Development of a Fault Detection and Localization Model for a Water Distribution Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Methodology
2.2. Data Generation
2.3. Methods
3. Results and Discussion
3.1. K-Nearest Neighbor
3.2. Artificial Neural Network
3.3. Support Vector Machine
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Romano, M.; Kapelan, Z.; Savić, D.A. Automated Detection of Pipe Bursts and Other Events in Water Distribution Systems. J. Water Resour. Plan. Manag. 2014, 140, 457–467. [Google Scholar] [CrossRef]
- Mckenzie, R.; Seago, C.; Square, B. Assessment of real losses in potable water distribution systems. Water Sci. Technol. Water Supply 2005, 5, 33–40. [Google Scholar] [CrossRef]
- Moser, G.; Paal, S.G.; Smith, I.F.C. Performance comparison of reduced models for leak detection in water distribution networks. Adv. Eng. Inform. 2015, 29, 714–726. [Google Scholar] [CrossRef]
- Robles, D.; Puig, V.; Ocampo-Martinez, C.; Garza-Castañón, L.E. Reliable fault-tolerant model predictive control of drinking water transport networks. Control Eng. Pract. 2016, 55, 197–211. [Google Scholar] [CrossRef]
- Cugueró-Escofet, M.; Quevedo, J.; Alippi, C.; Roveri, M.; Puig, V.; García, D.; Trovò, F. Model- vs. data-based approaches applied to fault diagnosis in potable water supply networks. J. Hydroinform. 2016, 18, 831–850. [Google Scholar] [CrossRef]
- Pérez, R.; Sanz, G.; Cugueró, M.À.; Blesa, J.; Cugueró, J. Parameter uncertainty modelling in water distribution network models. Procedia Eng. 2015, 119, 583–592. [Google Scholar] [CrossRef]
- Mannan, M.; Al-Ghamdi, S.G. Environmental impact of water-use in buildings: Latest developments from a life-cycle assessment perspective. J. Environ. Manag. 2020, 261, 110198. [Google Scholar] [CrossRef] [PubMed]
- Ben-Mansour, R.; Habib, M.A.; Khalifa, A.; Youcef-Toumi, K.; Chatzigeorgiou, D. Computational fluid dynamic simulation of small leaks in water pipelines for direct leak pressure transduction. Comput. Fluids 2012, 57, 110–123. [Google Scholar] [CrossRef]
- Yang, J.; Wen, Y.; Li, P. Leak location using blind system identification in water distribution pipelines. J. Sound Vib. 2008, 310, 134–148. [Google Scholar] [CrossRef]
- Abdulshaheed, A.; Mustapha, F.; Ghavamian, A. A pressure-based method for monitoring leaks in a pipe distribution system: A Review. Renew. Sustain. Energy Rev. 2017, 69, 902–911. [Google Scholar] [CrossRef]
- Salam, A.E.U.; Tola, M.; Selintung, M.; Maricar, F. Application of SVM and ELM Methods to Predict Location and Magnitude Leakage of Pipelines on Water Distribution Network. Int. J. Adv. Comput. Res. 2015, 5, 139–144. [Google Scholar]
- Soldevila, A.; Fernandez-Canti, R.M.; Blesa, J.; Tornil-Sin, S.; Puig, V. Leak localization in water distribution networks using Bayesian classifiers. J. Process Control 2017, 55, 1–9. [Google Scholar] [CrossRef]
- Sedki, A.; Ouazar, D. Hybrid particle swarm optimization and differential evolution for optimal design of water distribution systems. Adv. Eng. Inform. 2012, 26, 582–591. [Google Scholar] [CrossRef]
- Perfido, D.; Messervey, T.; Zanotti, C.; Raciti, M.; Costa, A. Automated Leak Detection System for the Improvement of Water Network Management. Proceedings 2016, 1, 28. [Google Scholar] [CrossRef]
- Mashhadi, N.; Shahrour, I.; Attoue, N.; El Khattabi, J.; Aljer, A. Use of Machine Learning for Leak Detection and Localization in Water Distribution Systems. Smart Cities 2021, 4, 1293–1315. [Google Scholar] [CrossRef]
