, O. Implementation of Artificial Intelligence (AI): A Roadmap for Business Model Innovation. AI 2020, 1, 180–191. [Google Scholar] [CrossRef]
- Seo, K.; Tang, J.; Roll, I.; Fels, S.; Yoon, D. The Impact of Artificial Intelligence on Learner–Instructor Interaction in Online Learning. Int. J. Educ. Technol. High. Educ. 2021, 18, 54. [Google Scholar] [CrossRef]
- O’Brien, A.D.; Stone, D.N. Yes, You Can Import, Analyze, and Create Dashboards and Storyboards in Tableau! The GBI Case. J. Emerg. Technol. Account. 2020, 17, 21–31. [Google Scholar] [CrossRef]
- Kharakhash, O. Data Visualization: Transforming Complex Data into Actionable Insights. Autom. Technol. Bus. Process. 2023, 15, 4–12. [Google Scholar] [CrossRef]
- Paff, J.B. Cognitive Feedback Theories and Artificial Intelligence: A Case for A Grammarly of UI/UX Design; Dartmouth College: Hanover, NH, USA, 2023. [Google Scholar]
- Wu, Y.; Hellerstein, J.M.; Satyanarayan, A. B2: Bridging Code and Interactive Visualization in Computational Notebooks. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, New York, NY, USA, 20 October 2020; pp. 152–165. [Google Scholar]
- Kelly, T.D.; Foster, T. AquaCrop-OSPy: Bridging the Gap between Research and Practice in Crop-Water Modeling. Agric. Water Manag. 2021, 254, 106976. [Google Scholar] [CrossRef]
- Grotov, K.; Titov, S.; Sotnikov, V.; Golubev, Y.; Bryksin, T. A Large-Scale Comparison of Python Code in Jupyter Notebooks and Scripts. In Proceedings of the 19th International Conference on Mining Software Repositories, New York, NY, USA, 17 October 2022; pp. 353–364. [Google Scholar] [CrossRef]
- Sadreddin, A.; Chan, Y.E. Pathways to Developing Information Technology-Enabled Capabilities in Born-Digital New Ventures. Int. J. Inf. Manag. 2023, 68, 102572. [Google Scholar] [CrossRef]
- Integlia, R.; Chatterjee, P.; Gilmore, J. Collaborative Course Development for Applications of Artificial Intelligence and Wearable Devices in Healthcare. In Proceedings of the 2022 ASEE Southeast Section Conference, Charleston, CA, USA, 13–15 March 2022. [Google Scholar]
- Martelaro, N.; Myers, B.A. UX Design Tools. In User Experience Methods and Tools in Human-Computer Interaction; CRC Press: Boca Raton, FL, USA, 2024; pp. 350–372. [Google Scholar]
- Hsiao, H.-L.; Tang, H.-H. A Study on the Application of Generative AI Tools in Assisting the User Experience Design Process. In Proceedings of the International Conference on Human-Computer Interaction, Washington, DC, USA, 29 June–4 July 2024; pp. 175–189. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, Y.; Kliman-Silver, C.; Lutteroth, C.; Li, T.J.-J.; Nichols, J.; Stuerzlinger, W. Computational Methodologies for Understanding, Automating, and Evaluating User Interfaces. In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems; Association for Computing Machinery: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Heo, J.; Lee, U. Form to Flow: Exploring Challenges and Roles of Conversational UX Designers in Real-World, Multi-Channel Service Environments. Proc. ACM Hum. Comput. Interact. 2023, 7, 1–24. [Google Scholar] [CrossRef]
- Medeiros, D.; Schieffer, G.; Wahlgren, J.; Peng, I. A GPU-Accelerated Molecular Docking Workflow with Kubernetes and Apache Airflow. In International Conference on High Performance Computing; Springer Nature Switzerland: Cham, Switzerland, 2023; pp. 193–206. [Google Scholar] [CrossRef]
- Saxena, R. Big Data in Construction Perspective: Exploration of Google Cloud Based Technologies and Offerings. Lond. J. Eng. Res. 2023, 23, 25–43. [Google Scholar]
