The Role of Physical Fitness on FRAN CrossFit® Workout Performance
Abstract
:1. Introduction
2. Material and Methods
2.1. Athletes
2.2. Experimental Design
2.3. Body Composition and Familiarization Session
2.4. FRAN CrossFit® Workout
2.5. Maximum Handgrip and Isometric Mid-Thigh Pull Strength
2.6. Countermovement Jump
2.7. Thirty Seconds Continuous Jump Test
2.8. 1-RM Strength
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Claudino, J.G.; Gabbett, T.J.; Bourgeois, F.; Souza, H.D.S.; Miranda, R.C.; Mezêncio, B.; Soncin, R.; Cardoso Filho, C.A.; Bottaro, M.; Hernandez, A.J.; et al. CrossFit overview: Systematic review and meta-analysis. Sports Med. Int. Open 2018, 4, 11. [Google Scholar] [CrossRef]
- Dominski, F.H.; Serafim, T.T.; Siqueira, T.C.; Andrade, A. Psychological variables of CrossFit participants: A systematic review. Sport Sci. Health 2021, 17, 21–41. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.; Morrison, J.; Zuniga, J. The benefits and risks of CrossFit: A systematic review. Workplace Health Saf. 2017, 65, 612–618. [Google Scholar] [CrossRef]
- Dexheimer, J.D.; Schroeder, E.T.; Sawyer, B.J.; Pettitt, R.W.; Aguinaldo, A.L.; Torrence, W.A. Physiological performance measures as indicators of crossfit® performance. Sports 2019, 7, 93. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gómez, R.; Valenzuela, P.L.; Alejo, L.B.; Gil-Cabrera, J.; Montalvo-Pérez, A.; Talavera, E.; Lucia, A.; Moral-Gonzáles, S.; Barranco-Gil, D. Physiological predictors of competition performance in CrossFit athletes. Int. J. Environ. Res. Public Health 2020, 17, 3699. [Google Scholar] [CrossRef] [PubMed]
- Zeitz, E.K.; Cook, L.F.; Dexheimer, J.D.; Lemez, S.; Leyva, W.D.; Terbio, I.Y.; Tran, J.R.; Jo, E. The relationship between crossfit® performance and laboratory-based measurements of fitness. Sports 2020, 8, 112. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Landero, L.A.; Frías-Menacho, J.M. Analysis of Morphofunctional Variables Associated with Performance in Crossfit Competitors. J Hum. Kinet. 2020, 73, 83. [Google Scholar] [CrossRef] [PubMed]
- Leitão, L.; Dias, M.; Campos, Y.; Vieira, J.G.; Sant’Ana, L.; Telles, L.G.; Tavares, C.; Mazini, M.; Novaes, J.; Vianna, J. Physical and Physiological Predictors of FRAN CrossFit® WOD Athlete’s Performance. Int. J. Environ. Res. Public Health 2021, 18, 4070. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.; Edge, J.; Mendez-Villanueva, A.; Thomas, C.; Schneiker, K. High-intensity exercise decreases muscle buffer capacity via a decrease in protein buffering in human skeletal muscle. Pflügers Archiv-Eur. J. Physiol. 2009, 458, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Edge, J.; Bishop, D.; Hill-Haas, S.; Dawson, B.; Goodman, C. Comparison of muscle buffer capacity and repeated-sprint ability of untrained, endurance-trained and team-sport athletes. Eur. J. Appl. Physiol. 2006, 96, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Feito, Y.; Giardina, M.J.; Butcher, S.; Mangine, G.T. Repeated anaerobic tests predict performance among a group of advanced CrossFit-trained athletes. Appl. Physiol. Nutr. Metab. 2019, 44, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Bellar, D.; Hatchett, A.; Judge, L.W.; Breaux, M.E.; Marcus, L. The relationship of aerobic capacity, anaerobic peak power and experience to performance in in CrossFit exercise. Biol. Sport 2015, 32, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Dal Pupo, J.; Gheller, R.G.; Dias, J.A.; Rodacki, A.L.; Moro, A.R.; Santos, S.G. Reliability and validity of the 30-s continuous jump test for anaerobic fitness evaluation. J. Sci. Med. Sport 2014, 17, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, S.; Hoos, O.; Beck, A.; Fueller, F.; Latzel, R.; Beneke, R. The metabolic relevance of type of locomotion in anaerobic testing: Bosco continuous jumping test versus Wingate anaerobic test of the same duration. Int. J Sports Physiol. Perform. 2021, 16, 1663–1669. [Google Scholar] [CrossRef] [PubMed]
