On Hybrid Nanogrids Energy Management Systems—An Insight into Embedded Systems
Abstract
:1. Introduction
2. Nanogrids Technologies and Architecture
2.1. Nanogrids versus Microgrids
2.2. Structure and Components of a Nanogrid
3. Nanogrid EMS
3.1. Overview of EMSs
3.2. Comparative Analyses of Nanogrid EMSs
4. Energy Storage Systems
5. Limitations and Challenges
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statements
Conflicts of Interest
References
- EIA Projects Nearly 50% Increase in World Energy Usage by 2050, Led by Growth in Asia. Available online: https://www.eia.gov/todayinenergy/detail.php?id=41433 (accessed on 17 July 2023).
- International Energy Agency. Global Energy Review 2019: The Latest Trends in Energy and Emissions in 2019; OECD: Paris, France, 2020; ISBN 978-92-64-49585-2.
- The Paris Agreement | UNFCCC. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on 17 July 2023).
- Zhou, Q.; Du, D.; Lu, C.; He, Q.; Liu, W. A review of thermal energy storage in compressed air energy storage system. Energy 2019, 188, 115993. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef]
- IEEE Std 15474-2011; IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems. IEEE: Piscataway Township, NJ, USA, 2011; pp. 1–54. [CrossRef]
- Kroposki, B.; Basso, T.; DeBlasio, R. Microgrid standards and technologies. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–4. [Google Scholar]
- Santoro, D.; Delmonte, N.; Simonazzi, M.; Toscani, A.; Rocchi, N.; Sozzi, G.; Cova, P.; Menozzi, R. Local Power Distribution—A Review of Nanogrid Architectures, Control Strategies, and Converters. Sustainability 2023, 15, 2759. [Google Scholar] [CrossRef]
- Nordman, B.; Christensen, K. Local power distribution with nanogrids. In Proceedings of the 2013 International Green Computing Conference Proceedings, Arlington, VA, USA, 27–29 June 2013; pp. 1–8. [Google Scholar]
- Teleke, S.; Oehlerking, L.; Hong, M. Nanogrids with energy storage for future electricity grids. In Proceedings of the 2014 IEEE PES T&D Conference and Exposition, Chicago, IL, USA, 14–17 April 2014; pp. 1–5. [Google Scholar]
- Burmester, D.; Rayudu, R.; Seah, W.; Akinyele, D. A review of nanogrid topologies and technologies. Renew. Sustain. Energy Rev. 2017, 67, 760–775. [Google Scholar] [CrossRef]
- Boroyevich, D.; Cvetković, I.; Dong, D.; Burgos, R.; Wang, F.; Lee, F. Future electronic power distribution systems a contemplative view. In Proceedings of the 2010 12th International Conference on Optimization of Electrical and Electronic Equipment, Brasov, Romania, 20–22 May 2010; pp. 1369–1380. [Google Scholar]
- Nordman, B. Evolving our electricity systems from the bottom up. In Proceedings of the Darnell Green Power Forum, Berkeley, USA; 2009. Available online: https://eta-intranet.lbl.gov/sites/default/files/nano.pdf (accessed on 17 July 2023).
