Vaccine Immunogenicity versus Gastrointestinal Microbiome Status: Implications for Poultry Production
Abstract
:1. Introduction
2. Mucosal Immune System of the Avian Gastrointestinal Tract
3. Antigen Sampling, Tolerance, and Immune Function of Commensal Bacteria
4. Interactions between Vaccine Administration and Gut Microbiome Status
4.1. Gut Dysbiosis and Its Influence on Vaccine Efficacy in Human Medicine
4.2. Gut Dysbiosis and Its Influence on Vaccine Efficacy in Poultry
Model | Source of Dysbiosis | Vaccine/Challenge Treatment | Vaccine Immune Response | Ref. 1 |
---|---|---|---|---|
Specific Pathogen-Free layer chicks, 0–43 doa 2 | Antibiotic cocktail, in water (for 0–12 or 0–35 doa): Vancomycin, Neomycin, Metronidazole, and Amphotericin-B | Inactivated H9N2 | Antibiotic supplementation for 0–12 doa: ↓3 splenocyte IFN-γ expression ↓ HI 4 antibody titer at 7 and 14 doa, n.d. 5 at 21 and 28 doa n.d. virus neutralization antibody titer at 21 doa ↓ H9N2 Serum IgG at 7 and 14 doa Antibiotic supplementation for 0–35 doa: n.d. splenocyte IFN-γ expression ↓ HI antibody titer at 7 and 14 doa, n.d. at 21 and 28 doa ↑ virus neutralization antibody titer at 21 doa ↓ H9N2 Serum IgG at 7 and 14 doa | [66] |
Broiler chicks (male), 0–28 doa | Antibiotic treatment, in feed: Bacitracin methylene disalicylate | Avian pathogenic E. coli challenge | ↑ relative spleen weight (% body weight) at 14 doa n.d. relative or gross spleen weight at 28 doa | [67] |
C57BL/6 mice | Antibiotic treatments, oral gavage:
| Ovalbumin (OVA), recombinant cholera toxin B subunit (CTB), or Bacillus anthracis protective antigen (PA) | (1) Targeted treatment: n.d. serum IgA-specific OVA, CTB, or PA n.d. secretory (fecal) IgA-specific OVA, CTB, or PA ↑ splenic and mesenteric α4β7CD19+ cells when compared to cocktail only (2) Cocktail treatment: ↑ serum IgA-specific OVA and CTB ↑ secretory (fecal) IgA-specific OVA n.d. splenic and mesenteric α4β7CD19+ cells | [75] |
4.3. Vaccine Administration and Its Influence on Gut Microbiome Status in Poultry and Other Non-Human Hosts
Model | Vaccination | Ceca Pouch Microbiota Response | Ref. 1 |
---|---|---|---|
Mahuang broilers | 3 and 10 doa 2: Coccidiosis vaccine (unnamed source), in water | 15 doa (coccidiosis vaccination vs. vaccination + C. butyricum): n.d. 3 for Chao1 index, Shannon index, or inverse Simpson index among treatments ↓ 4 abundance of Bacteroides, Barnesiella, and Megamonas genera ↑ abundance of Enterococcus genus | [69] |
Mahuang broilers | 3 doa: Live coccidiosis vaccine (QiluTsingta Biopharmaceutical Co., Ltd., Jinan, China), in water | 15 doa (live coccidiosis vaccination vs. vaccination + probiotic): n.d. Chao1 index, Shannon index, or Simpson index ↑ abundance of Enterococcus genus | [70] |
White Roman chickens (male) | 14 doa: Live Newcastle disease virus (NDV) vaccine, Strain La Sota (Qingdao YEBIO Bio-engineering Co., Ltd., Qingdao, China), oral gavage | 42 doa (NDV vaccination vs. vaccination + yeast cell wall product inclusion): ↓ average observed species and Chao1 index ↓ abundance of Ruminococcaceae family ↑ abundance of Bacteroidaceae, Tannerellaceae, and Desulfovibrionaceae families | [77] |
Cobb broilers (male) | 2 and 7 doa: 3 different Salmonella Typhimurium vaccine candidate strains, oral gavageTrt 5 1: Unvaccinated Trt 2: PBAD-mviN S. Typhimurium UK-1 Trt 3: Wild type S. Typhimurium UK-1 Trt 4: ∆∆metRmetD S. Typhimurium UK-1 | 42 doa: Trt 1: ↑ proportion of Oscillospira genus when compared to 2 Trt 2: ↓ proportion of Clostridiales order compared to 1 and 4, ↑ proportion of Ruminococcaceae and Lachnospiraceae families compared to 1 and 4 Trt 3: ↓ proportion of Clostridiales order compared to 1 and 4 ↑ proportion of Bacteroidales and Verucomicrobiales orders compared to 1, 2, and 4 ↑ proportion of Ruminococcaceae and Lachnospiraceae families compared to 1 and 4 Trt 4: ↑ proportion of Clostridiales order compared to 2 and 3 | [85] |
Ross broilers | 7, 14, and 21 doa: Clostridium perfringens recombinant proteins (7 vaccine candidates), intramuscular | 33 doa (C. perfringens recombinant proteins vs. vaccine adjuvant): ↓ observed OTUs for Ruminococcaceae family among all vaccine candidates ↑ observed OTUs for Bacteroidaceae family among most vaccine candidates ↑ observed OTUs for Erysipelatoclostridiaceae family among two vaccine candidates | [87] |
