High-Volume Resistance Training Improves Double-Poling Peak Oxygen Uptake in Youth Elite Cross-Country Skiers and Biathletes: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Test Procedures
2.3. Assessment of Upper-Body Maximal Strength
One-Repetition Maximum
2.4. Assessment of Maximal Aerobic Capacity
Maximum Oxygen Uptake Test
2.5. Assessment of Double-Poling Capacity
2.5.1. Assessment of Double-Poling Power (Sprint Test)
2.5.2. Peak Oxygen Uptake Test during Double Poling
2.6. Intervention
2.7. Blinding
2.8. Statistical Analysis
3. Results
3.1. Baseline Characteristics and Body Mass
3.2. Endurance Training during the Intervention
3.3. Maximum Strength
3.4. Maximal Endurance Measurements
3.4.1. VO2max
3.4.2. VO2peak-DP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stoggl, T.; Lindinger, S.; Muller, E. Evaluation of an upper-body strength test for the cross-country skiing sprint. Med. Sci. Sports Exerc. 2007, 39, 1160–1169. [Google Scholar] [CrossRef]
- Stoggl, T.; Lindinger, S.; Muller, E. Analysis of a simulated sprint competition in classical cross country skiing. Scand. J. Med. Sci. Sports 2007, 17, 362–372. [Google Scholar] [CrossRef]
- Bojsen-Moller, J.; Losnegard, T.; Kemppainen, J.; Viljanen, T.; Kalliokoski, K.K.; Hallen, J. Muscle use during double poling evaluated by positron emission tomography. J. Appl. Physiol. 2010, 109, 1895–1903. [Google Scholar] [CrossRef]
- Holmberg, H.C.; Lindinger, S.; Stoggl, T.; Eitzlmair, E.; Muller, E. Biomechanical analysis of double poling in elite cross-country skiers. Med. Sci. Sports Exerc. 2005, 37, 807–818. [Google Scholar] [CrossRef]
- Holmberg, H.-C. The Physiology of Cross-Country Skiing: With Special Emphasis on the Role of the Upper Body; Department of Physiology and Pharmacology: Stockholm, Sweden, 2005. [Google Scholar]
- Stöggl, T.; Müller, E.; Ainegren, M.; Holmberg, H.-C. General strength and kinetics: Fundamental to sprinting faster in cross country skiing? Scand. J. Med. Sci. Sports 2011, 21, 791–803. [Google Scholar] [CrossRef]
- Stöggl, T.; Holmberg, H.-C. A Systematic Review of the Effects of Strength and Power Training on Performance in Cross-Country Skiers. J. Sports Sci. Med. 2022, 21, 555–579. [Google Scholar] [CrossRef]
- Sunde, A.; Johansen, J.M.; Gjora, M.; Paulsen, G.; Braten, M.; Helgerud, J.; Storen, O. Stronger Is Better: The Impact of Upper Body Strength in Double Poling Performance. Front. Physiol. 2019, 10, 1091. [Google Scholar] [CrossRef]
- Staib, J.L.; Im, J.; Caldwell, Z.; Rundell, K.W. Cross-Country Ski Racing Performance Predicted by Aerobic and Anaerobic Double Poling Power. J. Strength Cond. Res. 2000, 14, 282–288. [Google Scholar]
- Losnegard, T.; Mikkelsen, K.; Ronnestad, B.R.; Hallen, J.; Rud, B.; Raastad, T. The effect of heavy strength training on muscle mass and physical performance in elite cross country skiers. Scand. J. Med. Sci. Sports 2011, 21, 389–401. [Google Scholar] [CrossRef]
- Mahood, N.V.; Kenefick, R.W.; Kertzer, R.; Quinn, T.J. Physiological determinants of cross-country ski racing performance. Med. Sci. Sports Exerc. 2001, 33, 1379–1384. [Google Scholar] [CrossRef]
- Sandbakk, O.; Ettema, G.; Leirdal, S.; Jakobsen, V.; Holmberg, H.C. Analysis of a sprint ski race and associated laboratory determinants of world-class performance. Eur. J. Appl. Physiol. 2011, 111, 947–957. [Google Scholar] [CrossRef]