- Abdeldayem, O.M.; Dabbish, A.M.; Habashy, M.M.; Mostafa, M.K.; Elhefnawy, M.; Amin, L.; Al-Sakkari, E.G.; Ragab, A.; Rene, E.R. Viral Outbreaks Detection and Surveillance Using Wastewater-Based Epidemiology, Viral Air Sampling, and Machine Learning Techniques: A Comprehensive Review and Outlook. Sci. Total Environ. 2022, 803, 149834. [Google Scholar] [CrossRef] [PubMed]
- Shipley, E.; Joddrell, M.; Lip, G.Y.; Zheng, Y. Bridging the Gap Between Artificial Intelligence Research and Clinical Practice in Cardiovascular Science: What the Clinician Needs to Know. Arrhythm. Electrophysiol. Rev. 2022, 11, e03. [Google Scholar] [CrossRef] [PubMed]
- Tucker, J.; Haley, J.; Kessler, B.; Fish, T. Bridging the Gap from Academia to Application: Rapid Algorithm Design and Deployment for Artificial Intelligence. In Artificial Intelligence and Machine Learning in Defense Applications III; Dijk, J., Ed.; SPIE: Bellingham, WA, USA, 2021; p. 8. [Google Scholar] [CrossRef]
- Krishnam, N.P.; Ashraf, M.S.; Rajagopal, B.R.; Vats, P.; Chakravarthy, D.S.K.; Rafi, S.M. Analysis Of Current Trends, Advances And Challenges Of Machine Learning (Ml) And Knowledge Extraction: From Ml To Explainable AI. Ind. Qualif. Inst. Adm. Manag. UK 2022, 58, 54–62. [Google Scholar]
- Shao, S.; Henrique Ribeiro, P.; Ramirez, C.M.; Moore, J.H. A Review of Feature Selection Strategies Utilizing Graph Data Structures and Knowledge Graphs. Brief. Bioinform. 2024, 25, bbae521. [Google Scholar] [CrossRef]
- Bala, B.; Behal, S. A Brief Survey of Data Preprocessing in Machine Learning and Deep Learning Techniques. In Proceedings of the 2024 8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Kathmandu, Nepal, 3–5 October 2024; pp. 1755–1762. [Google Scholar] [CrossRef]
- Rout, S.; Mallick, R.; Kumar Sahu, S. Exploring the Significance of Feature Analysis in AI/ML Modeling. In Proceedings of the 2023 OITS International Conference on Information Technology (OCIT), Raipur, India, 13–15 December 2023; pp. 580–585. [Google Scholar] [CrossRef]
- Oettl, F.C.; Oeding, J.F.; Feldt, R.; Ley, C.; Hirschmann, M.T.; Samuelsson, K. The Artificial Intelligence Advantage: Supercharging Exploratory Data Analysis. Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 3039–3042. [Google Scholar] [CrossRef]
- Milo, T.; Somech, A. Automating Exploratory Data Analysis via Machine Learning: An Overview. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, 14–19 June 2020; pp. 2617–2622. [Google Scholar] [CrossRef]
- Holstein, J. Bridging Domain Expertise and AI through Data Understanding. In Proceedings of the 29th International Conference on Intelligent User Interfaces, New York, NY, USA, 18–21 March 2024; pp. 163–165. [Google Scholar] [CrossRef]
- Nazary, F.; Deldjoo, Y.; Di Noia, T. ChatGPT-HealthPrompt. Harnessing the Power of XAI in Prompt-Based Healthcare Decision Support Using ChatGPT. In Proceedings of the Artificial Intelligence. ECAI 2023 International Workshops, Kraków, Poland, 30 September–4 October 2024; pp. 382–397. [Google Scholar] [CrossRef]
- Wu, T.-H.; Kao, B.; Cheung, A.S.Y.; Cheung, M.M.K.; Wang, C.; Chen, Y.; Yuan, G.; Cheng, R. Integrating Domain Knowledge in AI-Assisted Criminal Sentencing of Drug Trafficking Cases. In Legal Knowledge and Information Systems; IOS Press: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Tasnim, N.; Al Mamun, S.; Islam, M.S.; Kaiser, M.S.; Mahmud, M. Explainable Mortality Prediction Model for Congestive Heart Failure with Nature-Based Feature Selection Method. Appl. Sci. 2023, 13, 6138. [Google Scholar] [CrossRef]
- Feustel, I.; Rach, N.; Minker, W.; Ultes, S. Enhancing Model Transparency: A Dialogue System Approach to XAI with Domain Knowledge. In Proceedings of the 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue; Association for Computational Linguistics: Stroudsburg, PA, USA, 2024; pp. 248–258. [Google Scholar] [CrossRef]