Ross 308 broilers (male and female) | 2-(5 and 12 doa) or 4-dose (5, 12, 19, 28 doa) vaccine regimens: Campylobacter jejuni recombinant YP437 protein, intramuscular | 2-dose vaccine regimen vs. C. jejuni challenge: n.d. for inverse Simpson index ↓ Shannon index ↑ proportion of Faecalibacterium genus ↓ proportion of Blautia and Subdoligranulum genera 4-dose vaccine regimen vs. C. jejuni challenge: n.d. for inverse Simpson index n.d. for Shannon index n.d. for proportion of genera | [88] |
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Strober, W. Impact of the gut microbiome on mucosal inflammation. Trends Immunol. 2013, 34, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Vogelzang, A.; Guerrini, M.M.; Minato, N.; Fagarasan, S. Microbiota—An amplifier of autoimmunity. Curr. Opin. Immunol. 2018, 55, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Göbel, T.W.; Smith, A.L. Introduction to the avian innate immune system; properties, effects, and integration with other parts of the immune system. In Avian Immunology, 3rd ed.; Kaspers, B., Schat, K.A., Göbel, T.W., Vervelde, L., Eds.; Elsevier: London, UK, 2022; pp. 163–166. [Google Scholar] [CrossRef]
- Kaspers, B.; Schat, K.A. The mucosal immune system. In Avian Immunology, 3rd ed.; Kaspers, B., Schat, K.A., Göbel, T.W., Vervelde, L., Eds.; Elsevier: London, UK, 2022; pp. 163–166. [Google Scholar] [CrossRef]
- Valdez, Y.; Brown, E.M.; Finlay, B.B. Influence of the microbiota on vaccine effectiveness. Trends Immunol. 2014, 35, 526–537. [Google Scholar] [CrossRef] [PubMed]
- Harris, V.C. The significance of the intestinal microbiome for vaccinology: From correlations to therapeutic applications. Drugs 2018, 78, 1063–1072. [Google Scholar] [CrossRef]
- Harris, V.C.; Haak, B.W.; Handley, S.A.; Jiang, B.; Velasquez, D.E.; Hykes, B.L., Jr.; Droit, L.; Berbers, G.A.M.; Kemper, E.M.; van Leeuwen, E.M.M.; et al. Effect of antibiotic-mediated microbiome modulation on rotavirus vaccine immunogenicity: A human, randomized-control proof-of-concept trial. Cell Host Microbe 2018, 24, 197–207.e4. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.P.K.; Bronowski, C.; Sindhu, K.N.C.; Babji, S.; Blossom, B.; Carmona-Vicente, N.; Chasweka, N.; Chinyama, E.; Cunliffe, N.A.; Dube, Q.; et al. Impact of maternal antibodies and microbiota development on the immunogenicity of oral rotavirus vaccine in African, Indian, and European infants. Nat. Commun. 2021, 12, e7288. [Google Scholar] [CrossRef]
- Heinemann, C.; Leubner, C.D.; Savin, M.; Sib, E.; Schmithausen, R.M.; Steinhoff-Wagner, J. Research note: Tracing pathways of entry and persistence of facultative pathogenic and antibiotic-resistant bacteria in a commercial broiler farm with substantial health problems. Poult. Sci. 2020, 99, 5481–5486. [Google Scholar] [CrossRef]
- Bindari, Y.R.; Moore, R.J.; Van, T.T.H.; Hilliar, M.; Wu, S.B.; Walkden-Brown, S.W.; Gerber, P.F. Microbial communities of poultry house dust, excreta and litter are partially representative of microbiota of chicken caecum and ileum. PLoS ONE 2021, 16, e0255633. [Google Scholar] [CrossRef]
- Almatawah, Q.A.; Al-Khalaifah, H.S.; Aldameer, A.S.; Ali, A.K.; Benhaji, A.H.; Varghese, J.S. Microbiological indoor and outdoor air quality in chicken fattening houses. J. Environ. Public Health 2023, 2023, e3512328. [Google Scholar] [CrossRef]
- Kogut, M.H.; Genovese, K.J.; Swaggerty, C.L.; He, H.; Broom, L. Inflammatory phenotypes in the intestine of poultry: Not all inflammation is created equal. Poult. Sci. 2018, 97, 2339–2346. [Google Scholar] [CrossRef]
- Broom, L.J.; Kogut, M.H. The role of the gut microbiome in shaping the immune system of chickens. Vet. Immunol. Immunopathol. 2018, 204, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Borey, M.; Blanc, F.; Lemonnier, G.; Leplat, J.J.; Jardet, D.; Rossignol, M.N.; Ravon, L.; Billon, Y.; Bernard, M.; Estellé, J.; et al. Links between fecal microbiota and the response to vaccination against influenza A virus in pigs. NPJ Vaccines 2021, 6, e92. [Google Scholar] [CrossRef] [PubMed]