- Sandbakk, O.; Losnegard, T.; Skattebo, O.; Hegge, A.M.; Tonnessen, E.; Kocbach, J. Analysis of Classical Time-Trial Performance and Technique-Specific Physiological Determinants in Elite Female Cross-Country Skiers. Front. Physiol. 2016, 7, 326. [Google Scholar] [CrossRef]
- Carlsson, M.; Carlsson, T.; Knutsson, M.; Malm, C.; Tonkonogi, M. Oxygen uptake at different intensities and sub-techniques predicts sprint performance in elite male cross-country skiers. Eur. J. Appl. Physiol. 2014, 114, 2587–2595. [Google Scholar] [CrossRef]
- Hoff, J.; Helgerud, J.; Wisloff, U. Maximal strength training improves work economy in trained female cross-country skiers. Med. Sci. Sports Exerc. 1999, 31, 870–877. [Google Scholar] [CrossRef]
- Hoff, J.; Gran, A.; Helgerud, J. Maximal strength training improves aerobic endurance performance. Scand. J. Med. Sci. Sports 2002, 12, 288–295. [Google Scholar] [CrossRef]
- Osteras, H.; Helgerud, J.; Hoff, J. Maximal strength-training effects on force-velocity and force-power relationships explain increases in aerobic performance in humans. Eur. J. Appl. Physiol. 2002, 88, 255–263. [Google Scholar] [CrossRef]
- Ofsteng, S.; Sandbakk, O.; van Beekvelt, M.; Hammarstrom, D.; Kristoffersen, R.; Hansen, J.; Paulsen, G.; Ronnestad, B.R. Strength training improves double-poling performance after prolonged submaximal exercise in cross-country skiers. Scand. J. Med. Sci. Sports 2018, 28, 893–904. [Google Scholar] [CrossRef]
- Skattebo, O.; Hallen, J.; Ronnestad, B.R.; Losnegard, T. Upper body heavy strength training does not affect performance in junior female cross-country skiers. Scand. J. Med. Sci. Sports 2016, 26, 1007–1016. [Google Scholar] [CrossRef]
- Carlsson, T.; Wedholm, L.; Nilsson, J.; Carlsson, M. The effects of strength training versus ski-ergometer training on double-poling capacity of elite junior cross-country skiers. Eur. J. Appl. Physiol. 2017, 117, 1523–1532. [Google Scholar] [CrossRef]
- Nesser, T.W.; Chen, S.; Serfass, R.C.; Gaskill, S.E. Development of upper body power in junior cross-country skiers. J. Strength Cond. Res. 2004, 18, 63–71. [Google Scholar] [CrossRef]
- Astrand, P.O.; Saltin, B. Maximal oxygen uptake and heart rate in various types of muscular activity. J. Appl. Physiol. 1961, 16, 977–981. [Google Scholar] [CrossRef] [PubMed]
- Larsen, R.T.; Christensen, J.; Tang, L.H.; Keller, C.; Doherty, P.; Zwisler, A.D.; Taylor, R.S.; Langberg, H. A Systematic Review and Meta-Analysis Comparing Cardiopulmonary Exercise Test Values Obtained from the Arm Cycle and the Leg Cycle Respectively in Healthy Adults. Int. J. Sports Phys. Ther. 2016, 11, 1006–1039. [Google Scholar] [PubMed]
- Shephard, R.J.; Bouhlel, E.; Vandewalle, H.; Monod, H. Muscle mass as a factor limiting physical work. J. Appl. Physiol. 1988, 64, 1472–1479. [Google Scholar] [CrossRef] [PubMed]
- Holmberg, H.C.; Lindinger, S.; Stoggl, T.; Bjorklund, G.; Muller, E. Contribution of the legs to double-poling performance in elite cross-country skiers. Med. Sci. Sports Exerc. 2006, 38, 1853–1860. [Google Scholar] [CrossRef] [PubMed]
- Holmberg, H.C.; Rosdahl, H.; Svedenhag, J. Lung function, arterial saturation and oxygen uptake in elite cross country skiers: Influence of exercise mode. Scand. J. Med. Sci. Sports 2007, 17, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Stoggl, T.; Ohtonen, O.; Takeda, M.; Miyamoto, N.; Snyder, C.; Lemmettyla, T.; Linnamo, V.; Lindinger, S.J. Comparison of Exclusive Double Poling to Classic Techniques of Cross-country Skiing. Med. Sci. Sports Exerc. 2019, 51, 760–772. [Google Scholar] [CrossRef] [PubMed]