- Latha, S.H.; Chandra Mohan, S. Centralized power control strategy for 25 kw nano grid for rustic electrification. In Proceedings of the 2012 International Conference on Emerging Trends in Science, Engineering and Technology (INCOSET), Tiruchirappalli, India, 13–14 December 2012; pp. 456–461. [Google Scholar]
- Chandrasena, R.P.S.; Shahnia, F.; Ghosh, A.; Rajakaruna, S. Operation and control of a hybrid AC-DC nanogrid for future community houses. In Proceedings of the 2014 Australasian Universities Power Engineering Conference (AUPEC), Perth, Australia, 28 September–1 October 2014; pp. 1–6. [Google Scholar]
- Cvetkovic, I.; Boroyevich, D.; Lee, F.C.; Mattavelli, P.; Dong, D.; Jiang, L.; Chang, Y. Future home DC-based renewable energy nanogrid system. In Proceedings of the 2010 Conference on Grand Challenges in Modeling & Simulation; Society for Modeling & Simulation International, Vista, CA, USA, 11–14 July 2010; pp. 337–343. [Google Scholar]
- Werth, A.; Kitamura, N.; Tanaka, K. Conceptual Study for Open Energy Systems: Distributed Energy Network Using Interconnected DC Nanogrids. IEEE Trans. Smart Grid 2015, 6, 1621–1630. [Google Scholar] [CrossRef]
- Khodayar, M.E.; Wu, H. Demand Forecasting in the Smart Grid Paradigm: Features and Challenges. Electr. J. 2015, 28, 51–62. [Google Scholar] [CrossRef]
- Boroyevich, D.; Cvetkovic, I.; Burgos, R.; Dong, D. Intergrid: A Future Electronic Energy Network? IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 127–138. [Google Scholar] [CrossRef]
- Qu, D.; Wang, M.; Sun, Z.; Chen, G. An improved DC-Bus signaling control method in a distributed nanogrid interfacing modular converters. In Proceedings of the 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, Sydney, Australia, 9–12 June 2015. [Google Scholar] [CrossRef]
- Sun, C.; Sun, F.; Moura, S.J. Data enabled predictive energy management of a PV-battery smart home nanogrid. In Proceedings of the 2015 American Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015. [Google Scholar] [CrossRef]
- Kakigano, H.; Miura, Y.; Ise, T.; Momose, T.; Hayakawa, H. Fundamental characteristics of DC microgrid for residential houses with cogeneration system in each house. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008. [Google Scholar] [CrossRef]
- Sarath, R.; Kanakasabapathy, P. Switched-capacitor/switched-inductor Ćuk-derived hybrid converter for nanogrid applications. In Proceedings of the 2015 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), Melmaruvathur, India, 22–23 April 2015. [Google Scholar] [CrossRef]
- Calero, F.; Cañizares, C.A.; Bhattacharya, K.; Anierobi, C.; Calero, I.; de Souza, M.F.Z.; Farrokhabadi, M.; Guzman, N.S.; Mendieta, W.; Peralta, D.; et al. A Review of Modeling and Applications of Energy Storage Systems in Power Grids. Proc. IEEE 2023, 111, 806–831. [Google Scholar] [CrossRef]
- Li, Y.-T.S.; Malik, S. Performance analysis of embedded software using implicit path enumeration. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 1997, 16, 1477–1487. [Google Scholar] [CrossRef]
- de Roo, A.; Sozer, H.; Aksit, M. An architectural style for optimizing system qualities in adaptive embedded systems using Multi-Objective Optimization. In Proceedings of the 2009 Joint Working IEEE/IFIP Conference on Software Architecture & European Conference on Software Architecture, Cambridge, UK, 14–17 September 2009; pp. 349–352. [Google Scholar]
