Robust Learning from Demonstration Based on GANs and Affine Transformation
Abstract
:1. Introduction
- Enhanced feature extraction performance with GANs: We harness the power of GANs to efficiently capture the distribution of expert demonstration trajectories. This approach facilitates the integration of information from multiple demonstration trajectories, leading to a more nuanced and comprehensive feature representation.
- Enhanced convergence performance with additional loss functions: We introduce novel loss functions, including DILATE [23] loss and Jerk [24] loss, to augment the learning process of GAN networks. These additional loss functions serve to further drive the convergence of the model and mitigate the occurrence of model collapse, thereby enhancing the stability and robustness of the learning process.
- Superior generalization ability: Our proposed method incorporates a geometric-based LfD generalization algorithm. Through the utilization of affine transformations, this approach adeptly addresses the challenge of trajectory generalization. By dynamically adjusting the trajectory through affine transformations, our method facilitates seamless adaptation to diverse and complex environments, showcasing superior generalization capabilities.
2. Background
2.1. Movement Primitives
2.2. Generative Adversarial Networks
3. Proposed Method
3.1. Overview
3.2. Preprocess Method
3.2.1. Trajectory Mapping
3.2.2. Bézier Curve Representation
3.3. Trajectory Learning Based on GANs
3.4. Generalization Based on Affine Transformation
4. Experiment
4.1. Experiment Setting
4.2. Method Deployment
4.2.1. Comparison with Other LfD Methods
4.2.2. Performance of UR5 Robotic Arm under Simulations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robla-Gomez, S.; Becerra, V.M.; Llata, J.R.; Gonzalez-Sarabia, E.; Torre-Ferrero, C.; Perez-Oria, J. Working Together: A Review on Safe Human-Robot Collaboration in Industrial Environments. IEEE Access 2017, 5, 26754–26773. [Google Scholar] [CrossRef]
- Pedersen, M.R.; Nalpantidis, L.; Andersen, R.S.; Schou, C.; Bøgh, S.; Krüger, V.; Madsen, O. Robot Skills for Manufacturing: From Concept to Industrial Deployment. Robot. Comput. Integr. Manuf. 2016, 37, 282–291. [Google Scholar] [CrossRef]
- Gao, Z.; Wanyama, T.; Singh, I.; Gadhrri, A.; Schmidt, R. From Industry 4.0 to Robotics 4.0—A Conceptual Framework for Collaborative and Intelligent Robotic Systems. Procedia Manuf. 2020, 46, 591–599. [Google Scholar] [CrossRef]
- Cherubini, A.; Passama, R.; Crosnier, A.; Lasnier, A.; Fraisse, P. Collaborative Manufacturing with Physical Human-Robot Interaction. Robot. Comput. Integr. Manuf. 2016, 40, 1–13. [Google Scholar] [CrossRef]
- Mohammed, A.; Schmidt, B.; Wang, L. Active Collision Avoidance for Human–Robot Collaboration Driven by Vision Sensors. Int. J. Comput. Integr. Manuf. 2017, 30, 970–980. [Google Scholar] [CrossRef]
- Bauer, A.; Wollherr, D.; Buss, M. Human-Robot Collaboration: A Survey. Int. J. Humanoid Robot. 2008, 5, 47–66. [Google Scholar] [CrossRef]
- Ravichandar, H.; Polydoros, A.S.; Chernova, S.; Billard, A. Recent Advances in Robot Learning from Demonstration. Annu. Rev. Control Robot. Auton. Syst. 2020, 3, 297–330. [Google Scholar] [CrossRef]
- Qu, J.; Zhang, F.; Wang, Y.; Fu, Y. Human-like Coordination Motion Learning for a Redundant Dual-Arm Robot. Robot. Comput. Integr. Manuf. 2019, 57, 379–390. [Google Scholar] [CrossRef]
- Ginesi, M.; Sansonetto, N.; Fiorini, P. Overcoming Some Drawbacks of Dynamic Movement Primitives. Robot. Auton. Syst. 2021, 144, 103844. [Google Scholar] [CrossRef]
- Kong, L.H.; He, W.; Chen, W.S.; Zhang, H.; Wang, Y.N. Dynamic Movement Primitives Based Robot Skills Learning. Mach. Intell. Res. 2023, 20, 396–407. [Google Scholar] [CrossRef]
- Lin, H.I. Design of an Intelligent Robotic Precise Assembly System for Rapid Teaching and Admittance Control. Robot. Comput. Integr. Manuf. 2020, 64, 101946. [Google Scholar] [CrossRef]
- Sung, H.G. Gaussian Mixture Regression and Classification. Doctoral Thesis, Rice University, Houston, TX, USA, 2004. [Google Scholar]
- Khansari-Zadeh, S.M.; Billard, A. Learning Stable Nonlinear Dynamical Systems with Gaussian Mixture Models. IEEE Trans. Robot. 2011, 27, 943–957. [Google Scholar] [CrossRef]
- Huang, Y.; Rozo, L.; Silvério, J.; Caldwell, D.G. Kernelized Movement Primitives. Int. J. Robot. Res. 2019, 38, 833–852. [Google Scholar] [CrossRef]
- Ziebart, B.D.; Maas, A.; Bagnell, J.A.; Dey, A.K. Maximum Entropy Inverse Reinforcement Learning. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence, AAAI 2008, Washington, DC, USA, 7–14 February 2008. [Google Scholar]