- Hegge, A.M.; Bucher, E.; Ettema, G.; Faude, O.; Holmberg, H.C.; Sandbakk, O. Gender differences in power production, energetic capacity and efficiency of elite crosscountry skiers during wholebody, upperbody, and arm poling. Eur. J. Appl. Physiol. 2016, 116, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, P.; Mayer, F. Neuronal adaptation to strength training. Dtsch. Z. Fur Sportmed. 2007, 58, 50–53. [Google Scholar]
- Almasbakk, B.; Hoff, J. Coordination, the determinant of velocity specificity? J. Appl. Physiol. 1996, 81, 2046–2052. [Google Scholar] [CrossRef]
- Behm, D.G. Neuromuscular Implications and Applications of Resistance Training. J. Strength Cond. Res. 1995, 9, 264–274. [Google Scholar]
- Sale, D.G. Neural adaptation to resistance training. Med. Sci. Sports Exerc. 1988, 20, S135–S145. [Google Scholar] [CrossRef] [PubMed]
- Osteras, S.; Welde, B.; Danielsen, J.; van den Tillaar, R.; Ettema, G.; Sandbakk, O. Contribution of Upper-Body Strength, Body Composition, and Maximal Oxygen Uptake to Predict Double Poling Power and Overall Performance in Female Cross-Country Skiers. J. Strength Cond. Res. 2016, 30, 2557–2564. [Google Scholar] [CrossRef]
- Stoggl, T.; Enqvist, J.; Muller, E.; Holmberg, H.C. Relationships between body composition, body dimensions, and peak speed in cross-country sprint skiing. J. Sports Sci. 2010, 28, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Ronnestad, B.R.; Kojedal, O.; Losnegard, T.; Kvamme, B.; Raastad, T. Effect of heavy strength training on muscle thickness, strength, jump performance, and endurance performance in well-trained Nordic Combined athletes. Eur. J. Appl. Physiol. 2012, 112, 2341–2352. [Google Scholar] [CrossRef] [PubMed]
- Krieger, J.W. Single vs. multiple sets of resistance exercise for muscle hypertrophy: A meta-analysis. J. Strength Cond. Res. 2010, 24, 1150–1159. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Ogborn, D.; Krieger, J.W. Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. J. Sports Sci. 2017, 35, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, D.S.; Reiman, M.P.; Lehecka, B.J.; Naylor, A. What performance characteristics determine elite versus nonelite athletes in the same sport? Sports Health 2013, 5, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Haff, G.; Triplett, N.T. Essentials of Strength Training and Conditioning, 4th ed.; Human Kinetics: Champaign, IL, USA, 2016. [Google Scholar]
- Schoenfeld, B.J.; Contreras, B.; Vigotsky, A.D.; Peterson, M. Differential Effects of Heavy Versus Moderate Loads on Measures of Strength and Hypertrophy in Resistance-Trained Men. J. Sports Sci. Med. 2016, 15, 715–722. [Google Scholar]
- Akca, F. Prediction of rowing ergometer performance from functional anaerobic power, strength and anthropometric components. J. Hum. Kinet. 2014, 41, 133–142. [Google Scholar] [CrossRef]
- Faiss, R.; Willis, S.; Born, D.P.; Sperlich, B.; Vesin, J.M.; Holmberg, H.C.; Millet, G.P. Repeated double-poling sprint training in hypoxia by competitive cross-country skiers. Med. Sci. Sports Exerc. 2015, 47, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, H.; Verstappen, F.T.; Keizer, H.A.; Geurten, P.; van Kranenburg, G. Variability of aerobic performance in the laboratory and its physiologic correlates. Int. J. Sports Med. 1985, 6, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Alsobrook, N.G.; Heil, D.P. Upper body power as a determinant of classical cross-country ski performance. Eur. J. Appl. Physiol. 