A Simple, Inexpensive Alkaline Method for Bacterial DNA Extraction from Environmental Samples for PCR Surveillance and Microbiome Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Bacterial Cultures and Growth
2.3. Alkaline Extraction from Environmental or Bacterial Culture Sample Preparation
2.4. Extraction Processing
2.5. Quantification of Extracted DNA by qPCR-HRM
2.6. Microbiome Sequencing of Extracted DNAs
3. Results
3.1. Air Sampling during Bacterial Infection Lameness Trial
3.2. Optimization of DNA Extraction
3.3. Optimized Extraction Applied to Diverse Environmental Samples
3.4. Optimized Extraction Use for Fecal Microbiome
3.5. Evaluation of Other Paramagnetic Beads and Binding Buffer
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kralik, P.; Ricchi, M. A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Front. Microbiol. 2017, 8, 108. [Google Scholar] [CrossRef]
- Deshmukh, R.A.; Joshi, K.; Bhand, S.; Roy, U. Recent developments in detection and enumeration of waterborne bacteria: A retrospective minireview. MicrobiologyOpen 2016, 5, 901–922. [Google Scholar] [CrossRef]
- Deurenberg, R.H.; Bathoorn, E.; Chlebowicz, M.A.; Couto, N.; Ferdous, M.; García-Cobos, S.; Kooistra-Smid, A.M.; Raangs, E.C.; Rosema, S.; Veloo, A.C. Application of next generation sequencing in clinical microbiology and infection prevention. J. Biotechnol. 2017, 243, 16–24. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1989. [Google Scholar]
- Maloy, S.R. Experimental Techniques in Bacterial Genetics; Jones & Bartlett Learning: Burlington, MA, USA, 1990. [Google Scholar]
- Nelson, J.E.; Krawetz, S.A. Purification of cloned and genomic DNA by guanidine thiocyanate/isobutyl alcohol fractionation. Anal. Biochem. 1992, 207, 197–201. [Google Scholar] [CrossRef]
- Ausubel, F.; Brent, R.; Kingston, R.; Moore, D.; Seidman, J.; Smith, J.; Struhl, K. Phenol: Chloroform Extraction; Current Protocols in Molecular Biology; John Wiley & Sons, Inc.: New York, NY, USA, 1994; Volume 2, p. 3. [Google Scholar]
- Kolm, C.; Martzy, R.; Brunner, K.; Mach, R.L.; Krska, R.; Heinze, G.; Sommer, R.; Reischer, G.H.; Farnleitner, A.H. A complementary isothermal amplification method to the US EPA quantitative polymerase chain reaction approach for the detection of enterococci in environmental waters. Environ. Sci. Technol. 2017, 51, 7028–7035. [Google Scholar] [CrossRef]
- Chapela, M.-J.; Garrido-Maestu, A.; Cabado, A.G. Detection of foodborne pathogens by qPCR: A practical approach for food industry applications. Cogent Food Agric. 2015, 1, 1013771. [Google Scholar] [CrossRef]
- Law, J.W.-F.; Ab Mutalib, N.-S.; Chan, K.-G.; Lee, L.-H. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Front. Microbiol. 2015, 5, 770. [Google Scholar] [CrossRef]
- Barbosa, C.; Nogueira, S.; Gadanho, M.; Chaves, S. Chapter 7—DNA extraction: Finding the most suitable method. In Molecular Microbial Diagnostic Methods; Cook, N., D’Agostino, M., Thompson, K.C., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 135–154. [Google Scholar] [CrossRef]
- Martzy, R.; Bica-Schröder, K.; Pálvölgyi, Á.M.; Kolm, C.; Jakwerth, S.; Kirschner, A.K.T.; Sommer, R.; Krska, R.; Mach, R.L.; Farnleitner, A.H.; et al. Simple lysis of bacterial cells for DNA-based diagnostics using hydrophilic ionic liquids. Sci. Rep. 2019, 9, 13994. [Google Scholar] [CrossRef]
- Ish-Horowicz, D.; Burke, J.F. Rapid and efficient cosmid cloning. Nucleic Acid Res. 1981, 9, 2989–2998. [Google Scholar] [CrossRef] [PubMed]