- Peng, X.B.; Kanazawa, A.; Toyer, S.; Abbeel, P.; Levine, S. Variational Discriminator Bottleneck: Improving Imitation Learning, Inverse RL, and GANs by Constraining Information Flow. In Proceedings of the 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Fei, C.; Wang, B.; Zhuang, Y.; Zhang, Z.; Hao, J.; Zhang, H.; Ji, X.; Liu, W. Triple-GAIL: A Multi-Modal Imitation Learning Framework with Generative Adversarial Nets. In Proceedings of the IJCAI International Joint Conference on Artificial Intelligence, Yokohama, Japan, 11–17 July 2020; Volume 2021-January. [Google Scholar]
- Zuo, G.; Chen, K.; Lu, J.; Huang, X. Deterministic Generative Adversarial Imitation Learning. Neurocomputing 2020, 388, 60–69. [Google Scholar] [CrossRef]
- Zhang, T.; Ji, H.; Sil, A. Joint Entity and Event Extraction with Generative Adversarial Imitation Learning. Data Intell. 2019, 1, 99–120. [Google Scholar] [CrossRef]
- Jiang, H.; Yamanoi, Y.; Kuroda, Y.; Chen, P.; Togo, S.; Jiang, Y.; Yokoi, H. Conditional Generative Adversarial Network-Based Finger Position Estimation for Controlling Multi-Degrees-of-Freedom Myoelectric Prosthetic Hands. In Proceedings of the 2022 IEEE International Conference on Cyborg and Bionic Systems, CBS 2022, Wuhan, China, 14–16 March 2023. [Google Scholar]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved Training of Wasserstein GANs. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 2017-December. [Google Scholar]
- Huang, Y.L.; Xu, D.; Tan, M. On Imitation Learning of Robot Movement Trajectories: A Survey. Zidonghua Xuebao/Acta Autom. Sin. 2022, 48, 315–334. [Google Scholar]
- Le Guen, V.; Thome, N. Shape and Time Distortion Loss for Training Deep Time Series Forecasting Models. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Volume 32. [Google Scholar]
- Shadmehr, R.; Wise, S.P. A Minimum-Jerk Trajectory. In Supplementary Documents for “Computational Neurobiology of Reaching and Pointing”; The MIT Press: Cambridge, MA, USA, 2005; Volume 5. [Google Scholar]
- Gomez-Gonzalez, S.; Neumann, G.; Scholkopf, B.; Peters, J. Adaptation and Robust Learning of Probabilistic Movement Primitives. IEEE Trans. Robot. 2020, 36, 366–379. [Google Scholar] [CrossRef]
- Li, G.; Jin, Z.; Volpp, M.; Otto, F.; Lioutikov, R.; Neumann, G. ProDMP: A Unified Perspective on Dynamic and Probabilistic Movement Primitives. IEEE Robot. Autom. Lett. 2023, 8, 2325–2332. [Google Scholar] [CrossRef]
- Xu, X.; You, M.; Zhou, H.; Qian, Z.; Xu, W.; He, B. GAN-Based Editable Movement Primitive from High-Variance Demonstrations. IEEE Robot. Autom. Lett. 2023, 8, 4593–4600. [Google Scholar] [CrossRef]
- Yin, X.; Chen, Q. Trajectory Generation with Spatio-Temporal Templates Learned from Demonstrations. IEEE Trans. Ind. Electron. 2017, 64, 3442–3451. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Cuturi, M.; Blondel, M. Soft-DTW: A Differentiable Loss Function for Time-Series. In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, Australia, 6–11 August 2017; Volume 2. [Google Scholar]
- Ketkar, N.; Moolayil, J. Introduction to PyTorch. In Deep Learning with Python; CreateSpace Independent Publishing Platform: North Charleston, SC, USA, 2021. [Google Scholar]
- Cowley, B.R.; Semedo, J.D.; Zandvakili, A.; Smith, M.A.; Kohn, A.; Yu, B.M. Distance Covariance Analysis. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, Lauderdale, FL, USA, 20–22 April 2017. [Google Scholar]
Method | MSE | Time of Generation (ms) | |
---|---|---|---|
Common | Noise | ||
DMP | 25.26 | 53.00 | 130.38 |
GMR | 27.06 | 26.75 | 218.10 |
ProMP | 25.01 | 25.16 | 116.98 |
Proposed | 24.71 | 25.78 | 23.12 |
Method | DCA | Time of Generalization (ms) |
---|---|---|
DMP | 0.39 | 139.28 |
Proposed | 1.00 | 24.48 |
Handwriting Task | DCA | |
---|---|---|
DMP | Proposed | |
‘A’ | 0.495 | 0.973 |
‘G’ | 0.607 | 0.986 |
‘X’ | 0.326 | 0.986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, K.; Wu, Z.; Shangguan, Q.; Song, Y.; Xu, X. Robust Learning from Demonstration Based on GANs and Affine Transformation. Appl. Sci. 2024, 14, 2902. https://doi.org/10.3390/app14072902
An K, Wu Z, Shangguan Q, Song Y, Xu X. Robust Learning from Demonstration Based on GANs and Affine Transformation. Applied Sciences. 2024; 14(7):2902. https://doi.org/10.3390/app14072902
Chicago/Turabian StyleAn, Kang, Zhiyang Wu, Qianqian Shangguan, Yaqing Song, and Xiaonong Xu. 2024. "Robust Learning from Demonstration Based on GANs and Affine Transformation" Applied Sciences 14, no. 7: 2902. https://doi.org/10.3390/app14072902
APA StyleAn, K., Wu, Z., Shangguan, Q., Song, Y., & Xu, X. (2024). Robust Learning from Demonstration Based on GANs and Affine Transformation. Applied Sciences, 14(7), 2902. https://doi.org/10.3390/app14072902