- Atuma, C.; Strugala, V.; Allen, A.; Holm, L. The adherent gastrointestinal mucus gel layer: Thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 280, G922–G929. [Google Scholar] [CrossRef]
- Bar-Shira, E.; Sklan, D.; Friedman, A. Establishment of immune competence in the avian GALT during the immediate post-hatch period. Dev. Comp. Immunol. 2003, 27, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Kayama, H.; Okumura, R.; Takeda, K. Interaction between the microbiota, epithelia, and immune cells in the intestine. Annu. Rev. Immunol. 2020, 26, 23–48. [Google Scholar] [CrossRef] [PubMed]
- Göbel, T.W.F.; Kaspers, B.; Stangassinger, M. NK and T cells constitute two major, functionally distinct intestinal epithelial lymphocyte subsets in the chicken. Int. Immunol. 2001, 13, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Kadivar, M.; Petersson, J.; Svensson, L.; Marsal, J. CD8αβ+ γδ T Cells: A novel T Cell subset with a potential role in inflammatory bowel disease. J. Immunol. 2016, 197, 4584–4592. [Google Scholar] [CrossRef]
- Befus, A.D.; Johnston, N.; Leslie, G.A.; Bienenstock, J. Gut-associated lymphoid tissue in the chicken. I. Morphology, ontogeny, and some functional characteristics of Peyer’s patches. J. Immunol. 1980, 125, 2626–2632. [Google Scholar] [CrossRef]
- Nochi, T.; Jansen, C.A.; Toyomizu, M.; van Eden, W. The well-developed mucosal immune systems of birds and mammals allow for similar approaches of mucosal vaccination in both types of animals. Front. Nutr. 2018, 5, 60. [Google Scholar] [CrossRef]
- Jeurissen, S.; Wagenaar, F.; Janse, E. Further characterization of M cells in gut-associated lymphoid tissues of the chicken. Poult. Sci. 1999, 78, 965–972. [Google Scholar] [CrossRef]
- Pohlmeyer, I.; Jörns, J.; Schumacher, U.; Van Damme, E.J.M.; Peumans, W.J.; Pfüller, U.; Neumann, U. Lectin histochemical investigations of the distal gut of chicks with special emphasis on the follicle-associated epithelium. J. Vet. Med. Ser. A 2005, 52, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hosomi, K.; Shimoyama, A.; Yoshii, K.; Yamaura, H.; Nagatake, T.; Nishino, T.; Kiyono, H.; Fukase, K.; Kunisawa, J. Adjuvant activity of synthetic lipid a of alcaligenes, a gut-associated lymphoid tissue-resident commensal bacterium, to augment antigen-specific IgG and Th17 responses in systemic vaccine. Vaccines 2020, 8, 395. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yin, Y.; Chen, X.; Zhao, Y.; Wu, Y.; Li, Y.; Wang, X.; Huahai Chen, H.; Xiang, C. Induction of intestinal Th17 cells by flagellins from segmented filamentous bacteria. Front. Immunol. 2019, 10, e2750. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.H.; Kweon, M.N.; Iwatani, K.; Yamamoto, M.; Terahara, K.; Sasakawa, C.; Suzuki, T.; Nochi, T.; Yokota, Y.; Rennert, P.D.; et al. Intestinal villous M cells: An antigen entry site in the mucosal epithelium. Proc. Natl. Acad. Sci. USA 2004, 101, 6110–6115. [Google Scholar] [CrossRef]
- Rescigno, M.; Urbano, M.; Valzasina, B.; Francolini, M.; Rotta, G.; Bonasio, R.; Granucci, F.; Kraehenbuhl, J.P.; Ricciardi-Castagnoli, P. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2001, 2, 361–367. [Google Scholar] [CrossRef]
- Ehrhardt, R.O.; Harriman, G.R.; Inman, J.K.; Lycke, N.; Gray, B.; Strober, W. Differential activation requirements of isotype-switched B cells. Eur. J. Immunol. 1996, 26, 1926–1934. [Google Scholar] [CrossRef]
- Kaetzel, C.S. The polymeric immunoglobulin receptor: Bridging innate and adaptive immune responses at mucosal surfaces. Immunol. Rev. 2005, 206, 83–99. [Google Scholar] [CrossRef]
- Hall, J.A.; Bouladoux, N.; Sun, C.M.; Wohlfert, E.A.; Blank, R.B.; Zhu, Q.; Grigg, M.E.; Berzofsky, J.A.; Belkaid, Y. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 2008, 29, 637–649. [Google Scholar] [CrossRef]
- Round, J.L.; Mazmanian, S.K. Inducible Foxp3 + regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. USA 2010, 107, 12204–12209. [Google Scholar] [CrossRef]
- Brandtzaeg, P.; Sollid, L.M.; Thrane, P.S.; Kvale, D.; Bjerke, K.; Scott, H.; Kett, K.; Rognum, T.O. Lymphoepithelial interactions in the mucosal immune system. Gut 1988, 29, 1116–1130. [Google Scholar] [CrossRef] [PubMed]