- Dyer, D.W.; Iandolo, J.J. Rapid isolation of DNA from Staphylococcus aureus. Appl. Environ. Microbiol. 1983, 46, 283–285. [Google Scholar] [CrossRef] [PubMed]
- Pitcher, D.G.; Saunders, N.A.; Owen, R.J. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett. Appl. Microbiol. 1989, 8, 151–156. [Google Scholar] [CrossRef]
- Reischer, G.; Haider, J.; Sommer, R.; Stadler, H.; Keiblinger, K.; Hornek, R.; Zerobin, W.; Mach, R.L.; Farnleitner, A.H. Quantitative microbial faecal source tracking with sampling guided by hydrological catchment dynamics. Environ. Microbiol. 2008, 10, 2598–2608. [Google Scholar] [CrossRef]
- Wang, H.; Qi, M.; Cutler, A.J. A simple method of preparing plant samples for PCR. Nucleic Acid Res. 1993, 21, 4153–4154. [Google Scholar] [CrossRef]
- Truett, G.E.; Heeger, P.; Mynatt, R.; Truett, A.; Walker, J.; Warman, M. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). BioTechniques 2000, 29, 52–54. [Google Scholar] [CrossRef]
- Kouduka, M.; Suko, T.; Morono, Y.; Inagaki, F.; Ito, K.; Suzuki, Y. A new DNA extraction method by controlled alkaline treatments from consolidated subsurface sediments. FEMS Microbiol. Lett. 2012, 326, 47–54. [Google Scholar] [CrossRef]
- Morono, Y.; Terada, T.; Hoshino, T.; Inagaki, F. Hot-alkaline DNA extraction method for deep-subseafloor archaeal communities. Appl. Environ. Microbiol. 2014, 80, 1985–1994. [Google Scholar] [CrossRef]
- Xiang, Z.; Li, D.; Wang, S.; Shen, T.; He, W.; Li, M.; Zeng, W.; Chen, X.; Wu, Y.; Cui, L.; et al. A simple alkali lysis method for Plasmodium falciparum DNA extraction from filter paper blood samples. Mol. Biochem. Parasitol. 2023, 254, 111557. [Google Scholar] [CrossRef]
- Osmundson, T.W.; Eyre, C.A.; Hayden, K.M.; Dhillon, J.; Garbelotto, M.M. Back to basics: An evaluation of N a OH and alternative rapid DNA extraction protocols for DNA barcoding, genotyping, and disease diagnostics from fungal and oomycete samples. Mol. Ecol. Resour. 2013, 13, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Oh, S.; Vinod, N.; Ji, S.; Noh, H.B.; Koo, J.M.; Lee, S.H.; Kim, S.C.; Lee, K.-S.; Choi, C.W. Characterization of chemically-induced bacterial ghosts (BGs) using sodium hydroxide-induced Vibrio parahaemolyticus ghosts (VPGs). Int. J. Mol. Sci. 2016, 17, 1904. [Google Scholar] [CrossRef] [PubMed]
- Vingataramin, L.; Frost, E.H. A single protocol for extraction of gDNA from bacteria and yeast. BioTechniques 2015, 58, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Alrubaye, A.; Ekesi, N.S.; Hasan, A.; Koltes, D.A.; Wideman Jr, R.; Rhoads, D. Chondronecrosis with osteomyelitis in broilers: Further defining a bacterial challenge model using standard litter flooring and protection with probiotics. Poult. Sci. 2020, 99, 6474–6480. [Google Scholar] [CrossRef]
- Alrubaye, A.A.K.; Ekesi, N.S.; Hasan, A.; Elkins, E.; Ojha, S.; Zaki, S.; Dridi, S.; Wideman, R.F.; Rebollo, M.A.; Rhoads, D.D. Chondronecrosis with Osteomyelitis in Broilers: Further Defining Lameness-Inducing Models with Wire or Litter Flooring, to Evaluate Protection with Organic Trace Minerals. Poult. Sci. 2020, 99, 5422–5429. [Google Scholar] [CrossRef]
- Baker, G.C.; Smith, J.J.; Cowan, D.A. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Meth. 2003, 55, 541–555. [Google Scholar] [CrossRef]