- Gianzina, E.A.; Kassotaki, O.A. The benefits and risks of the high-intensity CrossFit training. Sport Sci. Health 2019, 15, 21–33. [Google Scholar] [CrossRef]
- Smith, M.M.; Sommer, A.J.; Starkoff, B.E.; Devor, S.T. Crossfit based high-intensity power training improves maximal aerobic fitness and body composition. J. Strength Cond. Res. 2013, 27, 3159–3172. [Google Scholar] [CrossRef] [PubMed]
- Mangine, G.T.; Stratton, M.T.; Almeda, C.G.; Roberts, M.D.; Esmat, T.A.; VanDusseldorp, T.A.; Feito, Y. Physiological differences between advanced CrossFit athletes, recreational CrossFit participants, and physically-active adults. PLoS ONE 2020, 15, e0223548. [Google Scholar] [CrossRef] [PubMed]
- Mangine, G.T.; McDougle, J.M.; Feito, Y. Relationships Between Body Composition and Performance in the High-Intensity Functional Training Workout “Fran” are Modulated by Competition Class and Percentile Rank. Front. Physiol. 2022, 13, 893771. [Google Scholar] [CrossRef]
- Panteli, N.; Hadjicharalambous, M.; Zaras, N. Delayed Potentiation Effect on Sprint, Power and Agility Performance in Well-Trained Soccer Players. J. Sci. Sport Exerc. 2023, 1–9. [Google Scholar] [CrossRef]
- Secomb, J.L.; Nimphius, S.; Farley, O.R.; Lundgren, L.; Tran, T.T.; Sheppard, J.M. Lower-body muscle structure and jump performance of stronger and weaker surfing athletes. Int. J. Sports Physiol. Perform. 2016, 11, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Zaras, N.; Stasinaki, A.N.; Spiliopoulou, P.; Mpampoulis, T.; Terzis, G. Triceps brachii muscle architecture, upper-body rate of force development, and bench press maximum strength of strong and weak trained participants. Hum. Mov. 2023, 24, 121–129. [Google Scholar] [CrossRef]
- Butcher, S.J.; Neyedly, T.J.; Horvey, K.J.; Benko, C.R. Do physiological measures predict selected CrossFit® benchmark performance? Open Access J. Sports Med. 2015, 6, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Anastasiou, G.; Hadjicharalambous, M.; Terzis, G.; Zaras, N. Reactive Strength Index, Rate of Torque Development, and Performance in Well-Trained Weightlifters: A Pilot Study. J. Funct. Morphol. Kinesiol. 2023, 8, 161. [Google Scholar] [CrossRef]
- McKinney, J.; Velghe, J.; Fee, J.; Isserow, S.; Drezner, J.A. Defining athletes and exercisers. Am. J. Card. 2019, 123, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Torres-Luque, G.; Calahorro-Cañada, F.; Lara-Sánchez, A.J.; Garatachea, N.; Nikolaidis, P.T. Body composition using bioelectrical impedance analysis in elite young soccer players: The effects of age and playing position. Sport Sci. Health 2015, 11, 203–210. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; Correa-Bautista, J.E.; García-Hermoso, A.; Cano, C.A.; Izquierdo, M. Reference values for handgrip strength and their association with intrinsic capacity domains among older adults. J. Cachexia Sarcopenia Muscle 2019, 10, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, S.; Hadjicharalambous, M.; Zaras, N. Acute effects of different intra-repetition rest configurations on barbell peak velocity during the jump-shrug exercise. J. Phys. Educ. Sport 2023, 23, 1103–1110. [Google Scholar] [CrossRef]
- Sands, W.A.; McNeal, J.R.; Ochi, M.T.; Urbanek, T.L.; Jemni, M.; Stone, M.H. Comparison of the Wingate and Bosco anaerobic tests. J. Strength Cond. Res. 2004, 18, 810–815. [Google Scholar] [PubMed]