- Lillehoj, H.S.; Chung, K.S. Postnatal development of T-lymphocyte subpopulations in the intestinal intraepithelium and lamina propria in chickens. Vet. Immunol. Immunopathol. 1992, 31, 347–360. [Google Scholar] [CrossRef]
- Mwangi, W.N.; Beal, R.K.; Powers, C.; Wu, X.; Humphrey, T.; Watson, M.; Bailey, M.; Friedman, A.; Smith, A.L. Regional and global changes in TCRαβ T cell repertoires in the gut are dependent upon the complexity of the enteric microflora. Dev. Comp. Immunol. 2010, 34, 406–417. [Google Scholar] [CrossRef]
- Bland, P.W.; Britton, D.C. Morphological study of antigen-sampling structures in the rat large intestine. Infect. Immun. 1984, 43, 693–699. [Google Scholar] [CrossRef]
- Sorvari, R.; Naukkarinen, A.; Sorvari, T.E. Anal sucking-like movements in the chicken and chick embryo followed by the transportation of environmental material to the bursa of Fabricius, caeca and caecal tonsils. Poult. Sci. 1977, 56, 1426–1429. [Google Scholar] [CrossRef]
- Ballou, A.L.; Ali, R.A.; Mendoza, M.A.; Ellis, J.C.; Hassan, H.M.; Croom, W.J.; Koci, M.D. Development of the chick microbiome: How early exposure influences future microbial diversity. Front. Vet. Sci. 2016, 3, 2. [Google Scholar] [CrossRef]
- Liu, H.; Zeng, X.; Zhang, G.; Hou, C.; Li, N.; Yu, H.; Shang, L.; Zhang, X.; Trevisi, P.; Yang, F. Maternal milk and fecal microbes guide the spatiotemporal development of mucosa-associated microbiota and barrier function in the porcine neonatal gut. BMC Biol. 2019, 17, 106. [Google Scholar] [CrossRef]
- Klaasen, H.L.B.M.; Koopman, J.P.; Van Den Brink, M.E.; Bakker, M.H.; Poelma, F.G.J.; Beynen, A.C. Intestinal, segmented, filamentous bacteria in a wide range of vertebrate species. Lab. Anim. 1993, 27, 141–150. [Google Scholar] [CrossRef]
- Goodwin, M.A.; Cooper, G.L.; Brown, J.; Bickford, A.A.; Waltman, W.D.; Dickson, T.G. Clinical, pathological, and epizootiological features of long-segmented filamentous organisms (bacteria, LSFOs) in the small intestines of chickens, turkeys, and quails. Avian Dis. 1991, 35, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.R.; Winson, E.; Wilson, K.M.; Briggs, W.N.; Duff, A.F.; Chasser, K.M.; Bielke, L.R. Intestinal pioneer colonizers as drivers of ileal microbial composition and diversity of broiler chickens. Front. Microbiol. 2020, 10, e2858. [Google Scholar] [CrossRef] [PubMed]
- Chichlowski, M.; Croom, W.J.; Edens, F.W.; McBride, B.W.; Qiu, R.; Chiang, C.C.; Daniel, L.R.; Havenstein, G.B.; Koci, M.D. Microarchitecture and spatial relationship between bacteria and ileal, cecal, and colonic epithelium in chicks fed a direct-fed microbial, PrimaLac, and salinomycin. Poult. Sci. 2007, 86, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Poonam, P. The biology of oral tolerance and issues related to oral vaccine design. Curr. Pharm. Des. 2007, 13, 2001–2007. [Google Scholar] [CrossRef]
- Franchi, L.; Kamada, N.; Nakamura, Y.; Burberry, A.; Kuffa, P.; Suzuki, S.; Shaw, M.H.; Kim, Y.G.; Núñez, G. NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol. 2012, 13, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Tunis, M.C.; Marshall, J.S. Toll-like receptor 2 as a regulator of oral tolerance in the gastrointestinal tract. Mediat. Inflamm. 2014, 2014, e606383. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.M.; MacSharry, J.; Shanahan, F. Differential regulation of Toll-like receptor signaling in spleen and Peyer’s patch dendritic cells. Immunology 2010, 131, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Netea, M.G.; Joosten, L.A.B.; Latz, E.; Mills, K.H.G.; Natoli, G.; Stunnenberg, H.G.; O’Neill, L.A.J.; Xavier, R.J. Trained immunity: A program of innate immune memory in health and disease. Science 2016, 352, aaf1098. [Google Scholar] [CrossRef] [PubMed]