- Saha, D.; Bazmohammadi, N.; Vasquez, J.C.; Guerrero, J.M. Multiple Microgrids: A Review of Architectures and Operation and Control Strategies. Energies 2023, 16, 600. [Google Scholar] [CrossRef]
- Lidula, N.W.A.; Rajapakse, A.D. Microgrids research: A review of experimental microgrids and test systems. Renew. Sustain. Energy Rev. 2011, 15, 186–202. [Google Scholar] [CrossRef]
- Gopalan, S.A.; Sreeram, V.; Iu, H.H.C. A review of coordination strategies and protection schemes for microgrids. Renew. Sustain. Energy Rev. 2014, 32, 222–228. [Google Scholar] [CrossRef]
- Gayatri, M.T.L.; Parimi, A.M.; Pavan Kumar, A.V. A review of reactive power compensation techniques in microgrids. Renew. Sustain. Energy Rev. 2018, 81, 1030–1036. [Google Scholar] [CrossRef]
- Tayab, U.B.; Roslan, M.A.B.; Hwai, L.J.; Kashif, M. A review of droop control techniques for microgrid. Renew. Sustain. Energy Rev. 2017, 76, 717–727. [Google Scholar] [CrossRef]
- Malik, S.M.; Ai, X.; Sun, Y.; Zhengqi, C.; Shupeng, Z. Voltage and frequency control strategies of hybrid AC/DC microgrid: A review. IET Gener. Transm. Distrib. 2017, 11, 303–313. [Google Scholar] [CrossRef]
- Andishgar, M.H.; Gholipour, E.; Hooshmand, R. An overview of control approaches of inverter-based microgrids in islanding mode of operation. Renew. Sustain. Energy Rev. 2017, 80, 1043–1060. [Google Scholar] [CrossRef]
- Dawoud, S.M.; Lin, X.; Okba, M.I. Hybrid renewable microgrid optimization techniques: A review. Renew. Sustain. Energy Rev. 2018, 82, 2039–2052. [Google Scholar] [CrossRef]
- Eid, B.M.; Rahim, N.A.; Selvaraj, J.; Elkhateb, A. Control Methods and Objectives for Electronically Coupled Distributed Energy Resources in Microgrids: A Review. IEEE Syst. J. 2016, 10, 446–458. [Google Scholar] [CrossRef]
- Justo, J.J.; Mwasilu, F.; Lee, J.; Jung, J.-W. AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renew. Sustain. Energy Rev. 2013, 24, 387–405. [Google Scholar] [CrossRef]
- Yanine, F.F.; Sauma, E.E. Review of grid-tie micro-generation systems without energy storage: Towards a new approach to sustainable hybrid energy systems linked to energy efficiency. Renew. Sustain. Energy Rev. 2013, 26, 60–95. [Google Scholar] [CrossRef]
- Kumar, K.P.; Saravanan, B. Recent techniques to model uncertainties in power generation from renewable energy sources and loads in microgrids—A review. Renew. Sustain. Energy Rev. 2017, 71, 348–358. [Google Scholar] [CrossRef]
- Pan, J.; Jain, R.; Paul, S. A Survey of Energy Efficiency in Buildings and Microgrids using Networking Technologies. IEEE Commun. Surv. Tutor. 2014, 16, 1709–1731. [Google Scholar] [CrossRef]
- Oliveira, G.D. Approche Hybride D’optimisation Pour la Gestion D’énergie Dans le Bâtiment. Ph.D. Thesis, Université de Grenoble, Alps Grenoble, France, 2013. [Google Scholar]
- Gomes, I.; Bot, K.; Ruano, M.G.; Ruano, A. Recent Techniques Used in Home Energy Management Systems: A Review. Energies 2022, 15, 2866. [Google Scholar] [CrossRef]
- Zhao, P.; Suryanarayanan, S.; Simoes, M.G. An Energy Management System for Building Structures Using a Multi-Agent Decision-Making Control Methodology. IEEE Trans. Ind. Appl. 2013, 49, 322–330. [Google Scholar] [CrossRef]
- Sechilariu, M.; Wang, B.; Locment, F. Building-integrated microgrid: Advanced local energy management for forthcoming smart power grid communication. Energy Build. 2013, 59, 236–243. [Google Scholar] [CrossRef]