- Ignatiev, A.; Marques-Silva, J.; Narodytska, N.; Stuckey, P.J. Reasoning-Based Learning of Interpretable ML Models. In IJCAI International Joint Conference on Artificial Intelligence, Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, Virtual, MO, Canada, 30 August 2021; International Joint Conferences on Artificial Intelligence Organization: Marina del Rey, CA, USA, 2021; pp. 4458–4465. [Google Scholar] [CrossRef]
- Sahoo, P.; Singh, A.K.; Saha, S.; Jain, V.; Mondal, S.; Chadha, A. A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications. arXiv 2024, arXiv:2402.07927. [Google Scholar]
- Chen, E.; Wang, D.; Xu, L.; Cao, C.; Fang, X.; Lin, J. A Systematic Review on Prompt Engineering in Large Language Models for K-12 STEM Education. arXiv 2024, arXiv:2410.11123. [Google Scholar]
- Wang, Z.J.; Chakravarthy, A.; Munechika, D.; Chau, D.H. Wordflow: Social Prompt Engineering for Large Language Models. arXiv 2024, arXiv:2401.14447. [Google Scholar]
- Chen, X.; Zeng, Y.; Kang, S.; Jin, R. INN: An Interpretable Neural Network for AI Incubation in Manufacturing. ACM Trans. Intell. Syst. Technol. 2022, 13, 1–23. [Google Scholar] [CrossRef]
- Babic, B.; Gerke, S.; Evgeniou, T.; Cohen, I.G. Algorithms on Regulatory Lockdown in Medicine. Science 2019, 366, 1202–1204. [Google Scholar] [CrossRef] [PubMed]
- Slihte, A.; Osis, J.; Donins, U. Knowledge Integration for Domain Modeling. In Proceedings of the International Workshop on Model-Driven Architecture and Modeling-Driven Software Development, Oldenburg, Germany, 1 March 2011; pp. 46–56. [Google Scholar]
- Hall, O.; Ohlsson, M.; Rögnvaldsson, T. Satellite Image and Machine Learning Based Knowledge Extraction in the Poverty and Welfare Domain. arXiv 2022, arXiv:2203.01068. [Google Scholar] [CrossRef]
- Chen, X.; Singh, M.M.; Geyer, P. Utilizing Domain Knowledge: Robust Machine Learning for Building Energy Prediction with Small, Inconsistent Datasets. arXiv 2023, arXiv:2302.10784. [Google Scholar] [CrossRef]
- Grenaderova, A.V.; Mikhailova, A.B.; Sharafutdinov, R.A.; Stoyko, T.G. Holocene Environmental Conditions in the Eastern Sayan Foothills According to a Comprehensive Paleoecological Study of the Sosnovka Mire. Limnol. Freshw. Biol. 2024, 7, 394–399. [Google Scholar] [CrossRef]
- Innocenti, B.; Bori, E.; Pianigiani, S. Biomechanical Analysis of the Use of Stems in Revision Total Knee Arthroplasty. Bioengineering 2022, 9, 259. [Google Scholar] [CrossRef]
- Yang, J.; Ren, S. A Quantitative Perspective on Values of Domain Knowledge for Machine Learning. arXiv 2020, arXiv:2011.08450. [Google Scholar]
- Childs, C.M.; Washburn, N.R. Embedding Domain Knowledge for Machine Learning of Complex Material Systems. MRS Commun. 2019, 9, 806–820. [Google Scholar] [CrossRef]
- Constance Obiuto, N.; Adekola Adebayo, R.; Kayode Olajiga, O.; Clinton Festus-Ikhuoria, I. Integrating Artificial Intelligence in Construction Management: Improving Project Efficiency and Cost-Effectiveness. Int. J. Adv. Multidiscip. Res. Stud. 2024, 4, 639–647. [Google Scholar] [CrossRef]
- Termine. Urologe 2015, 54, 1853–1860. [CrossRef]
- Schaekermann, M.; Spitz, T.; Pyles, M.; Cole-Lewis, H.; Wulczyn, E.; Pfohl, S.R.; Martin, D.; Jaroensri, R.; Keeling, G.; Liu, Y.; et al. Health Equity Assessment of Machine Learning Performance (HEAL): A Framework and Dermatology AI Model Case Study. EClinicalMedicine 2024, 70, 102479. [Google Scholar] [CrossRef] [PubMed]
- Kumari S AI-Enhanced Portfolio Management: Leveraging Machine Learning for Optimized Investment Strategies in 2024. J. Inform. Educ. Res. 2024, 4, 1487. [CrossRef]