- Taniuchi, M.; Platts-Mills, J.A.; Begum, S.; Uddin, M.J.; Sobuz, S.U.; Liu, J.; Kirkpatrick, B.D.; Colgate, E.R.; Carmolli, M.P.; Dickson, D.M.; et al. Impact of enterovirus and other enteric pathogens on oral polio and rotavirus vaccine performance in Bangladeshi infants. Vaccine 2016, 34, 3068–3075. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.P.K.; Grassly, N.C. Enhancing rotavirus vaccination: A microbial fix? Cell Host Microbe 2018, 24, 195–196. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.J.; Lopman, B.; Yi, J.; Libster, R.; Creech, C.B.; El-Khorazaty, J.; Baqar, S.; Yildirim, I.; Kao, C.; Rouphael, N.; et al. Effect of concomitant antibiotic and vaccine administration on serologic responses to rotavirus vaccine. J. Pediatric. Infect. Dis. Soc. 2020, 9, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Daddi, L.; Dorsett, Y.; Geng, T.; Bokoliya, S.; Yuan, H.; Wang, P.; Xu, W.; Zhou, Y. Baseline gut microbiome signatures correlate with immunogenicity of SARS-CoV-2 mRNA vaccines. Int. J. Mol. Sci. 2023, 24, 11703. [Google Scholar] [CrossRef]
- Hallander, H.O.; Paniagua, M.; Espinoza, F.; Askelöf, P.; Corrales, E.; Ringman, M.; Storsaeter, J. Calibrated serological techniques demonstrate significant different serum response rates to an oral killed cholera vaccine between Swedish and Nicaraguan children. Vaccine 2002, 21, 138–145. [Google Scholar] [CrossRef]
- Hegde, S.N.; Rolls, B.A.; Turvey, A.; Coates, M.E. Influence of gut microflora on the lymphoid tissue of the chicken (Gallus domesticus) and japanese quail (Coturnix coturnix japonica). Comp. Biochem. Physiol. A Physiol. 1982, 72, 205–209. [Google Scholar] [CrossRef]
- Umesaki, Y.; Setoyama, H.; Matsumoto, S.; Okada, Y. Expansion of alpha beta T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 1993, 79, 32–37. [Google Scholar] [PubMed]
- Huda, M.N.; Lewis, Z.; Kalanetra, K.M.; Rashid, M.; Ahmad, S.M.; Raqib, R.; Qadri, F.; Underwood, M.A.; Mills, D.A.; Stephensen, C.B. Stool microbiota and vaccine responses of infants. Pediatrics 2014, 134, e362–e372. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.L.; Fan, Y.H.; Chang, Y.L.; Ho, H.J.; Liang, L.L.; Chen, Y.J.; Wu, C.Y. Early-life antibiotic exposure associated with Varicella occurrence and breakthrough infections: Evidence from nationwide pre-vaccination and post-vaccination cohorts. Front. Immunol. 2022, 13, 848835. [Google Scholar] [CrossRef] [PubMed]
- Lynn, M.A.; Tumes, D.J.; Choo, J.M.; Sribnaia, A.; Blake, S.J.; Leong, L.E.X.; Young, G.P.; Marshall, H.S.; Wesselingh, S.L.; Rogers, G.B.; et al. Early-life antibiotic-driven dysbiosis leads to dysregulated vaccine immune responses in mice. Cell Host Microbe 2018, 23, 653–660.e5. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, S.; Maurya, S.K.; Das, D.K.; Khan, N.; Agrewala, J.N. Gut dysbiosis thwarts the efficacy of vaccine against Mycobacterium tuberculosis. Front. Immunol. 2020, 11, 726. [Google Scholar] [CrossRef] [PubMed]
- Cait, A.; Mooney, A.; Poyntz, H.; Shortt, N.; Jones, A.; Gestin, A.; Gell, K.; Grooby, A.; O’Sullivan, D.; Tang, J.S.; et al. Potential association between dietary fibre and humoral response to the seasonal influenza vaccine. Front. Immunol. 2021, 12, 765528. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, G.; Citron, M.; Xiao, J.; Norton, J.E., Jr.; Reens, A.L.; Topçuoğlu, B.D.; Maritz, J.M.; Lee, K.J.; Freed, D.C.; Weber, T.M.; et al. Vaccine hyporesponse induced by individual antibiotic treatment in mice and non-human primates is diminished upon recovery of the gut microbiome. Vaccines 2021, 9, 1340. [Google Scholar] [CrossRef]
- Pradhan, D.; Biswasroy, P.; Kar, B.; Bhuyan, S.K.; Ghosh, G.; Rath, G. Clinical interventions and budding applications of probiotics in the treatment and prevention of viral infections. Arch. Med. Res. 2022, 53, 122–130. [Google Scholar] [CrossRef]
- Davidson, L.E.; Fiorino, A.M.; Snydman, D.R.; Hibberd, P.L. Lactobacillus GG as an immune adjuvant for live-attenuated influenza vaccine in healthy adults: A randomized double-blind placebo-controlled trial. Eur. J. Clin. Nutr. 2011, 65, 501–507. [Google Scholar] [CrossRef]
- Kukkonen, K.; Nieminen, T.; Poussa, T.; Savilahti, E.; Kuitunen, M. Effect of probiotics on vaccine antibody responses in infancy—A randomized placebo-controlled double-blind trial. Pediatr. Allergy Immunol. 2006, 17, 416–421. [Google Scholar] [CrossRef]