- Mendes, P.R.C.; Isorna, L.V.; Bordons, C.; Normey-Rico, J.E. Energy management of an experimental microgrid coupled to a V2G system. J. Power Sources 2016, 327, 702–713. [Google Scholar] [CrossRef]
- Igualada, L.; Corchero, C.; Cruz-Zambrano, M.; Heredia, F.-J. Optimal Energy Management for a Residential Microgrid Including a Vehicle-to-Grid System. IEEE Trans. Smart Grid 2014, 5, 2163–2172. [Google Scholar] [CrossRef]
- Zheng, C.-H.; Lee, C.-M.; Huang, Y.-C.; Lin, W.-S. Adaptive optimal control algorithm for maturing energy management strategy in fuel-cell/Li-ion-capacitor hybrid electric vehicles. In Proceedings of the 2013 9th Asian Control Conference (ASCC), Istanbul, Turkey, 23–26 June 2013; pp. 1–7. [Google Scholar]
- Xie, P.; Guerrero, J.M.; Tan, S.; Bazmohammadi, N.; Vasquez, J.C.; Mehrzadi, M.; Al-Turki, Y. Optimization-Based Power and Energy Management System in Shipboard Microgrid: A Review. IEEE Syst. J. 2022, 16, 578–590. [Google Scholar] [CrossRef]
- Kumtepeli, V.; Zhao, Y.; Naumann, M.; Tripathi, A.; Wang, Y.; Jossen, A.; Hesse, H. Design and analysis of an aging-aware energy management system for islanded grids using mixed-integer quadratic programming. Int. J. Energy Res. 2019, 43, 4127–4147. [Google Scholar] [CrossRef]
- Zia, M.F.; Elbouchikhi, E.; Benbouzid, M. Microgrids energy management systems: A critical review on methods, solutions, and prospects. Appl. Energy 2018, 222, 1033–1055. [Google Scholar] [CrossRef]
- Sulzberger, C.L. Triumph of AC—From Pearl Street to Niagara. IEEE Power Energy Mag. 2003, 1, 64–67. [Google Scholar] [CrossRef]
- Triumph of AC. 2. The battle of the currents. IEEE Power Energy Mag. 2003, 1, 70–73. [Google Scholar] [CrossRef]
- Jin, C.; Wang, J.; Wang, P. Coordinated secondary control for autonomous hybrid three-port AC/DC/DS microgrid. CSEE J. Power Energy Syst. 2018, 4, 1–10. [Google Scholar] [CrossRef]
- Wang, P.; Goel, L.; Liu, X.; Choo, F.H. Harmonizing AC and DC: A Hybrid AC/DC Future Grid Solution. IEEE Power Energy Mag. 2013, 11, 76–83. [Google Scholar] [CrossRef]
- Yu, H.; Niu, S.; Zhang, Y.; Jian, L. An integrated and reconfigurable hybrid AC/DC microgrid architecture with autonomous power flow control for nearly/net zero energy buildings. Appl. Energy 2020, 263, 114610. [Google Scholar] [CrossRef]
- Zhao, T.; Pan, X.; Yao, S.; Ju, C.; Li, L. Strategic Bidding of Hybrid AC/DC Microgrid Embedded Energy Hubs: A Two-Stage Chance Constrained Stochastic Programming Approach. IEEE Trans. Sustain. Energy 2020, 11, 116–125. [Google Scholar] [CrossRef]
- Mashayekh, S.; Stadler, M.; Cardoso, G.; Heleno, M.; Madathil, S.C.; Nagarajan, H.; Bent, R.; Mueller-Stoffels, M.; Lu, X.; Wang, J. Security-Constrained Design of Isolated Multi-Energy Microgrids. IEEE Trans. Power Syst. 2018, 33, 2452–2462. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, T.; Deng, H.; Wang, P.; Liu, J.; Blaabjerg, F. Microgrid Energy Management with Energy Storage Systems: A Review. CSEE J. Power Energy Syst. 2023, 9, 483–504. [Google Scholar] [CrossRef]
- Bouchekara, H.R.A.-H.; Shahriar, M.S.; Javaid, M.S.; Sha’aban, Y.A.; Ramli, M.A.M. Multi-Objective Optimization of a Hybrid Nanogrid/Microgrid: Application to Desert Camps in Hafr Al-Batin. Energies 2021, 14, 1245. [Google Scholar] [CrossRef]
- Holzigel, J.; Cabañero, A. Tiers, Markets, Sustainability: Trends in Rural Off-Grid Electrification. Available online: https://endev.info (accessed on 17 July 2023).