- Wang, X.; Tsai, T.; Deng, F.; Wei, X.; Chai, J.; Knapp, J.; Apple, J.; Maxwell, C.V.; Lee, J.A.; Li, Y.; et al. Longitudinal investigation of the swine gut microbiome from birth to market reveals stage and growth performance associated bacteria. Microbiome 2019, 7, 109. [Google Scholar] [CrossRef]
- Ekesi, N.S.; Hasan, A.; Alrubaye, A.; Rhoads, D. Analysis of Genomes of Bacterial Isolates from Lameness Outbreaks in Broilers. Poult. Sci. 2021, 100, 101148. [Google Scholar] [CrossRef]
- Holmes, D.S.; Quigley, M. A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 1981, 114, 193–197. [Google Scholar] [CrossRef]
- Trkov, M.; Avgustin, G. An improved 16S rRNA based PCR method for the specific detection of Salmonella enterica. Int. J. Food Microbiol. 2003, 80, 67–75. [Google Scholar] [CrossRef]
- Zhang, L.; Foxman, B.; Gilsdorf, J.R.; Marrs, C.F. Bacterial genomic DNA isolation using sonication for microarray analysis. BioTechniques 2005, 39, 640–644. [Google Scholar] [CrossRef]
- Teng, F.; Darveekaran Nair, S.S.; Zhu, P.; Li, S.; Huang, S.; Li, X.; Xu, J.; Yang, F. Impact of DNA extraction method and targeted 16S-rRNA hypervariable region on oral microbiota profiling. Sci. Rep. 2018, 8, 16321. [Google Scholar] [CrossRef]
- Zhao, J.; Carmody, L.A.; Kalikin, L.M.; Li, J.; Petrosino, J.F.; Schloss, P.D.; Young, V.B.; LiPuma, J.J. Impact of Enhanced Staphylococcus DNA Extraction on Microbial Community Measures in Cystic Fibrosis Sputum. PLoS ONE 2012, 7, e33127. [Google Scholar] [CrossRef]
- Natarajan, V.P.; Zhang, X.; Morono, Y.; Inagaki, F.; Wang, F. A modified SDS-based DNA extraction method for high quality environmental DNA from seafloor environments. Front. Microbiol. 2016, 7, 986. [Google Scholar] [CrossRef]
- Rudbeck, L.; Dissing, J. Rapid, simple alkaline extraction of human genomic DNA from whole blood, buccal epithelial cells, semen and forensic stains for PCR. BioTechniques 1998, 25, 588–592. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Rossen, L.; Nørskov, P.; Holmstrøm, K.; Rasmussen, O.F. Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int. J. Food. Microbiol. 1992, 17, 37–45. [Google Scholar] [CrossRef]
- Peixoto, R.S.; Harkins, D.M.; Nelson, K.E. Advances in Microbiome Research for Animal Health. Annu. Rev. Anim. Biosci. 2021, 9, 289–311. [Google Scholar] [CrossRef]
- Jin Song, S.; Woodhams, D.C.; Martino, C.; Allaband, C.; Mu, A.; Javorschi-Miller-Montgomery, S.; Suchodolski, J.S.; Knight, R. Engineering the microbiome for animal health and conservation. Exp. Biol. Med. 2019, 244, 494–504. [Google Scholar] [CrossRef]
- Olm, M.R.; Brown, C.T.; Brooks, B.; Firek, B.; Baker, R.; Burstein, D.; Soenjoyo, K.; Thomas, B.C.; Morowitz, M.; Banfield, J.F. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates. Genome Res. 2017, 27, 601–612. [Google Scholar] [CrossRef]
- Roberts, T.; Wilson, J.; Guthrie, A.; Cookson, K.; Vancraeynest, D.; Schaeffer, J.; Moody, R.; Clark, S. New issues and science in broiler chicken intestinal health: Emerging technology and alternative interventions. J. Appl. Poult. Res. 2015, 24, 257–266. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Blaser, M.J.; Caporaso, J.G.; Jansson, J.K.; Lynch, S.V.; Knight, R. Current understanding of the human microbiome. Nat. Med. 2018, 24, 392–400. [Google Scholar] [CrossRef]
- Verrow, S.; Blair, M.; Packard, B.; Godfrey, W. Gel-Free Size Selection Using SPRIselect for Next Generation Sequencing. Available online: https://ls.beckmancoulter.co.jp/files/appli_note/Gel_Free_Using_SPRIselect.pdf (accessed on 28 July 2023).