- Adelakun, B.O.; Onwubuariri, E.R.; Adeniran, G.A.; Ntiakoh, A. Enhancing Fraud Detection in Accounting through AI: Techniques and Case Studies. Financ. Account. Res. J. 2024, 6, 978–999. [Google Scholar] [CrossRef]
- Han, M. Research on Enhancing Human-Machine Interaction in Medical Exoskeleton Devices through the Integration of Artificial Intelligence. Appl. Comput. Eng. 2024, 71, 206–211. [Google Scholar] [CrossRef]
- Yu, T.; Simoff, S.; Jan, T. VQSVM: A Case Study for Incorporating Prior Domain Knowledge into Inductive Machine Learning. Neurocomputing 2010, 73, 2614–2623. [Google Scholar] [CrossRef]
- Kumar, P.; Chauhan, S.; Awasthi, L.K. Artificial Intelligence in Healthcare: Review, Ethics, Trust Challenges & Future Research Directions. Eng. Appl. Artif. Intell. 2023, 120, 105894. [Google Scholar] [CrossRef]
- Khan, B.; Fatima, H.; Qureshi, A.; Kumar, S.; Hanan, A.; Hussain, J.; Abdullah, S. Drawbacks of Artificial Intelligence and Their Potential Solutions in the Healthcare Sector. Biomed. Mater. Devices 2023, 1, 731–738. [Google Scholar] [CrossRef]
- Baumgartner, R.; Arora, P.; Bath, C.; Burljaev, D.; Ciereszko, K.; Custers, B.; Ding, J.; Ernst, W.; Fosch-Villaronga, E.; Galanos, V.; et al. Fair and Equitable AI in Biomedical Research and Healthcare: Social Science Perspectives. Artif. Intell. Med. 2023, 144, 102658. [Google Scholar] [CrossRef]
- Ueda, D.; Kakinuma, T.; Fujita, S.; Kamagata, K.; Fushimi, Y.; Ito, R.; Matsui, Y.; Nozaki, T.; Nakaura, T.; Fujima, N.; et al. Fairness of Artificial Intelligence in Healthcare: Review and Recommendations. Jpn. J. Radiol. 2024, 42, 3–15. [Google Scholar] [CrossRef]
- Assadi, A.; Laussen, P.C.; Goodwin, A.J.; Goodfellow, S.; Dixon, W.; Greer, R.W.; Jegatheeswaran, A.; Singh, D.; McCradden, M.; Gallant, S.N.; et al. An Integration Engineering Framework for Machine Learning in Healthcare. Front. Digit. Health 2022, 4, 932411. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Patel, A.; Eckert, C.; Kumar, V.; Teredesai, A. Fairness in Machine Learning for Healthcare. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA, 6–10 July 2020; pp. 3529–3530. [Google Scholar] [CrossRef]
- Bhowmick, A.; Roy, U. Inventory Management at Ford Using AI/ML Techniques Considering Demand Forecasting; Indian Institute of Management Bangalore: Bengaluru, India, 2022. [Google Scholar]
- Gupta, A.; ReenaPoojara, D. Diffusion of Artificial Intelligence in Human Resource Domain with Specific Reference to Recruitment Function: A Literature Review Study. Int. J. Innov. Sci. Res. Technol. 2022, 7, 771–778. [Google Scholar]
- Siddiqui, F.; Khan, R.; Sezer, S. Bird’s-Eye View on the Automotive Cybersecurity Landscape & Challenges in Adopting AI/ML. In Proceedings of the 2021 Sixth International Conference on Fog and Mobile Edge Computing (FMEC), Gandia, Spain, 6–9 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Sukel, K. Brawn with Brains. Mech. Eng. 2021, 143, 28–31. [Google Scholar] [CrossRef]
- Romero-Brufau, S.; Wyatt, K.D.; Boyum, P.; Mickelson, M.; Moore, M.; Cognetta-Rieke, C. A Lesson in Implementation: A Pre-Post Study of Providers’ Experience with Artificial Intelligence-Based Clinical Decision Support. Int. J. Med. Inform. 2020, 137, 104072. [Google Scholar] [CrossRef] [PubMed]
- Giordano, C.; Brennan, M.; Mohamed, B.; Rashidi, P.; Modave, F.; Tighe, P. Accessing Artificial Intelligence for Clinical Decision-Making. Front. Digit. Health 2021, 3, 645232. [Google Scholar] [CrossRef] [PubMed]
- El Naqa, I.; Karolak, A.; Luo, Y.; Folio, L.; Tarhini, A.A.; Rollison, D.; Parodi, K. Translation of AI into Oncology Clinical Practice. Oncogene 2023, 42, 3089–3097. [Google Scholar] [CrossRef]