- Sivarasu, S.R.; Chandira Sekaran, E.; Karthik, P. Development of renewable energy based microgrid project implementations for residential consumers in India: Scope, challenges and possibilities. Renew. Sustain. Energy Rev. 2015, 50, 256–269. [Google Scholar] [CrossRef]
- Fathima, A.H.; Palanisamy, K. Optimization in microgrids with hybrid energy systems—A review. Renew. Sustain. Energy Rev. 2015, 45, 431–446. [Google Scholar] [CrossRef]
- Planas, E.; Andreu, J.; Gárate, J.I.; Martínez de Alegría, I.; Ibarra, E. AC and DC technology in microgrids: A review. Renew. Sustain. Energy Rev. 2015, 43, 726–749. [Google Scholar] [CrossRef]
- Silva, W.W.A.G.; Donoso-Garcia, P.F.; Seleme, S.I.; Oliveira, T.R.; Santos, C.H.G.; Bolzon, A.S. Study of the application of bidirectional dual active bridge converters in dc nanogrid energy storage systems. In Proceedings of the 2013 Brazilian Power Electronics Conference, Gramado, Brazil, 27–31 October 2013; pp. 609–614. [Google Scholar]
- IEC 61970-1:2005; Energy Management System Application Program Interface (EMS-API)—Part 1: Guidelines and General Requirements. International Electrotechnical Commission: Geneva, Switzerland, 2005. Available online: https://joinup.ec.europa.eu/collection/ict-standards-procurement/solution/iec-61970-12005-energy-management-system-application-program-interface-ems-api-part-1-guidelines-and (accessed on 15 January 2024).
- Ha, D.L. Un Système Avancé de Gestion D’énergie dans le Bâtiment Pour Coordonner Production et Consommation. Ph.D. Thesis, Institut National Polytechnique de Grenoble, Alps Grenoble, France, 2007. [Google Scholar]
- Fauvel, C. Approche Modulaire de L’optimisation des flux de Puissance Multi-Sources et Multi-Clients, à Visée Temps Réel. Ph.D. Thesis, Ecole des Mines de Nantes, Nantes, France, 2015. [Google Scholar]
- Badreddine, R.M. Gestion Energétique Optimisée Pour un Bâtiment Intelligent Multi-Sources Multi-Charges: Différents Principes de Validations. Ph.D. Thesis, Université de Grenoble, Alps Grenoble, France, 2012. [Google Scholar]
- Diakaki, C.; Grigoroudis, E.; Kolokotsa, D. Towards a multi-objective optimization approach for improving energy efficiency in buildings. Energy Build. 2008, 40, 1747–1754. [Google Scholar] [CrossRef]
- Fanti, M.P.; Mangini, A.M.; Roccotelli, M.; Ukovich, W. A District Energy Management Based on Thermal Comfort Satisfaction and Real-Time Power Balancing. IEEE Trans. Autom. Sci. Eng. 2015, 12, 1271–1284. [Google Scholar] [CrossRef]
- El Tawil, T.; Charpentier, J.F.; Benbouzid, M. Tidal energy site characterization for marine turbine optimal installation: Case of the Ouessant Island in France. Int. J. Mar. Energy 2017, 18, 57–64. [Google Scholar] [CrossRef]
- Mohamed, F.A.; Koivo, H.N. System modelling and online optimal management of microgrid using Mesh Adaptive Direct Search. Int. J. Electr. Power Energy Syst. 2010, 32, 398–407. [Google Scholar] [CrossRef]
- Donatini, F.; Gigliucci, G.; Schiavetti, M. Darwin project Use of renewable energy and Hydrogen on a sailing boat. In Proceedings of the 2007 International Conference on Clean Electrical Power, Capri, Italy, 21–23 May 2007; pp. 78–81. [Google Scholar]
- Tang, T.; Han, J.; Yao, G.; Feng, Y. Development of a PEM Fuel Cell Boat. In Proceedings of the 2006 12th International Power Electronics and Motion Control Conference, Portoroz, Slovenia, 30 August–1 September 2006; pp. 1385–1388. [Google Scholar] [CrossRef]