- Shira, E.B.; Friedman, A. Innate immune functions of avian intestinal epithelial cells: Response to bacterial stimuli and localization of responding cells in the developing avian digestive tract. PLoS ONE 2018, 13, e0200393. [Google Scholar] [CrossRef]
- Gao, P.; Hou, Q.; Kwok, L.Y.; Huo, D.; Feng, S.; Zhang, H. Effect of feeding Lactobacillus plantarum P-8 on the faecal microbiota of broiler chickens exposed to lincomycin. Sci. Bull. 2017, 62, 105–113. [Google Scholar] [CrossRef]
- Yitbarek, A.; Astill, J.; Hodgins, D.C.; Parkinson, J.; Nagy, É.; Sharif, S. Commensal gut microbiota can modulate adaptive immune responses in chickens vaccinated with whole inactivated avian influenza virus subtype H9N2. Vaccine 2019, 37, 6640–6647. [Google Scholar] [CrossRef]
- Foltz, K.L.; Ritzi, M.M.; Barrett, N.W.; Evans, N.P.; Collins, D.; Sriranganathan, N.; Mahsoub, H.; Dalloul, R.A.A.; Sewell, J.; Persia, M.E. Efficacy of Lactobacillus plantarum supplementation in broilers challenged with avian pathogenic Escherichia coli and Salmonella Typhimurium. J. Appl. Poult. Res. 2017, 26, 316–324. [Google Scholar] [CrossRef]
- Beirão, B.C.B.; Ingberman, M.; Fávaro, C., Jr.; Mesa, D.; Bittencourt, L.C.; Fascina, V.B.; Caron, L.F. Effect of an Enterococcus faecium probiotic on specific IgA following live Salmonella Enteritidis vaccination of layer chickens. Avian Pathol. 2018, 47, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Liao, S.; Li, J.; Liu, Q.; Luo, S.; Lv, M.; Lin, X.; Hu, J.; Zhang, J.; Qi, N.; et al. Single and combined effects of Clostridium butyricum and coccidiosis vaccine on growth performance and the intestinal microbiome of broiler chickens. Front. Microbiol. 2022, 13, 811428. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Luo, S.; Liu, Q.; Zhou, Q.; Yan, Z.; Kang, Z.; Liao, S.; Li, J.; Lv, M.; Lin, X.; et al. Effects of a complex probiotic preparation, Fengqiang Shengtai and coccidiosis vaccine on the performance and intestinal microbiota of broilers challenged with Eimeria spp. Parasit. Vectors 2023, 16, 253. [Google Scholar] [CrossRef] [PubMed]
- Dibner, J.J.; Richards, J.D. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci. 2005, 84, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Castanon, J.L.R. History of the use of antibiotic as growth promoters in European poultry feeds. Poult. Sci. 2007, 86, 2466–2471. [Google Scholar] [CrossRef] [PubMed]
- Rajilić-Stojanović, M.; de Vos, W.M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 2014, 38, 996–1047. [Google Scholar] [CrossRef] [PubMed]
- Alqazlan, N.; Astill, J.; Taha-Abdelaziz, K.; Nagy, É.; Bridle, B.; Sharif, S. Probiotic Lactobacilli enhance immunogenicity of an inactivated H9N2 influenza virus vaccine in chickens. Viral Immunol. 2021, 34, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Haile, A.F.; Woodfint, R.M.; Kim, E.; Joldrichsen, M.R.; Berhe, N.; Gebreyes, W.A.; Boyaka, P.N. Broad-spectrum and gram-negative-targeting antibiotics differentially regulate antibody isotype responses to injected vaccines. Vaccines 2021, 9, 1240. [Google Scholar] [CrossRef] [PubMed]
- Collins, N.; Belkaid, Y. Do the microbiota influence vaccines and protective immunity to pathogens? Cold Spring Harb. Perspect. Biol. 2018, 10, a028860. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Zhang, J.; Qu, Y.; Zhou, B.; He, X.; Ni, J. Yeast cell wall product enhanced intestinal IgA response and changed cecum microflora species after oral vaccination in chickens. Poult. Sci. 2020, 99, 6576–6585. [Google Scholar] [CrossRef]
- Castañeda, C.D.; McDaniel, C.D.; Abdelhamed, H.; Karsi, A.; Kiess, A.S. Evaluating bacterial colonization of a developing broiler embryo after in ovo injection with a bioluminescent bacteria. Poult. Sci. 2019, 98, 2997–3006. [Google Scholar] [CrossRef]
- Pender, C.M.; Kim, S.; Potter, T.D.; Ritzi, M.M.; Young, M.; Dalloul, R.A. In ovo supplementation of probiotics and its effects on performance and immune-related gene expression in broiler chicks. Poult. Sci. 2017, 96, 1052–1062. [Google Scholar] [CrossRef]
- Dunislawska, A.; Slawinska, A.; Stadnicka, K.; Bednarczyk, M.; Gulewicz, P.; Jozefiak, D.; Siwek, M. Synbiotics for broiler chickens—In vitro design and evaluation of the influence on host and selected microbiota populations following in ovo delivery. PLoS ONE 2017, 12, e0168587. [Google Scholar] [CrossRef]