2009, 105, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, D.; Coleman, M.; Van Every, D.; Maldonado, J.; Oberlin, D.; Israetel, M.; Feather, J.; Alto, A.; Vigotsky, A.D.; Schoenfeld, B.J. Progressive overload without progressing load? The effects of load or repetition progression on muscular adaptations. PeerJ 2022, 10, e14142. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Grgic, J.; Ogborn, D.; Krieger, J.W. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis. J. Strength Cond. Res. 2017, 31, 3508–3523. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Sale, D.G. Velocity specificity of resistance training. Sports Med. 1993, 15, 374–388. [Google Scholar] [CrossRef] [PubMed]
- Schmidtbleicher, D. Training for power events. In Strength and Power in Sport; Komi, P., Ed.; Blackwell Scientific Publications: Oxford, UK, 1992; pp. 381–395. [Google Scholar]
- Hoff, J.; Almåsbakk, B. The Effects of Maximum Strength Training on Throwing Velocity and Muscle Strength in Female Team-Handball Players. J. Strength Cond. Res. 1995, 9, 255–258. [Google Scholar]
- Loffing, F. Raw Data Visualization for Common Factorial Designs Using SPSS: A Syntax Collection and Tutorial. Front. Psychol. 2022, 13, 808469. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 2013. [Google Scholar]
- Hopkins, W.G. How to interpret changes in an athletic performance test. Sportscience 2004, 8, 1–7. [Google Scholar]
- Campos, G.E.; Luecke, T.J.; Wendeln, H.K.; Toma, K.; Hagerman, F.C.; Murray, T.F.; Ragg, K.E.; Ratamess, N.A.; Kraemer, W.J.; Staron, R.S. Muscular adaptations in response to three different resistance-training regimens: Specificity of repetition maximum training zones. Eur. J. Appl. Physiol. 2002, 88, 50–60. [Google Scholar] [CrossRef]
- Weiss, L.W.; Conex, H.D.; Clark, F.C. Differential Functional Adaptations to Short-Term Low-, Moderate-, and High-Repetition Weight Training. J. Strength Cond. Res. 1999, 13, 236–241. [Google Scholar]
- Gabriel, D.A.; Kamen, G.; Frost, G. Neural adaptations to resistive exercise: Mechanisms and recommendations for training practices. Sports Med. 2006, 36, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Erskine, R.M.; Fletcher, G.; Folland, J.P. The contribution of muscle hypertrophy to strength changes following resistance training. Eur. J. Appl. Physiol. 2014, 114, 1239–1249. [Google Scholar] [CrossRef] [PubMed]
- Bamman, M.M.; Newcomer, B.R.; Larson-Meyer, D.E.; Weinsier, R.L.; Hunter, G.R. Evaluation of the strength-size relationship in vivo using various muscle size indices. Med. Sci. Sports Exerc. 2000, 32, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Moritani, T.; deVries, H.A. Neural factors versus hypertrophy in the time course of muscle strength gain. Am. J. Phys. Med. 1979, 58, 115–130. [Google Scholar] [PubMed]
- Folland, J.P.; Williams, A.G. The adaptations to strength training: Morphological and neurological contributions to increased strength. Sports Med. 2007, 37, 145–168. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Peterson, M.D.; Ogborn, D.; Contreras, B.; Sonmez, G.T. Effects of Low- vs. High-Load Resistance Training on Muscle Strength and Hypertrophy in Well-Trained Men. J. Strength Cond. Res. 2015, 29, 2954–2963. [Google Scholar] [CrossRef]