- Lee, C.; Yoo, D. Development of Leakage Detection Model and Its Application for Water Distribution Networks Using RNN-LSTM. Sustainability 2021, 13, 9262. [Google Scholar] [CrossRef]
- Guo, G.; Liu, S.; Wu, Y.; Li, J.; Zhou, R.; Zhu, X. Short-Term Water Demand Forecast Based on Deep Learning Method. J. Water Resour. Plan. Manag. 2018, 144, 04018076. [Google Scholar] [CrossRef]
- Xu, X.; Wang, H.; Zhang, N.; Liu, Z.; Wang, X. Review of the Fault Mechanism and Diagnostic Techniques for the Range Extender Hybrid Electric Vehicle. IEEE Access 2017, 5, 14234–14244. [Google Scholar] [CrossRef]
- Kouziokas, G.N. SVM kernel based on particle swarm optimized vector and Bayesian optimized SVM in atmospheric particulate matter forecasting. Appl. Soft Comput. J. 2020, 93, 106410. [Google Scholar] [CrossRef]
- Akil, M.; Tittelein, P.; Defer, D.; Suard, F. Statistical indicator for the detection of anomalies in gas, electricity and water consumption: Application of smart monitoring for educational buildings. Energy Build. 2019, 199, 512–522. [Google Scholar] [CrossRef]
- Gautam, J.; Chakrabarti, A.; Agarwal, S.; Singh, A.; Gupta, S.; Singh, J. Monitoring and forecasting water consumption and detecting leakage using an IoT system. Water Sci. Technol. Water Supply 2020, 20, 1103–1113. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, X.; Li, Y.; Tie, Y.; Zhang, Y.; Gao, J. Water pipeline leakage detection based on machine learning and wireless sensor networks. Sensors 2019, 19, 5086. [Google Scholar] [CrossRef] [PubMed]
- El-Zahab, S.; Abdelkader, E.M.; Zayed, T. An accelerometer-based leak detection system. Mech. Syst. Signal Process. 2018, 108, 58–72. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.Y.; Zhao, M.; Qi, J.; Huang, Y.; Zhao, H. Leakage Zone Identification in Large-Scale Water Distribution Systems Using Multiclass Support Vector Machines. J. Water Resour. Plan. Manag. 2016, 142, 1–15. [Google Scholar] [CrossRef]
- Kang, J.; Park, Y.J.; Lee, J.; Wang, S.H.; Eom, D.S. Novel leakage detection by ensemble CNN-SVM and graph-based localization in water distribution systems. IEEE Trans. Ind. Electron. 2018, 65, 4279–4289. [Google Scholar] [CrossRef]
- Tao, T.; Huang, H.; Li, F.; Xin, K. Burst Detection Using an Artificial Immune Network in Water-Distribution Systems. J. Water Resour. Plan. Manag. 2014, 140, 1–10. [Google Scholar] [CrossRef]
- Aksela, K.; Aksela, M.; Vahala, R. Leakage detection in a real distribution network using a SOM. Urban Water J. 2009, 6, 279–289. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, S.; Wu, X.; Liu, Y.; Guan, Y. Burst detection in district metering areas using a data driven clustering algorithm. Water Res. 2016, 100, 28–37. [Google Scholar] [CrossRef]
- Poulakis, Z.; Valougeorgis, D.; Papadimitriou, C. Leakage detection in water pipe networks using a Bayesian probabilistic framework. Probabilistic Eng. Mech. 2003, 18, 315–327. [Google Scholar] [CrossRef]
- Soldevila, A.; Blesa, J.; Tornil-Sin, S.; Duviella, E.; Fernandez-Canti, R.M.; Puig, V. Leak localization in water distribution networks using a mixed model-based/data-driven approach. Control Eng. Pract. 2016, 55, 162–173. [Google Scholar] [CrossRef]
- Bermúdez, J.R.; López-Estrada, F.R.; Besançon, G.; Torres, L.; Santos-Ruiz, I. Leak-Diagnosis Approach for Water Distribution Networks based on a k-NN Classification Algorithm. IFAC-PapersOnLine 2020, 53, 16651–16656. [Google Scholar] [CrossRef]