- Safdar, N.M.; Banja, J.D.; Meltzer, C.C. Ethical Considerations in Artificial Intelligence. Eur. J. Radiol. 2020, 122, 108768. [Google Scholar] [CrossRef]
- Cheng, L.; Varshney, K.R.; Liu, H. Socially Responsible AI Algorithms: Issues, Purposes, and Challenges. J. Artif. Intell. Res. 2021, 71, 1137–1181. [Google Scholar] [CrossRef]
- Sanderson, C.; Douglas, D.; Lu, Q.; Schleiger, E.; Whittle, J.; Lacey, J.; Newnham, G.; Hajkowicz, S.; Robinson, C.; Hansen, D. AI Ethics Principles in Practice: Perspectives of Designers and Developers. IEEE Trans. Technol. Soc. 2023, 4, 171–187. [Google Scholar] [CrossRef]
- Pant, A.; Hoda, R.; Spiegler, S.V.; Tantithamthavorn, C.; Turhan, B. Ethics in the Age of AI: An Analysis of AI Practitioners’ Awareness and Challenges. ACM Trans. Softw. Eng. Methodol. 2023, 33, 1–35. [Google Scholar] [CrossRef]
- Lo Piano, S. Ethical Principles in Machine Learning and Artificial Intelligence: Cases from the Field and Possible Ways Forward. Humanit. Soc. Sci. Commun. 2020, 7, 9. [Google Scholar] [CrossRef]
- Garrett, N.; Beard, N.; Fiesler, C. More Than “If Time Allows”. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, New York, NY, USA, 7–8 February 2020; pp. 272–278. [Google Scholar] [CrossRef]
- Fletcher, R.R.; Nakeshimana, A.; Olubeko, O. Addressing Fairness, Bias, and Appropriate Use of Artificial Intelligence and Machine Learning in Global Health. Front. Artif. Intell. 2021, 3, 561802. [Google Scholar] [CrossRef] [PubMed]
- Abràmoff, M.D.; Tarver, M.E.; Loyo-Berrios, N.; Trujillo, S.; Char, D.; Obermeyer, Z.; Eydelman, M.B.; Maisel, W.H. Considerations for Addressing Bias in Artificial Intelligence for Health Equity. NPJ Digit. Med. 2023, 6, 170. [Google Scholar] [CrossRef] [PubMed]
- Mehrabi, N.; Morstatter, F.; Saxena, N.; Lerman, K.; Galstyan, A. A Survey on Bias and Fairness in Machine Learning. ACM Comput. Surv. 2022, 54, 1–35. [Google Scholar] [CrossRef]
- Carter, S.M.; Rogers, W.; Win, K.T.; Frazer, H.; Richards, B.; Houssami, N. The Ethical, Legal and Social Implications of Using Artificial Intelligence Systems in Breast Cancer Care. Breast 2020, 49, 25–32. [Google Scholar] [CrossRef]
- Taeihagh, A. Governance of Artificial Intelligence. Policy Soc. 2021, 40, 137–157. [Google Scholar] [CrossRef]
- Robles Carrillo, M. Artificial Intelligence: From Ethics to Law. Telecomm Policy 2020, 44, 101937. [Google Scholar] [CrossRef]
- Chesterman, S. Artificial Intelligence and The Limits of Legal Personality. Int. Comp. Law. Q. 2020, 69, 819–844. [Google Scholar] [CrossRef]
- Sun, A.Y.; Yoon, H.; Shih, C.-Y.; Zhong, Z. Applications of Physics-Informed Scientific Machine Learning in Subsurface Science: A Survey. In Knowledge Guided Machine Learning; Chapman and Hall/CRC: Boca Raton, FL, USA, 2022; pp. 111–132. [Google Scholar]
- Borders, T.; Glenski, M.; Grimes, T.; Mendez, J.; Seiner, B.; Sheffield, A.; Shields, A.; Ward, J.; Wonders, M. Report on Next-Gen AI for Proliferation Detection Workshop: Domain-Aware Methods; Pacific Northwest National Laboratory: Richland, WA, USA, 2021. [Google Scholar]
- Freeman, L.; Rahman, A.; Batarseh, F.A. Enabling Artificial Intelligence Adoption through Assurance. Soc. Sci. 2021, 10, 322. [Google Scholar] [CrossRef]
- Brockman Shields, A.J. Domain Aware Techniques in AI: A Survey; Idaho National Lab. (INL): Idaho Falls, ID, USA, 2021. [Google Scholar]
- Jia, Z.; Chen, J.; Xu, X.; Kheir, J.; Hu, J.; Xiao, H.; Peng, S.; Hu, X.S.; Chen, D.; Shi, Y. The Importance of Resource Awareness in Artificial Intelligence for Healthcare. Nat. Mach. Intell. 2023, 5, 687–698. [Google Scholar] [CrossRef]