- Lindinger, S.J.; Stoggl, T.; Muller, E.; Holmberg, H.C. Control of speed during the double poling technique performed by elite cross-country skiers. Med. Sci. Sports Exerc. 2009, 41, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Patton, J.F.; Gordon, S.E.; Harman, E.A.; Deschenes, M.R.; Reynolds, K.; Newton, R.U.; Triplett, N.T.; Dziados, J.E. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J. Appl. Physiol. 1995, 78, 976–989. [Google Scholar] [CrossRef]
- Green, H.; Goreham, C.; Ouyang, J.; Ball-Burnett, M.; Ranney, D. Regulation of fiber size, oxidative potential, and capillarization in human muscle by resistance exercise. Am. J. Physiol. 1999, 276, R591–R596. [Google Scholar] [CrossRef]
- Hepple, R.T.; Mackinnon, S.L.; Thomas, S.G.; Goodman, J.M.; Plyley, M.J. Quantitating the capillary supply and the response to resistance training in older men. Pflügers Archiv. 1997, 433, 238–244. [Google Scholar] [CrossRef] [PubMed]
- McCall, G.E.; Byrnes, W.C.; Dickinson, A.; Pattany, P.M.; Fleck, S.J. Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. J. Appl. Physiol. 1996, 81, 2004–2012. [Google Scholar] [CrossRef] [PubMed]
- Calbet, J.A.; Holmberg, H.C.; Rosdahl, H.; van Hall, G.; Jensen-Urstad, M.; Saltin, B. Why do arms extract less oxygen than legs during exercise? Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 289, R1448–R1458. [Google Scholar] [CrossRef] [PubMed]
- Calbet, J.A.; Jensen-Urstad, M.; van Hall, G.; Holmberg, H.C.; Rosdahl, H.; Saltin, B. Maximal muscular vascular conductances during whole body upright exercise in humans. J. Physiol. 2004, 558, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Trowell, D.; Vicenzino, B.; Saunders, N.; Fox, A.; Bonacci, J. Effect of Strength Training on Biomechanical and Neuromuscular Variables in Distance Runners: A Systematic Review and Meta-Analysis. Sports Med. 2020, 50, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Hausswirth, C.; Argentin, S.; Bieuzen, F.; Le Meur, Y.; Couturier, A.; Brisswalter, J. Endurance and strength training effects on physiological and muscular parameters during prolonged cycling. J. Electromyogr. Kinesiol. 2010, 20, 330–339. [Google Scholar] [CrossRef]
- Usaj, A.; Jereb, B.; Robi, P.; von Duvillard, S.P. The influence of strength-endurance training on the oxygenation of isometrically contracted forearm muscles. Eur. J. Appl. Physiol. 2007, 100, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Michalsik, L.; Petersen, A. Accumulated O2 deficit during intense exercise and muscle characteristics of elite athletes. Int. J. Sports Med. 1993, 14, 207–213. [Google Scholar] [CrossRef]
- Hebert-Losier, K.; Zinner, C.; Platt, S.; Stoggl, T.; Holmberg, H.C. Factors that Influence the Performance of Elite Sprint Cross-Country Skiers. Sports Med. 2017, 47, 319–342. [Google Scholar] [CrossRef]
- Sandbakk, O.; Holmberg, H.C.; Leirdal, S.; Ettema, G. The physiology of world-class sprint skiers. Scand. J. Med. Sci. Sports 2011, 21, e9–e16. [Google Scholar] [CrossRef]
Variable | Group | Baseline (T1) | Post-Test (T2) | Effect Sizes (d) | Time Effect | Interaction Effect |
---|---|---|---|---|---|---|
1 RM Bench Pull (kg) | HL (n = 9) | 48.8 ± 6.3 (43.9–53.6) | 55.8 ± 7.5 (50.1–61.6) | −2.416 * | F = 15.464 p = 0.001 η2 = 0.491 | F = 3.485 p = 0.055 η2 = 0.303 |
LL (n = 6) | 36.7 ± 7.4 (28.9–44.4) | 42.5 ± 8.7 (33.4–51.6) | −0.998 * | |||
CG (n = 4) | 47.5 ± 10.2 (31.3–63.7) | 47.5 ± 9.8 (31.9–63.1) | 0.000 | |||
1RM Bench Press (kg) | HL (n = 9) | 43.1 ± 7.2 (37.6–48.6) | 48.9 ± 8.9 (42.0–55.8) | −2.694 *%# | F = 30.635 p < 0.001 η2 = 0.657 | F = 5.456 p = 0.016 η2 = 0.405 |