- Oberacker, P.; Stepper, P.; Bond, D.M.; Höhn, S.; Focken, J.; Meyer, V.; Schelle, L.; Sugrue, V.J.; Jeunen, G.-J.; Moser, T.; et al. Bio-On-Magnetic-Beads (BOMB): Open platform for high-throughput nucleic acid extraction and manipulation. PLoS Biol. 2019, 17, e3000107. [Google Scholar] [CrossRef]
- Shi, B.; Shin, Y.K.; Hassanali, A.A.; Singer, S.J. DNA Binding to the Silica Surface. J. Phys. Chem. B 2015, 119, 11030–11040. [Google Scholar] [CrossRef]
- Vandeventer, P.E.; Mejia, J.; Nadim, A.; Johal, M.S.; Niemz, A. DNA Adsorption to and Elution from Silica Surfaces: Influence of Amino Acid Buffers. J. Phys. Chem. B 2013, 117, 10742–10749. [Google Scholar] [CrossRef]
- Al-Rubaye, A.A.K.; Ekesi, N.S.; Zaki, S.; Emami, N.K.; Wideman, R.F.; Rhoads, D.D. Chondronecrosis with osteomyelitis in broilers: Further defining a bacterial challenge model using the wire flooring model. Poult. Sci. 2017, 96, 332–340. [Google Scholar] [CrossRef]
- Gand, M.; Bloemen, B.; Vanneste, K.; Roosens, N.H.C.; De Keersmaecker, S.C.J. Comparison of 6 DNA extraction methods for isolation of high yield of high molecular weight DNA suitable for shotgun metagenomics Nanopore sequencing to detect bacteria. BMC Genom. 2023, 24, 438. [Google Scholar] [CrossRef]
- Wang, X.; Howe, S.; Wei, X.; Deng, F.; Tsai, T.; Chai, J.; Xiao, Y.; Yang, H.; Maxwell, C.V.; Li, Y.; et al. Comprehensive Cultivation of the Swine Gut Microbiome Reveals High Bacterial Diversity and Guides Bacterial Isolation in Pigs. mSystems 2021, 6, e0047721. [Google Scholar] [CrossRef]
- Trudeau, S.; Thibodeau, A.; Côté, J.-C.; Gaucher, M.-L.; Fravalo, P. Contribution of the Broiler Breeders’ Fecal Microbiota to the Establishment of the Eggshell Microbiota. Front. Microbiol. 2020, 11, 666. [Google Scholar] [CrossRef]
- Rexroad, C.; Vallet, J.; Matukumalli, L.K.; Reecy, J.; Bickhart, D.; Blackburn, H.; Boggess, M.; Cheng, H.; Clutter, A.; Cockett, N.; et al. Genome to Phenome: Improving Animal Health, Production, and Well-Being—A New USDA Blueprint for Animal Genome Research 2018–2027. Front. Genet. 2019, 10, 327. [Google Scholar] [CrossRef]
- Yan, W.; Sun, C.; Yuan, J.; Yang, N. Gut metagenomic analysis reveals prominent roles of Lactobacillus and cecal microbiota in chicken feed efficiency. Sci. Rep. 2017, 7, 45308. [Google Scholar] [CrossRef]
Day | Minutes | Total CFU | Extraction | qPCR Positive | Avg Ct 16S | |
---|---|---|---|---|---|---|
17 | 3 | 4100 | Boil | Yes | ND | |
17 | 10 | 8825 | Boil | Yes | ND | |
20 | 15 | 12,205 | Boil | NS | ||
20 | 30 | 21,050 | Boil | NS | ||
21 | 20 | 4500 | Bead beating | NS | ||
27 | 20 | 35,200 | Sonication | NS | ||
29 | 20 | 4000 | Sonication | NS | ||
35 | 20 | 17,200 | Sonication | NS | ||
42 | 20 | 6000 | NaOH + sodium acetate | NS | ||
42 | 20 | 6600 | NaOH + MB | Yes | 23.9 ± 0.03 | |