- Silva Santos, J.F.; Franchini, E. Frequency speed of kick test performance comparison between female taekwondo athletes of different competitive levels. J. Strength Cond. Res. 2018, 32, 2934–2938. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G* power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Fritz, C.; Morris, P.; Richler, J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y.; Hattori, M. Relationship between muscle buffering capacity and fiber type during anaerobic exercise in human. J. Physiol. Anthr. Appl. Hum. Sci. 2002, 21, 129–131. [Google Scholar] [CrossRef] [PubMed]
- Rios, M.; Zacca, R.; Azevedo, R.; Fonseca, P.; Pyne, D.B.; Reis, V.M.; Moreira-Gonçalves, D.; Fernandes, R.J. Bioenergetic Analysis and Fatigue Assessment During the Fran Workout in Experienced Crossfitters. Int. J. Sports Physiol. Perform. 2023, 18, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Eather, N.; Morgan, P.J.; Lubans, D.R. Improving health-related fitness in adolescents: The CrossFit Teens™ randomised controlled trial. J. Sports Sci. 2016, 34, 209–223. [Google Scholar] [CrossRef] [PubMed]
- Yüksel, O.; Gündüz, B.; Kayhan, M. Effect of Crossfit Training on Jump and Strength. J Educ. Train. Stud. 2019, 7, 121–124. [Google Scholar] [CrossRef]
- Meier, N.; Schlie, J.; Schmidt, A. CrossFit®: ‘Unknowable’ or Predictable?—A Systematic Review on Predictors of CrossFit® Performance. Sports 2023, 11, 112. [Google Scholar] [CrossRef] [PubMed]
FG | SG | p | Hedge’s g | |
---|---|---|---|---|
Age (years) | 30.3 ±4.2 | 31.0 ± 5.4 | 0.751 | 0.131 |
Training experience (years) | 7.0 ± 3.5 | 4.9 ± 3.6 | 0.218 | 0.518 |
Body mass (kg) | 80.9 ± 8.3 | 81.4 ± 10.6 | 0.917 | 0.04 |
Body height (m) | 1.77 ± 0.09 | 1.75 ± 0.06 | 0.524 | 0.264 |
Body mass index (kg·m−2) | 25.8 ± 1.2 | 26.5 ± 2.7 | 0.420 | 0.335 |
Fat-free mass (kg) | 71.3 ± 8.1 | 67.9 ± 6.8 | 0.324 | 0.412 |
Trunk muscle mass (kg) | 35.9 ± 4.0 | 34.2 ± 2.9 | 0.278 | 0.455 |
Arms muscle mass (kg) | 8.9 ± 1.2 | 8.2 ± 1.1 | 0.244 | 0.489 |
Legs muscle mass (kg) | 22.9 ± 2.6 | 22.1 ± 2.5 | 0.458 | 0.308 |
Fat (%) | 11.9 ± 3.6 | 16.2 ± 3.7 | 0.018 | 1.059 |
FG | SG | p | Hedge’s g | |
---|---|---|---|---|
CMJ height (cm) | 48.5 ± 5.9 | 40.0 ± 6.0 | 0.006 | 1.252 |
CMJ power (W) | 4553.7 ± 669.8 | 4173.1 ± 540.0 | 0.170 | 0.568 |
CMJ power per body mass (W·kg−1) | 56.1 ± 3.3 | 51.4 ± 3.2 | 0.005 | 1.308 |
Snatch (kg) | 88.0 ± 11.4 | 65.2 ± 14.8 | 0.001 | 1.573 |
Clean and jerk (kg) | 113.0 ± 17.5 | 85.7 ± 14.8 | 0.001 | 1.529 |
Thrusters (kg) | 99.3 ± 14.1 | 74.7 ± 12.5 | 0.001 | 1.670 |
Squat (kg) | 161.0 ± 13.9 | 131.0 ± 21.8 | 0.002 | 1.489 |
Dead-lift (kg) | 177.5 ± 19.6 | 160.3 ± 18.1 | 0.057 | 0.827 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polydorou, R.; Kyriacou-Rossi, A.; Hadjipantelis, A.; Ioannides, C.; Zaras, N. The Role of Physical Fitness on FRAN CrossFit® Workout Performance. Appl. Sci. 2024, 14, 3317. https://doi.org/10.3390/app14083317
Polydorou R, Kyriacou-Rossi A, Hadjipantelis A, Ioannides C, Zaras N. The Role of Physical Fitness on FRAN CrossFit® Workout Performance. Applied Sciences. 2024; 14(8):3317. https://doi.org/10.3390/app14083317
Chicago/Turabian StylePolydorou, Rafaellos, Andreas Kyriacou-Rossi, Andreas Hadjipantelis, Christos Ioannides, and Nikolaos Zaras. 2024. "The Role of Physical Fitness on FRAN CrossFit® Workout Performance" Applied Sciences 14, no. 8: 3317. https://doi.org/10.3390/app14083317
APA StylePolydorou, R., Kyriacou-Rossi, A., Hadjipantelis, A., Ioannides, C., & Zaras, N. (2024). The Role of Physical Fitness on FRAN CrossFit® Workout Performance. Applied Sciences, 14(8), 3317. https://doi.org/10.3390/app14083317