LL (n = 6) | 32.9 ± 8.7 (23.8–42.1) | 35.8 ± 8.3 (27.1–44.6) | −0.998 * | |||
CG (n = 4) | 37.5 ± 11.6 (19.1–55.9) | 38.8 ± 10.3 (22.4–55.2) | −0.500 | |||
VO2peak-DP (mL·min−1) | HL (n = 9) | 2790 ± 485 (2417–3163) | 3028 ± 398 (2723–3334) | −1.182 * | F = 12.597 p = 0.003 η2 = 0.441 | F = 1.716 p = 0.211 η2 = 0.177 |
LL (n = 6) | 2651 ± 778 (1835–3467) | 2894 ± 719 (2139–3649) | −1.209 * | |||
CG (n = 4) | 2834 ± 479 (2071–3596) | 2866 ± 325 (2348–3384) | −0.171 | |||
O2-PulseVO2peak-DP (VO2·HR−1) | HL (n = 9) | 14.8 ± 2.6 (12.8–16.8) | 16.1 ± 2.4 (14.3–17.9) | −1.202 * | F = 14.484 p = 0.002 η2 = 0.475 | F = 1.351 p = 0.287 η2 = 0.144 |
LL (n = 6) | 13.3 ± 5.1 (8.0–18.6) | 14.9 ± 4.7 (10.0–19.9) | −1.111 * | |||
CG (n = 4) | 15.1 ± 3.3 (9.9–20.3) | 15.5 ± 2.4 (11.6–19.3) | −0.392 | |||
DPPPEAK (W) | HL (n = 9) | 143.9 ± 14.8 (132.5–155.2) | 165.0 ± 13.5 (154.6–175.4) | −1.638 *%# | F = 16.982 p < 0.001 η2 = 0.515 Greenhouse-Geisser | F = 4.730 p = 0.024 η2 = 0.372 |
LL (n = 6) | 122.5 ± 32.1 (88.9–156.1) | 135.2 ± 39.3 (94.0–176.4) | −1.425 *# | |||
CG (n = 4) | 143.3 ± 43.6 (73.8–212.7) | 143.5 ± 33.8 (89.7–197.3) | −0.023 | |||
DPPPEAK (W·kg−1) | HL (n = 9) | 2.43 ± 0.38 (2.13–2.72) | 2.78 ± 0.32 (2.54–3.03) | −1.695 *%# | F = 11.805 p = 0.003 η2 = 0.425 Greenhouse-Geisser | F = 5.483 p = 0.015 η2 = 0.407 |
LL (n = 6) | 2.31 ± 0.35 (1.94–2.67) | 2.49 ± 0.48 (1.99–2.99) | −1.223 # | |||
CG (n = 4) | 2.53 ± 0.66 (1.49–3.58) | 2.49 ± 0.42 (1.82–3.16) | 0.163 | |||
DPP15s (W) | HL (n = 9) | 217.1 ± 32.0 (192.5–241.7) | 243.7 ± 36.7 (215.5–271.9) | −1.029 * | F = 11.815 p = 0.003 η2 = 0.425 | F = 1.493 p = 0.254 η2 = 0.157 |
LL (n = 6) | 183.2 ± 58.6 (121.7–244.6) | 197.3 ± 59.0 (135.5–259.2) | −1.216 | |||
CG (n = 4) | 202.0 ± 58.7 (108.6–295.4) | 210.0 ± 55.5 (121.8–298.2) | −1.494 | |||
DPP15s (W·kg−1) | HL (n = 9) | 3.63 ± 0.41 (3.32–3.94) | 4.07 ± 0.36 (3.80–4.35) | −0.9321 * | F = 7.411 p = 0.015 η2 = 0.317 | F = 1.562 p = 0.240 η2 = 0.163 |
LL (n = 6) | 3.44 ± 0.69 (2.71–4.16) | 3.65 ± 0.74 (2.87–4.42) | −0.871 | |||
CG (n = 4) | 3.57 ± 0.87 (2.18–4.96) | 3.65 ± 0.74 (2.48–4.82) | −0.450 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, C.-M.; Sandbakk, Ø.; Röhrs, D.; Schiemann, S.; Schmidt, T.; Keiner, M. High-Volume Resistance Training Improves Double-Poling Peak Oxygen Uptake in Youth Elite Cross-Country Skiers and Biathletes: A Pilot Study. Appl. Sci. 2024, 14, 2774. https://doi.org/10.3390/app14072774
Wagner C-M, Sandbakk Ø, Röhrs D, Schiemann S, Schmidt T, Keiner M. High-Volume Resistance Training Improves Double-Poling Peak Oxygen Uptake in Youth Elite Cross-Country Skiers and Biathletes: A Pilot Study. Applied Sciences. 2024; 14(7):2774. https://doi.org/10.3390/app14072774
Chicago/Turabian StyleWagner, Carl-Maximilian, Øyvind Sandbakk, Daniel Röhrs, Stephan Schiemann, Tobias Schmidt, and Michael Keiner. 2024. "High-Volume Resistance Training Improves Double-Poling Peak Oxygen Uptake in Youth Elite Cross-Country Skiers and Biathletes: A Pilot Study" Applied Sciences 14, no. 7: 2774. https://doi.org/10.3390/app14072774
APA StyleWagner, C.-M., Sandbakk, Ø., Röhrs, D., Schiemann, S., Schmidt, T., & Keiner, M. (2024). High-Volume Resistance Training Improves Double-Poling Peak Oxygen Uptake in Youth Elite Cross-Country Skiers and Biathletes: A Pilot Study. Applied Sciences, 14(7), 2774. https://doi.org/10.3390/app14072774