- Das, S.; Sadhu, P.K.; Chakraborty, S. Green sailing of solar PV powered country boat using buck-boost chopper. In Proceedings of the 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Nagercoil, India, 18–19 March 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Ban, M.; Shahidehpour, M.; Yu, J.; Li, Z. A Cyber-Physical Energy Management System for Optimal Sizing and Operation of Networked Nanogrids With Battery Swapping Stations. IEEE Trans. Sustain. Energy 2019, 10, 491–502. [Google Scholar] [CrossRef]
- Salazar, A.; Berzoy, A.; Velni, J.M.; Song, W. Optimum Energy Management of Islanded Nanogrids through Nonlinear Stochastic Dynamic Programming. In Proceedings of the 2019 IEEE Industry Applications Society Annual Meeting, Baltimore, MD, USA, 29 September–3 October 2019; pp. 1–8. [Google Scholar]
- Sheng, S.; Li, P.; Tsu, C.-T.; Lehman, B. Optimal power flow management in a photovoltaic nanogrid with batteries. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 4222–4228. [Google Scholar]
- Ding, Y.; Wang, Z.; Liu, S.; Wang, X. Energy Management Strategy of PV Grid-Connected Household Nano-Grid System. In Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; pp. 1–5. [Google Scholar]
- Bruno, S.; Giannoccaro, G.; Islam, M.M.; Iurlaro, C.; Scala, M.L.; Menga, M.; Rodio, C. Predictive Control Based Energy Management of a Residential Hybrid AC-DC Nanogrid. In Proceedings of the 2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT), Shanghai, China, 16–18 December 2022; pp. 1183–1187. [Google Scholar]
- Farzaneh, H.; Shokri, M.; Kebriaei, H.; Aminifar, F. Robust Energy Management of Residential Nanogrids via Decentralized Mean Field Control. IEEE Trans. Sustain. Energy 2020, 11, 1995–2002. [Google Scholar] [CrossRef]
- Salazar, A.; Berzoy, A.; Song, W.; Velni, J.M. Energy Management of Islanded Nanogrids through Nonlinear Optimization Using Stochastic Dynamic Programming. IEEE Trans. Ind. Appl. 2020, 56, 2129–2137. [Google Scholar] [CrossRef]
- Rafiee Sandgani, M.; Sirouspour, S. Energy Management in a Network of Grid-Connected Microgrids/Nanogrids Using Compromise Programming. IEEE Trans. Smart Grid 2018, 9, 2180–2191. [Google Scholar] [CrossRef]
- Pelay, U.; Luo, L.; Fan, Y.; Stitou, D.; Rood, M. Thermal energy storage systems for concentrated solar power plants. Renew. Sustain. Energy Rev. 2017, 79, 82–100. [Google Scholar] [CrossRef]
- Pelay, U.; Luo, L.; Fan, Y.; Stitou, D.; Castelain, C. Integration of a thermochemical energy storage system in a Rankine cycle driven by concentrating solar power: Energy and exergy analyses. Energy 2019, 167, 498–510. [Google Scholar] [CrossRef]
- N’Tsoukpoe, K.E.; Liu, H.; Le Pierrès, N.; Luo, L. A review on long-term sorption solar energy storage. Renew. Sustain. Energy Rev. 2009, 13, 2385–2396. [Google Scholar] [CrossRef]
- Pelay, U.; Luo, L.; Fan, Y.; Stitou, D. Dynamic modeling and simulation of a concentrating solar power plant integrated with a thermochemical energy storage system. J. Energy Storage 2020, 28, 101164. [Google Scholar] [CrossRef]
- Guewouo, T.; Luo, L.; Tarlet, D.; Tazerout, M. Identification of Optimal Parameters for a Small-Scale Compressed-Air Energy Storage System Using Real Coded Genetic Algorithm. Energies 2019, 12, 377. [Google Scholar] [CrossRef]
- Budt, M.; Wolf, D.; Span, R.; Yan, J. A review on compressed air energy storage: Basic principles, past milestones and recent developments. Appl. Energy 2016, 170, 250–268. [Google Scholar] [CrossRef]
- IRENA. Renewable Power: Climate-Safe Energy Competes on Cost Alone; #Renewables4Climate Update for COP24; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2018; Available online: www.irena.org/publications (accessed on 17 July 2023).
- IRENA. Electricity Storage Valuation Framework: Assessing System Value and Ensuring Project Viability; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020; Available online: www.irena.org/publications (accessed on 17 July 2023).