- Henshaw, T.; Nwaogazie, I.L. Improving water distribution network performance: A comparative analysis. Pencil Pub. Phys. Sci. Eng. 2015, 1, 21–33. [Google Scholar]
- Quiñones-Grueiro, M.; Lázaro, J.M.B.-D.; Verde, C.; Prieto-Moreno, A.; Llanes-Santiago, O. Comparison of Classifiers for Leak Location in Water Distribution Networks. IFAC-PapersOnLine 2018, 51, 407–413. [Google Scholar] [CrossRef]
- Hashim, H.; Ryan, P.; Clifford, E. A statistically based fault detection and diagnosis approach for non-residential building water distribution systems. Adv. Eng. Inform. 2020, 46, 101187. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, D.; Deng, Z.; Zong, M.; Deng, X. A novel kNN algorithm with data-driven k parameter computation. Pattern Recognit. Lett. 2018, 109, 44–54. [Google Scholar] [CrossRef]
Zone | Candidate Leak Nodes in the Network for Each Zone |
---|---|
Zone 1 (8 candidate leak nodes) | , |
Zone 2 (7 candidate leak nodes) |
Method | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
K-nearest neighbor | 0.70 | 0.70 | 0.70 | 0.70 |
Method | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
Artificial neural network | 0.61 | 0.61 | 0.61 | 0.61 |
Epoch Number | Step | Loss | Accuracy | Validation Loss | Validation Accuracy |
---|---|---|---|---|---|
1 | 2 s 2 s/step | 5.1078 | 0.6389 | 1.4409 | 0.6173 |
2 | 0 s 48 ms/step | 3.7668 | 0.5741 | 3.3202 | 0.6173 |
3 | 0 s 53 ms/step | 4.8101 | 0.5988 | 5.2638 | 0.6173 |
4 | 0 s 52 ms/step | 3.1866 | 0.5926 | 5.1319 | 0.6173 |
5 | 0 s 52 ms/step | 3.1895 | 0.5093 | 5.1157 | 0.6173 |
6 | 0 s 48 ms/step | 2.4911 | 05617 | 5.1088 | 0.6173 |
7 | 0 s 49 ms/step | 2.0902 | 0.6204 | 5.1010 | 0.6173 |
8 | 0 s 49 ms/step | 2.0902 | 0.6574 | 4.8567 | 0.6173 |
9 | 0 s 49 ms/step | 2.1385 | 0.6605 | 4.8571 | 0.6173 |
10 | 0 s 51 ms/step | 1.8521 | 0.6451 | 4.8761 | 0.6173 |
11 | 0 s 59 ms/step | 1.6877 | 0.6481 | 4.8481 | 0.6173 |
12 | 0 s 51 ms/step | 1.7486 | 0.6049 | 4.8359 | 0.6173 |
13 | 0 s 52 ms/step | 1.6839 | 0.6080 | 4.3522 | 0.6173 |
14 | 0 s 60 ms/step | 1.6497 | 0.6173 | 3.3823 | 0.6173 |
15 | 0 s 51 ms/step | 1.5407 | 0.6235 | 2.7901 | 0.6173 |
16 | 0 s 48 ms/step | 1.4871 | 0.6636 | 2.3502 | 0.6i73 |
17 | 0 s 43 ms/step | 1.4336 | 0.6698 | 2.0801 | 0.6173 |
18 | 0 s 47 ms/step | 1.3182 | 0.7006 | 1.8280 | 0.6173 |
19 | 0 s 45 ms/step | 1.2544 | 0.6914 | 1.6076 | 0.6173 |
20 | 0 s 49 ms/step | 1.1836 | 0.6728 | 1.4999 | 0.6173 |
Method | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
Support vector machine | 0.79 | 0.79 | 0.79 | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onukwube, C.U.; Aikhuele, D.O.; Sorooshian, S. Development of a Fault Detection and Localization Model for a Water Distribution Network. Appl. Sci. 2024, 14, 1620. https://doi.org/10.3390/app14041620
Onukwube CU, Aikhuele DO, Sorooshian S. Development of a Fault Detection and Localization Model for a Water Distribution Network. Applied Sciences. 2024; 14(4):1620. https://doi.org/10.3390/app14041620
Chicago/Turabian StyleOnukwube, Christogonus U., Daniel O. Aikhuele, and Shahryar Sorooshian. 2024. "Development of a Fault Detection and Localization Model for a Water Distribution Network" Applied Sciences 14, no. 4: 1620. https://doi.org/10.3390/app14041620
APA StyleOnukwube, C. U., Aikhuele, D. O., & Sorooshian, S. (2024). Development of a Fault Detection and Localization Model for a Water Distribution Network. Applied Sciences, 14(4), 1620. https://doi.org/10.3390/app14041620