Sports Biomechanics Applied to Performance Optimization
Author Contributions
Funding
Conflicts of Interest
List of Contributions
- Allégue, H.; Turki, O.; Oranchuk, D.J.; Khemiri, A.; Schwesig, R.; Chelly, M.S. The effect of combined isometric and plyometric training versus contrast strength training on physical performance in male junior handball players. Appl. Sci. 2023, 13, 9069. https://doi.org/10.3390/app13169069.
- Brassart, F.; Faupin, A.; Hays, A.; Watelain, E.; Weissland, T. Relationship of force–velocity profile between field sprints and lab ballistic or cycling ergometer for wheelchair basketball players. Appl. Sci. 2023, 13, 7469. https://doi.org/10.3390/app13137469.
- Evans, S.A.; Bini, R. Using wearables to monitor trunk kinematics and accuracy in the sport of axe throwing: A pilot study. Appl. Sci. 2023, 13, 8155. https://doi.org/10.3390/app13148155.
- López-Sagarra, A.; Baena-Raya, A.; Casimiro-Artés, M.Á.; Granero-Gil, P.; Rodríguez-Pérez, M.A. Seasonal changes in the acceleration–speed profile of elite soccer players: A longitudinal study. Appl. Sci. 2022, 12, 12987. https://doi.org/10.3390/app122412987.
- Miras-Moreno, S.; García-Ramos, A.; Fernandes, J.F.; Pérez-Castilla, A. Lifting more than two loads compromises the magnitude of the load–velocity relationship variables: Evidence in two variants of the prone bench pull exercise. Appl. Sci. 2023, 13, 1944. https://doi.org/10.3390/app13031944.
- Pan, J.; Chen, H.; Zheng, Z.; Xu, Y.; Sun, D.; Liang, M.; Lv, Y. A Comparative analysis of bionic and neutral shoes: Impact on lower limb kinematics and kinetics during varied-speed running. Appl. Sci. 2023, 13, 12582. https://doi.org/10.3390/app132312582.
- Rodríguez-Perea, A.; Jerez-Mayorga, D.; Morenas-Aguilar, M.D.; Martínez-García, D.; Chirosa-Ríos, I.J.; Chirosa-Ríos, L.J.; Reyes-Ferrada, W. Influence of sex and dominant side on the reliability of two trunk rotator exercises. Appl. Sci. 2023, 13, 2441. https://doi.org/10.3390/app13042441.
- Sánchez-López, S.; López-Sagarra, A.; Ortega-Becerra, M.; Jiménez-Reyes, P.; Rodríguez-Pérez, M.A. Change of direction performance in soccer players: Comparison based on horizontal force–velocity profile. Appl. Sci. 2023, 13, 12809. https://doi.org/10.3390/app132312809.
- Sola-Lopez, J.; Castillo-López, J.M.; Panera-Rico, E.; Reina-Bueno, M.; Fernández-Seguín, L.M.; Ramos-Ortega, J. Analysis of the influence of the angular position of the cleat in kinematics and kinetics. Appl. Sci. 2023, 13, 3922. https://doi.org/10.3390/app13063922.
- Spencer, R.; Sindall, P.; Hammond, K.M.; Atkins, S.J.; Quinn, M.; McMahon, J.J. Changes in body mass and movement strategy maintain jump height immediately after soccer match. Appl. Sci. 2023, 13, 7188. https://doi.org/10.3390/app13127188.
- Zhang, M.; Miao, X.; Rupčić, T.; Sansone, P.; Vencúrik, T.; Li, F. Determining the relationship between physical capacities, metabolic capacities and dynamic three-point shooting accuracy in professional female basketball players. Appl. Sci. 2023, 13, 8624. https://doi.org/10.3390/app13158624.
- Ruiz-Alias, S.A.; Jaén-Carrillo, D.; Roche-Seruendo, L.E.; Pérez-Castilla, A.; Soto-Hermoso, V.M.; García-Pinillos, F. A review of the potential effects of the world athletics stack height regulation on the footwear function and running performance. Appl. Sci. 2023, 13, 11721. https://doi.org/10.3390/app132111721.
- You, X.; Xu, Y.; Liang, M.; Baker, J.S.; Gu, Y. The relationship between ground reaction forces, foot positions and type of clubs used in golf: A systematic review and meta-analysis. Appl. Sci. 2023, 13, 7209. https://doi.org/10.3390/app13127209.