- de Oliveira, J.E.; van der Hoeven-Hangoor, E.; van de Linde, I.B.; Montijn, R.C.; van der Vossen, J.M.B.M. In ovo inoculation of chicken embryos with probiotic bacteria and its effect on posthatch Salmonella susceptibility. Poult. Sci. 2014, 93, 818–829. [Google Scholar] [CrossRef]
- Li, T.; Castañeda, C.D.; Miotto, J.; McDaniel, C.D.; Kiess, A.S.; Zhang, L. Effects of in ovo probiotic administration on the incidence of avian pathogenic Escherichia coli in broilers and an evaluation on its virulence and antimicrobial resistance properties. Poult. Sci. 2021, 100, 100903. [Google Scholar] [CrossRef] [PubMed]
- Hanchi, H.; Mottawea, W.; Sebei, K.; Hammami, R. The genus Enterococcus: Between probiotic potential and safety concerns—An update. Front. Microbiol. 2018, 9, 1791. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Ye, W.; Xu, W.; Xu, N.; Zheng, J.; Chen, R.; Liu, H. Changes in the diversity and composition of gut microbiota of Red-Crowned cranes (Grus japonensis) after avian influenza vaccine and anthelmintic treatment. Animals 2022, 12, 1183. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xie, R.; Zhang, H.; Sun, R.; Li, S.; Xia, C.; Li, Z.; Zhang, L.; Guo, Y.; Huang, J. Recombinant hemagglutinin protein and DNA-RNA-combined nucleic acid vaccines harbored by yeast elicit protective immunity against H9N2 avian influenza infection. Poult. Sci. 2023, 102, 102662. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Kim, S.A.; Rubinelli, P.M.; Roto, S.M.; Ricke, S.C. Microbial compositional changes in broiler chicken cecal contents from birds challenged with different Salmonella vaccine candidate strains. Vaccine 2017, 35, 3204–3208. [Google Scholar] [CrossRef] [PubMed]
- Lyimu, W.M.; Leta, S.; Everaert, N.; Paeshuyse, J. Influence of live attenuated Salmonella vaccines on cecal microbiome composition and microbiota abundances in young broiler chickens. Vaccines 2023, 11, 1116. [Google Scholar] [CrossRef]
- Jan, T.R.; Lin, C.S.; Wang, S.Y.; Yang, W.Y. Cytokines and cecal microbiome modulations conferred by a dual vaccine in Salmonella-infected layers. Poult. Sci. 2023, 102, 102373. [Google Scholar] [CrossRef]
- Miquel, S.; Leclerc, M.; Martin, R.; Chain, F.; Lenoir, M.; Raguideau, S.; Hudault, S.; Bridonneau, C.; Northen, T.; Bowen, B.; et al. Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. mBio 2015, 6, e00300-315. [Google Scholar] [CrossRef]
- Videnska, P.; Sedlar, K.; Lukac, M.; Faldynova, M.; Gerzova, L.; Cejkova, D.; Sisak, F.; Rychlik, I. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS ONE 2014, 9, e115142. [Google Scholar] [CrossRef]
- Qi, Z.; Shi, S.; Tu, J.; Li, S. Comparative metagenomic sequencing analysis of cecum microbiotal diversity and function in broilers and layers. 3 Biotech 2019, 9, 316. [Google Scholar] [CrossRef]
- Lund, M.; Bjerrum, L.; Pedersen, K. Quantification of Faecalibacterium prausnitzii- and Subdoligranulum variabile-like bacteria in the cecum of chickens by real-time PCR. Poult. Sci. 2010, 89, 1217–1224. [Google Scholar] [CrossRef]
- Van Hul, M.; Le Roy, T.; Prifti, E.; Dao, M.C.; Paquot, A.; Zucker, J.D.; Delzenne, N.M.; Muccioli, G.; Clément, K.; Cani, P.D. From correlation to causality: The case of Subdoligranulum. Gut Microbes 2020, 12, 1849998. [Google Scholar] [CrossRef]
- Miquel, S.; Martín, R.; Bridonneau, C.; Robert, V.; Sokol, H.; Bermúdez-Humarán, L.G.; Thomas, M.; Langella, P. Ecology and metabolism of the beneficial intestinal commensal bacterium Faecalibacterium prausnitzii. Gut Microbes 2014, 5, 146–151. [Google Scholar] [CrossRef]
- Liu, J.; Robinson, K.; Lyu, W.; Yang, Q.; Wang, J.; Christensen, K.D.; Zhang, G. Anaerobutyricum and Subdoligranulum are differentially enriched in broilers with disparate weight gains. Animals 2023, 13, 1834. [Google Scholar] [CrossRef] [PubMed]
- Amen, O.; El Hendy, A.H.; Elfeil, W.K.; Hussein, A.G. Evaluating the efficacy of commercial Escherichia coli killed vaccine in broiler chickens. J. Adv. Vet. Res. 2023, 13, 1037–1043. Available online: https://www.advetresearch.com/index.php/AVR/article/view/1350 (accessed on 22 January 2024).