- Vazquez, S.; Lukic, S.M.; Galvan, E.; Franquelo, L.G.; Carrasco, J.M. Energy Storage Systems for Transport and Grid Applications. IEEE Trans. Ind. Electron. 2010, 57, 3881–3895. [Google Scholar] [CrossRef]
- Rizvi, M.; Pratap, B.; Singh, S.B. Optimal energy management in a microgrid under uncertainties using novel hybrid metaheuristic algorithm. Sustain. Comput. Inform. Syst. 2022, 36, 100819. [Google Scholar] [CrossRef]
- Luo, X.; Shi, W.; Jiang, Y.; Liu, Y.; Xia, J. Distributed peer-to-peer energy trading based on game theory in a community microgrid considering ownership complexity of distributed energy resources. J. Clean. Prod. 2022, 351, 131573. [Google Scholar] [CrossRef]
- Zheng, S.; Jin, X.; Huang, G.; Lai, A.C.K. Coordination of commercial prosumers with distributed demand-side flexibility in energy sharing and management system. Energy 2022, 248, 123634. [Google Scholar] [CrossRef]
- Zhang, K.; Yu, J.; Ren, Y. Demand side management of energy consumption in a photovoltaic integrated greenhouse. Int. J. Electr. Power Energy Syst. 2022, 134, 107433. [Google Scholar] [CrossRef]
- Moayedi, S.; Davoudi, A. Unifying Distributed Dynamic Optimization and Control of Islanded DC Microgrids. IEEE Trans. Power Electron. 2017, 32, 2329–2346. [Google Scholar] [CrossRef]
- Zia, M.F.; Nasir, M.; Elbouchikhi, E.; Benbouzid, M.; Vasquez, J.C.; Guerrero, J.M. Energy management system for a hybrid PV-Wind-Tidal-Battery-based islanded DC microgrid: Modeling and experimental validation. Renew. Sustain. Energy Rev. 2022, 159, 112093. [Google Scholar] [CrossRef]
- Gheouany, S.; Ouadi, H.; Giri, F.; El Bakali, S. Experimental validation of multi-stage optimal energy management for a smart microgrid system under forecasting uncertainties. Energy Convers. Manag. 2023, 291, 117309. [Google Scholar] [CrossRef]
- Elkholy, M.H.; Elymany, M.; Metwally, H.; Farahat, M.A.; Senjyu, T.; Elsayed Lotfy, M. Design and implementation of a Real-time energy management system for an isolated Microgrid: Experimental validation. Appl. Energy 2022, 327, 120105. [Google Scholar] [CrossRef]
- Ferahtia, S.; Djeroui, A.; Rezk, H.; Houari, A.; Zeghlache, S.; Machmoum, M. Optimal control and implementation of energy management strategy for a DC microgrid. Energy 2022, 238, 121777. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, P.; Setyawan, L. Multilevel Energy Management System for Hybridization of Energy Storages in DC Microgrids. IEEE Trans. Smart Grid 2016, 7, 847–856. [Google Scholar] [CrossRef]
- Sen, S.; Kumar, V. Simplified Modeling and HIL Validation of Solar PVs and Storage-Based Islanded Microgrid with Generation Uncertainties. IEEE Syst. J. 2020, 14, 2653–2664. [Google Scholar] [CrossRef]
- Yin, C.; Wu, H.; Locment, F.; Sechilariu, M. Energy management of DC microgrid based on photovoltaic combined with diesel generator and supercapacitor. Energy Convers. Manag. 2017, 132, 14–27. [Google Scholar] [CrossRef]
- Han, Y.; Chen, W.; Li, Q.; Yang, H.; Zare, F.; Zheng, Y. Two-level energy management strategy for PV-Fuel cell-battery-based DC microgrid. Int. J. Hydrog. Energy 2019, 44, 19395–19404. [Google Scholar] [CrossRef]
- Michaelson, D.; Mahmood, H.; Jiang, J. A Predictive Energy Management System Using Pre-Emptive Load Shedding for Islanded Photovoltaic Microgrids. IEEE Trans. Ind. Electron. 2017, 64, 5440–5448. [Google Scholar] [CrossRef]
- Pu, Y.; Li, Q.; Chen, W.; Liu, H. Hierarchical energy management control for islanding DC microgrid with electric-hydrogen hybrid storage system. Int. J. Hydrog. Energy 2019, 44, 5153–5161. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, G.; Li, Q.; You, Z.; Chen, W.; Liu, H. Hierarchical energy management for PV/hydrogen/battery island DC microgrid. Int. J. Hydrog. Energy 2019, 44, 5507–5516. [Google Scholar] [CrossRef]
Feature | Nanogrid | Microgrid |
---|---|---|
Size | Small, serving a single house/building or small community | Larger, serving multiple houses/buildings or a larger community |
Power Generation | Includes renewable energy sources and energy storage, relying on local resources for power generation | Includes renewable energy sources, energy storage, and is connected to traditional power sources |