- Brea, E.; Ford, J.A. Innovative Problem Solving in the Machine Learning Age: Is Domain Expertise Still Important? Acad. Manag. Proc. 2023, 2023, 14780. [Google Scholar] [CrossRef]
- She, C.; Sun, C.; Gu, Z.; Li, Y.; Yang, C.; Poor, H.V.; Vucetic, B. A Tutorial on Ultrareliable and Low-Latency Communications in 6G: Integrating Domain Knowledge Into Deep Learning. Proc. IEEE 2021, 109, 204–246. [Google Scholar] [CrossRef]
- Deng, C.; Ji, X.; Rainey, C.; Zhang, J.; Lu, W. Integrating Machine Learning with Human Knowledge. iScience 2020, 23, 101656. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Zhang, D.; Zhu, X. Deep Learning Based Forecasting of Photovoltaic Power Generation by Incorporating Domain Knowledge. Energy 2021, 225, 120240. [Google Scholar] [CrossRef]
- Sambasivan, N.; Veeraraghavan, R. The Deskilling of Domain Expertise in AI Development. In Proceedings of the CHI Conference on Human Factors in Computing Systems, New York, NY, USA, 29 April 2022; pp. 1–14. [Google Scholar] [CrossRef]
- Biagini, V.; Subasic, M.; Oudalov, A.; Kreusel, J. The Autonomous Grid: Automation, Intelligence and the Future of Power Systems. Energy Res. Soc. Sci. 2020, 65, 101460. [Google Scholar] [CrossRef]
- Parashar, G.; Chaudhary, A.; Rana, A. Systematic Mapping Study of AI/Machine Learning in Healthcare and Future Directions. SN Comput. Sci. 2021, 2, 461. [Google Scholar] [CrossRef]
- Kumari, M.; Chaudhary, A.; Narayan, Y. Explainable AI (XAI): A Survey of Current and Future Opportunities; Springer International Publishing: Cham, Switzerland, 2023; pp. 53–71. [Google Scholar] [CrossRef]
- Gertrude, M.; Kati, R.; Masibo, E. Comparative Analysis of Assessment Methods Enabled by Learning Management System in Technical Training Institutions in Kenya. J. Educ. Pract. 2024, 15, 51–64. [Google Scholar] [CrossRef]
Original Contribution | Description |
---|---|
Unified methodological framework | Development of a novel, structured framework that consolidates diverse methodologies for integrating domain knowledge into AI/ML, offering practitioners and researchers a unified approach not previously available in the literature [4]. |
Cross-industry case studies with new insights | Presentation of detailed case studies across various industries, including materials science, exoskeleton devices, and poverty estimation, providing fresh insights and highlighting applications of domain knowledge integration that extend beyond existing studies [5]. |
Practical tools and strategies | Introduction of actionable strategies and tools, such as advanced feature engineering techniques, knowledge graphs, and human-in-the-loop systems, offering original guidance for effectively embedding domain expertise into AI/ML models [6]. |
Ethical considerations and future trends | Original analysis of ethical implications and future trends related to domain knowledge integration in AI/ML, including discussions on handling dynamic domains and ensuring equitable AI performance, contributing new thought leadership to ongoing discourse [7]. |
Enhancement of AI/ML performance evidence | Provision of empirical evidence and arguments demonstrating how domain knowledge significantly enhances AI/ML model performance, interpretability, and applicability, offering new validation and expanding on the implications of this integration in various sectors [6]. |
Industry | Case Study Description | Key Outcomes |
---|---|---|
Healthcare | Integration of domain knowledge in mammography for breast cancer diagnosis. By embedding medical expertise about breast tissue characteristics and cancer indicators into AI models, diagnostic accuracy was improved. Without incorporating this domain knowledge, AI models might miss subtle signs of cancer, leading to less accurate diagnoses. | Improved diagnostic accuracy |