44 | 20 | 20,000 | Boil | NS | ||
44 | 20 | 29,300 | NaOH + MB | Yes | 22.0 ± 0.1 | |
46 | 20 | 46,400 | Boil | NS | ||
46 | 20 | 20,000 | NaOH + C2mimOAc | Yes | 20.8 ± 0.1 | |
48 | 20 | 16,000 | C2mimOAc | NS | ||
48 | 20 | 20,000 | NaOH + MB | Yes | 23.1 ± 0.1 | |
50 | 20 | 8000 | NaOH + MB | Yes | 24.4 ± 0.2 | |
50 | 20 | 12,000 | NaOH + MB | Yes | 20.5 ± 2.4 | |
52 | 20 | 9000 | NaOH + MB | Yes | 23.2 ± 0.6 | |
52 | 20 | 5000 | NaOH + MB | Yes | 23.3 ± 0.6 | |
54 | 20 | 12,200 | NaOH + MB | Yes | 23.2 ± 0.5 | |
54 | 20 | 12,500 | NaOH + MB | Yes | 17.4 ± 2.0 | |
56 | 20 | 20,000 | NaOH + MB | Yes | 19.7 ± 2.4 | |
56 | 20 | 52,900 | NaOH + MB | Yes | 21.8 ± 0.3 |
Day | Total CFU | Average Ct ± SEM |
---|---|---|
21 | 340 | 22.3 ± 0.4 |
21 | 1520 | 20.5 ± 0.2 |
23 | 1260 | 19.5 ± 0.2 |
23 | 2010 | 18.3 ± 0.1 |
25 | 2080 | 16.0 ± 0.01 |
25 | 3640 | 17.4 ± 0.1 |
27 | 4580 | 20.1 ± 0.01 |
27 | 3650 | 19.3 ± 0.01 |
37 | 11,200 | 16.0 ± 0.1 |
37 | 12,800 | 15.8 ± 0.02 |
Sample | MB/Dil | qPCR-HRM Ct ± SEM |
---|---|---|
Soil with 5% saline | Dil | 30.4 ± 0.04 |
MB | 31.2 ± 0.3 | |
Soil with H2O | Dil | 27.5 ± 0.2 |
MB | 25.8 ± 0.1 | |
Four chicken cloacal swabs | Dil | 21.9 ± 1.4 |
MB | 22.7 ± 2.2 | |
Cheese | Dil | NS |
MB | 19.6 ± 0.07 | |
Bread | MB/Dil | NS |
Lab surface 1 | Dil | 30.4 ± 0.1 |
Lab surface 2 | MB | 26.6 ± 0.3 |
Lab surface 3 | Dil | 32.3 ± 0.4 |
Lab surface 4 | MB | 29.8 ± 0.4 |
ID | Pig Age (Day) | PCR Product (ng/µL) | |
---|---|---|---|
Kit | NaOH + MB | ||
1 | 10 | 241 | 27 |
2 | 10 | 68 | 5739 |
3 | 10 | 22 | 410 |
4 | 59 | 55 | 52 |
5 | 59 | 82 | 216 |
6 | 59 | 94 | 150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shwani, A.; Zuo, B.; Alrubaye, A.; Zhao, J.; Rhoads, D.D. A Simple, Inexpensive Alkaline Method for Bacterial DNA Extraction from Environmental Samples for PCR Surveillance and Microbiome Analyses. Appl. Sci. 2024, 14, 141. https://doi.org/10.3390/app14010141
Shwani A, Zuo B, Alrubaye A, Zhao J, Rhoads DD. A Simple, Inexpensive Alkaline Method for Bacterial DNA Extraction from Environmental Samples for PCR Surveillance and Microbiome Analyses. Applied Sciences. 2024; 14(1):141. https://doi.org/10.3390/app14010141
Chicago/Turabian StyleShwani, Abdulkarim, Bin Zuo, Adnan Alrubaye, Jiangchao Zhao, and Douglas D. Rhoads. 2024. "A Simple, Inexpensive Alkaline Method for Bacterial DNA Extraction from Environmental Samples for PCR Surveillance and Microbiome Analyses" Applied Sciences 14, no. 1: 141. https://doi.org/10.3390/app14010141
APA StyleShwani, A., Zuo, B., Alrubaye, A., Zhao, J., & Rhoads, D. D. (2024). A Simple, Inexpensive Alkaline Method for Bacterial DNA Extraction from Environmental Samples for PCR Surveillance and Microbiome Analyses. Applied Sciences, 14(1), 141. https://doi.org/10.3390/app14010141