Control | Usually operates independently. Requires simpler regulations. | Can operate in grid-connected or island mode. Requires more complex regulations. |
Complexity | Simpler in design and operation | More complex due to the larger scale and integration of multiple power sources and energy storage options |
Flexibility | Designed for specific applications, with limited flexibility to adapt to changes | More flexible in terms of integrating different energy sources and adjusting to changes in demand |
References | Techniques | Objectives | Contributions | Limitations |
---|---|---|---|---|
[75] | MILP | maximization of battery life and minimization of operational costs | optimize the sizing and operation of networked nanogrids, offering economic benefits, improved reliability, and efficient battery storage solutions. | model dependencies, complexity in implementation, scalability challenges, and the need for cost considerations. |
[81] | Stochastic Dynamic Programming | minimization of the overall operational cost | optimized nanogrid operation under uncertainty, enhancing its reliability and performance. | computational complexity in large-scale systems, reliance on accurate modeling and forecast data, and the need for practical validation. |
[77] | Dynamic Programming | increasing PV energy utilization and reducing fuel consumption | optimizing power flow and enhancing the efficient use of renewable energy resources and battery systems | specific applicability to PV NGs and potential challenges in real-world implementation |
[78] | Rolling Optimization | enhancing battery charging and discharging activities and minimizing power oscillations between the nanogrid and main grid | optimizes the utilization of PV-generated energy within the household nanogrid. | focus on specific PV grid-connected systems and potential challenges related to system scalability and adaptability. |
[79] | MILP | maximize energy self-consumption and reduce the overall energy cost. | efficient energy utilization and integration of renewable energy sources. | need for specific hardware and sensor configurations to implement predictive control and real-time prediction accuracy. |
[80] | Decentralized Mean Field control | minimizing user discomfort, energy consumption, and battery degradation costs | enhancing the reliability and resilience of the nanogrid. | complexities associated with decentralized control implementations and challenges in scalability |
[76] | Stochastic Dynamic Programming | maximize the use of PV and optimize the battery state of charge | enhancing the efficiency and performance of the nanogrid. | computational complexities associated with stochastic programming and the need for accurate stochastic models |
[82] | Rolling Horizon, Compromise Programming | minimize the net cost of electricity | effective coordination and optimization of energy resources | need for compromising programming expertise, computational resources, and integrating diverse microgrid/nanogrid components into a coordinated network. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bitar, M.; El Tawil, T.; Benbouzid, M.; Dinh, V.B.; Benaouicha, M. On Hybrid Nanogrids Energy Management Systems—An Insight into Embedded Systems. Appl. Sci. 2024, 14, 1563. https://doi.org/10.3390/app14041563
Bitar M, El Tawil T, Benbouzid M, Dinh VB, Benaouicha M. On Hybrid Nanogrids Energy Management Systems—An Insight into Embedded Systems. Applied Sciences. 2024; 14(4):1563. https://doi.org/10.3390/app14041563
Chicago/Turabian StyleBitar, Maria, Tony El Tawil, Mohamed Benbouzid, Van Binh Dinh, and Mustapha Benaouicha. 2024. "On Hybrid Nanogrids Energy Management Systems—An Insight into Embedded Systems" Applied Sciences 14, no. 4: 1563. https://doi.org/10.3390/app14041563
APA StyleBitar, M., El Tawil, T., Benbouzid, M., Dinh, V. B., & Benaouicha, M. (2024). On Hybrid Nanogrids Energy Management Systems—An Insight into Embedded Systems. Applied Sciences, 14(4), 1563. https://doi.org/10.3390/app14041563