References
- Fornasier-Santos, C.; Arnould, A.; Jusseaume, J.; Millot, B.; Guilhem, G.; Couturier, A.; Samozino, P.; Slawinski, J.; Morin, J.-B. Sprint acceleration mechanical outputs derived from position–or velocity–time data: A multi-system comparison study. Sensors 2022, 22, 8610. [Google Scholar] [CrossRef] [PubMed]
- Weakley, J.; Morrison, M.; García-Ramos, A.; Johnston, R.; James, L.; Cole, M.H. The validity and reliability of commercially available resistance training monitoring devices: A systematic review. Sports Med. 2021, 51, 443–502. [Google Scholar] [CrossRef] [PubMed]
- Colyer, S.L.; Evans, M.; Cosker, D.P.; Salo, A.I.T. A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system. Sports Med.-Open 2018, 4, 24. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Villanueva, A.; Pino-Ortega, J.; Rico-González, M. Validity and reliability of linear position transducers and linear velocity transducers: A systematic review. Sports Biomech. 2021. online ahead of print. [Google Scholar] [CrossRef]
- Taborri, J.; Keogh, J.; Kos, A.; Santuz, A.; Umek, A.; Urbanczyk, C.; van der Kruk, E.; Rossi, S. Sport biomechanics applications using inertial, force, and EMG sensors: A literature overview. Appl. Bionics Biomech. 2020, 2020, 2041529. [Google Scholar] [CrossRef]
- Samozino, P.; Rabita, G.; Dorel, S.; Slawinski, J.; Peyrot, N.; Saez De Villarreal, E.; Morin, J.-B. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand. Med. Sci. Sports 2016, 26, 648–658. [Google Scholar] [CrossRef]
- Samozino, P.; Morin, J.-B.; Hintzy, F.; Belli, A. A simple method for measuring force, velocity and power output during squat Jump. J. Biomech. 2008, 41, 2940–2945. [Google Scholar] [CrossRef] [PubMed]
- Shaw, M.P.; Satchell, L.P.; Thompson, S.; Harper, E.T.; Balsalobre-Fernández, C.; Peart, D.J. Smartphone and tablet software apps to collect data in sport and exercise settings: Cross-sectional international survey. JMIR Mhealth Uhealth 2021, 9, e21763. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; Rico-Gonzalez, M.; Lima, R.; Akyildiz, Z.; Pino-Ortega, J.; Clemente, F.M. Validity and reliability of mobile applications for assessing strength, power, velocity, and change-of-direction: A systematic review. Sensors 2021, 21, 2623. [Google Scholar] [CrossRef] [PubMed]
- Faigenbaum, A.D.; Myer, G.D. Resistance training among young athletes: Safety, efficacy and injury prevention effects. Br. J. Sports Med. 2010, 44, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Dugan, S.A.; Bhat, K.P. Biomechanics and Analysis of Running Gait. Phys. Med. Rehabil. Clin. 2005, 16, 603–621. [Google Scholar] [CrossRef] [PubMed]
- McGregor, A.H. Injury prevention, performance and return to sport: How can science help? Chin. J. Traumatol. 2017, 20, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Ae, M. The next steps for expanding and developing sport biomechanics: Winner of the 2019 ISBS Geoffrey Dyson Award. Sports Biomech. 2020, 19, 701–722. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Castilla, A.; García-Pinillos, F. Sports Biomechanics Applied to Performance Optimization. Appl. Sci. 2024, 14, 3590. https://doi.org/10.3390/app14093590
Pérez-Castilla A, García-Pinillos F. Sports Biomechanics Applied to Performance Optimization. Applied Sciences. 2024; 14(9):3590. https://doi.org/10.3390/app14093590
Chicago/Turabian StylePérez-Castilla, Alejandro, and Felipe García-Pinillos. 2024. "Sports Biomechanics Applied to Performance Optimization" Applied Sciences 14, no. 9: 3590. https://doi.org/10.3390/app14093590
APA StylePérez-Castilla, A., & García-Pinillos, F. (2024). Sports Biomechanics Applied to Performance Optimization. Applied Sciences, 14(9), 3590. https://doi.org/10.3390/app14093590