- Paudel, S.; Hess, C.; Abdelhamid, M.K.; Lyrakis, M.; Wijewardana, V.; Kangethe, R.T.; Cattoli, G.; Hess, M. Aerosol delivered irradiated Escherichia coli confers serotype-independent protection and prevents colibacillosis in young chickens. Vaccine 2023, 41, 1342–1353. [Google Scholar] [CrossRef] [PubMed]
- Beirão, B.C.B.; Ingberman, M.; Mesa, D.; Salles, G.B.C.; Muniz, E.C.; Caron, L.F. Effects of aroA deleted E. coli vaccine on intestinal microbiota and mucosal immunity. Comp. Immunol. Microbiol. Infect. Dis. 2021, 75, 101612. [Google Scholar] [CrossRef] [PubMed]
- Lozica, L.; Gholi, C.S.M.; Kela, A.; Tomić, I.L.D.H.; Gottstein, Ž. Autogenous Escherichia coli vaccine application as an innovative antimicrobial therapy in poultry farming—A case report. Vaccines 2022, 10, 1567. [Google Scholar] [CrossRef]
- Chandran, S.; Hewawaduge, C.; Aganja, R.P.; Lee, J.H. Prokaryotic and eukaryotic dual-expression plasmid-mediated delivery of Campylobacter jejuni antigens by live-attenuated Salmonella: A strategy for concurrent Th1 and Th2 immune activation and protection in chickens. Dev. Comp. Immunol. 2024, 153, 105134. [Google Scholar] [CrossRef]
- Haems, K.; Van Rysselberghe, N.; Goossens, E.; Strubbe, D.; Rasschaert, G.; Martel, A.; Pasmans, F.; Garmyn, A. Reducing Campylobacter colonization in broilers by active immunization of naive broiler breeders using a bacterin and subunit vaccine. Poult. Sci. 2023, 102, 103075. [Google Scholar] [CrossRef] [PubMed]
- Huaringa, D.; Zea, O.; Huapaya, S.; Jimenez, L.; Salazar, M.; Molina, D.; Espinoza, S.; Vílchez-Perales, C. Evaluation of three vaccination schemes against Clostridium perfringens alpha toxin and their effects on the performance, level of intestinal lesions, and serum antibody titers in broilers. Avian Dis. 2023, 67, 170–176. [Google Scholar] [CrossRef]
- Gautam, H.; Ayalew, L.E.; Shaik, N.A.; Subhasinghe, I.; Popowich, S.; Chow-Lockerbie, B.; Dixon, A.; Ahmed, K.A.; Tikoo, S.K.; Gomis, S. Exploring the predictive power of jejunal microbiome composition in clinical and subclinical necrotic enteritis caused by Clostridium perfringens: Insights from a broiler chicken model. J. Transl. Med. 2024, 22, 80. [Google Scholar] [CrossRef] [PubMed]
- Heidarpanah, S.; Thibodeau, A.; Parreira, V.R.; Quessy, S.; Segura, M.; Gottschalk, M.; Gaudreau, A.; Juette, T.; Gaucher, M.L. Evaluation of the immunoprotective capacity of five vaccine candidate proteins against avian necrotic enteritis and impact on the caecal microbiota of vaccinated birds. Animals 2023, 13, 3323. [Google Scholar] [CrossRef] [PubMed]
- Gloanec, N.; Guyard-Nicodème, M.; Brunetti, R.; Quesne, S.; Keita, A.; Chemaly, M.; Dory, D. Evaluation of two recombinant protein-based vaccine regimens against Campylobacter jejuni: Impact on protection, humoral immune responses and gut microbiota in broilers. Animals 2023, 13, 3779. [Google Scholar] [CrossRef] [PubMed]
- Elizaldi, S.R.; Verma, A.; Walter, K.A.; Rolston, M.; Dinasarapu, A.R.; Durbin-Johnson, B.P.; Settles, M.; Kozlowski, P.A.; Raeman, R.; Iyer, S.S. Rectal microbiome composition correlates with humoral immunity to HIV-1 in vaccinated Rhesus Macaques. mSphere 2019, 4, e00824-819. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beck, C.N.; Zhao, J.; Erf, G.F. Vaccine Immunogenicity versus Gastrointestinal Microbiome Status: Implications for Poultry Production. Appl. Sci. 2024, 14, 1240. https://doi.org/10.3390/app14031240
Beck CN, Zhao J, Erf GF. Vaccine Immunogenicity versus Gastrointestinal Microbiome Status: Implications for Poultry Production. Applied Sciences. 2024; 14(3):1240. https://doi.org/10.3390/app14031240
Chicago/Turabian StyleBeck, Chrysta N., Jiangchao Zhao, and Gisela F. Erf. 2024. "Vaccine Immunogenicity versus Gastrointestinal Microbiome Status: Implications for Poultry Production" Applied Sciences 14, no. 3: 1240. https://doi.org/10.3390/app14031240
APA StyleBeck, C. N., Zhao, J., & Erf, G. F. (2024). Vaccine Immunogenicity versus Gastrointestinal Microbiome Status: Implications for Poultry Production. Applied Sciences, 14(3), 1240. https://doi.org/10.3390/app14031240