Manufacturing | Ford’s use of digital twins and predictive maintenance. By integrating engineering knowledge of machinery operations and failure patterns into AI systems, Ford optimized production stages and reduced downtime. Without domain-specific insights, AI might not accurately predict equipment failures or optimize maintenance schedules effectively. | Optimized production stages, reduced downtime, enhanced efficiency |
Finance | Implementation of fair and transparent loan approval processes integrating domain expertise in financial risk assessment. By incorporating financial regulations and risk assessment principles, AI models reduced bias in loan approvals. Without domain knowledge, AI systems might perpetuate existing biases or overlook regulatory compliance, leading to unfair lending practices. | Reduced bias in loan approvals, increased trust in financial services |
Retail | L’Oréal’s integration of diverse data sources like social media and weather patterns for demand forecasting. By applying knowledge of consumer behavior and market dynamics, the AI models accurately predicted demand. An AI system lacking this domain context might fail to correlate these diverse data points effectively, resulting in inaccurate forecasts and poor inventory management. | Accurate demand predictions, optimized inventory management |
Robotics | Use of domain knowledge in sim-to-real transfers to align simulated training environments with real-world conditions for better robotic task performance. By incorporating physical laws and environmental factors into simulations, robots performed tasks more effectively in real-world settings. Without integrating domain knowledge, discrepancies between simulations and actual conditions could hinder robotic performance. | Improved real-world task performance, better alignment with simulations |
Challenge | Solution | Example |
---|---|---|
Communication gaps | Cross-disciplinary training and regular structured meetings | Workshops and collaborative platforms |
Data misinterpretation | Involvement of domain experts in data preprocessing and feature engineering | Joint feature selection sessions |
Dynamic knowledge evolution | Implementing continual learning and active learning strategies | Online learning models updating in real time |
Ethical and regulatory compliance | Close collaboration with domain experts to ensure adherence to laws and ethical standards | Regular audits and compliance checks |
Trust and adoption | Use of interpretable models and visualization tools to improve transparency | Interactive dashboards for end-users |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, T.; Durlik, I.; Łobodzińska, A.; Dorobczyński, L.; Jasionowski, R. AI in Context: Harnessing Domain Knowledge for Smarter Machine Learning. Appl. Sci. 2024, 14, 11612. https://doi.org/10.3390/app142411612
Miller T, Durlik I, Łobodzińska A, Dorobczyński L, Jasionowski R. AI in Context: Harnessing Domain Knowledge for Smarter Machine Learning. Applied Sciences. 2024; 14(24):11612. https://doi.org/10.3390/app142411612
Chicago/Turabian StyleMiller, Tymoteusz, Irmina Durlik, Adrianna Łobodzińska, Lech Dorobczyński, and Robert Jasionowski. 2024. "AI in Context: Harnessing Domain Knowledge for Smarter Machine Learning" Applied Sciences 14, no. 24: 11612. https://doi.org/10.3390/app142411612
APA StyleMiller, T., Durlik, I., Łobodzińska, A., Dorobczyński, L., & Jasionowski, R. (2024). AI in Context: Harnessing Domain Knowledge for Smarter Machine Learning. Applied Sciences, 14(24), 11612. https://doi.org/10.3390/app142411612