Previous Issue
Volume 14, April-2
 
 
applsci-logo

Journal Browser

Journal Browser

Appl. Sci., Volume 14, Issue 9 (May-1 2024) – 404 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 5413 KiB  
Article
Winter Wheat Mapping in Shandong Province of China with Multi-Temporal Sentinel-2 Images
by Yongyu Feng, Bingyao Chen, Wei Liu, Xiurong Xue, Tongqing Liu, Linye Zhu and Huaqiao Xing
Appl. Sci. 2024, 14(9), 3940; https://doi.org/10.3390/app14093940 (registering DOI) - 05 May 2024
Viewed by 121
Abstract
Wheat plays an important role in China’s and the world’s food supply, and it is closely related to economy, culture and life. The spatial distribution of wheat is of great significance to the rational planning of wheat cultivation areas and the improvement of [...] Read more.
Wheat plays an important role in China’s and the world’s food supply, and it is closely related to economy, culture and life. The spatial distribution of wheat is of great significance to the rational planning of wheat cultivation areas and the improvement of wheat yield and quality. The current rapid development of remote sensing technology has greatly improved the efficiency of traditional agricultural surveys. The extraction of crop planting structure based on remote sensing images and technology is a popular topic in many researches. In response to the shortcomings of traditional methods, this research proposed a method based on the fusion of the pixel-based and object-oriented methods to map the spatial distribution of winter wheat. This method was experimented and achieved good results within Shandong Province. The resulting spatial distribution map of winter wheat has an overall accuracy of 92.2% with a kappa coefficient of 0.84. The comparison with the actual situation shows that the accuracy of the actual recognition of winter wheat is higher and better than the traditional pixel-based classification method. On this basis, the spatial pattern of winter wheat in Shandong was analyzed, and it was found that the topographic undulations had a great influence on the spatial distribution of wheat. This study vividly demonstrates the advantages and possibilities of combining pixel-based and object-oriented approaches through experiments, and also provides a reference for the next related research. Moreover, the winter wheat map of Shandong produced in this research is important for yield assessment, crop planting structure adjustment and the rational use of land resources. Full article
(This article belongs to the Special Issue Web Geoprocessing Services and GIS for Various Applications)
Show Figures

Figure 1

28 pages, 17751 KiB  
Article
An Effective Arbitrary Lagrangian-Eulerian-Lattice Boltzmann Flux Solver Integrated with the Mode Superposition Method for Flutter Prediction
by Tianchi Gong, Feng Wang and Yan Wang
Appl. Sci. 2024, 14(9), 3939; https://doi.org/10.3390/app14093939 (registering DOI) - 05 May 2024
Viewed by 103
Abstract
An arbitrary Lagrangian-Eulerian lattice Boltzmann flux solver (ALE-LBFS) coupled with the mode superposition method is proposed in this work and applied to study two- and three-dimensional flutter phenomenon on dynamic unstructured meshes. The ALE-LBFS is applied to predict the flow field by using [...] Read more.
An arbitrary Lagrangian-Eulerian lattice Boltzmann flux solver (ALE-LBFS) coupled with the mode superposition method is proposed in this work and applied to study two- and three-dimensional flutter phenomenon on dynamic unstructured meshes. The ALE-LBFS is applied to predict the flow field by using the vertex-centered finite volume method with an implicit dual time-stepping method. The convective fluxes are evaluated by using lattice Boltzmann solutions of the non-free D1Q4 lattice model and the viscous fluxes are obtained directly. Additional fluxes due to mesh motion are calculated directly by using local conservative variables and mesh velocity. The mode superposition method is used to solve for the dynamic response of solid structures. The exchange of aerodynamic forces and structural motions is achieved through interpolation with the radial basis function. The flow solver and the structural solver are tightly coupled so that the restriction on the physical time step can be removed. In addition, geometric conservation law (GCL) is also applied to guarantee conservation laws. The proposed method is tested through a series of simulations about moving boundaries and fluid–structure interaction problems in 2D and 3D. The present results show good consistency against the experiments and numerical simulations obtained from the literature. It is also shown that the proposed method not only can effectively predict the flutter boundaries in both 2D and 3D cases but can also accurately capture the transonic dip phenomenon. The tight coupling of the ALE-LBFS and the mode superposition method presents an effective and powerful tool for flutter prediction and can be applied to many essential aeronautical problems. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

22 pages, 11688 KiB  
Article
The Research on Deep Learning-Driven Dimensionality Reduction and Strain Prediction Techniques Based on Flight Parameter Data
by Wenbo Huang, Rui Wang, Mengchuang Zhang and Zhiping Yin
Appl. Sci. 2024, 14(9), 3938; https://doi.org/10.3390/app14093938 (registering DOI) - 05 May 2024
Viewed by 126
Abstract
Loads and strains in critical areas play a crucial role in aircraft structural health monitoring, the tracking of individual aircraft lifespans, and the compilation of load spectra. Direct measurement of actual flight loads presents challenges. This process typically involves using load-strain stiffness matrices, [...] Read more.
Loads and strains in critical areas play a crucial role in aircraft structural health monitoring, the tracking of individual aircraft lifespans, and the compilation of load spectra. Direct measurement of actual flight loads presents challenges. This process typically involves using load-strain stiffness matrices, derived from ground calibration tests, to map measured flight parameters to loads at critical locations. Presently, deep learning neural network methods are rapidly developing, offering new perspectives for this task. This paper explores the potential of deep learning models in predicting flight parameter loads and strains, integrating the methods of flight parameter preprocessing techniques, flight maneuver recognition (FMR), virtual ground calibration tests for wings, dimensionality reduction of flight data through Autoencoder (AE) network models, and the application of Long Short-Term Memory (LSTM) network models to predict strains. These efforts contribute to the prediction of strains in critical areas based on flight parameters, thereby enabling real-time assessment of aircraft damage. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

15 pages, 4037 KiB  
Article
Geological Conditions Evaluation of Coalbed Methane of Dacun Block in the Guxu Mining Area, Southern Sichuan Coalfield
by Xushuang Zhu, Zheng Zhang, Yonggui Wu, Zhengjiang Long and Xiaodong Lai
Appl. Sci. 2024, 14(9), 3937; https://doi.org/10.3390/app14093937 (registering DOI) - 05 May 2024
Viewed by 115
Abstract
The geological conditions evaluation of coalbed methane (CBM) is of great significance to CBM exploration and development. The CBM resources in the Southern Sichuan Coalfield (SSC) of China are very abundant; however, the CBM investigation works in this area are only just beginning, [...] Read more.
The geological conditions evaluation of coalbed methane (CBM) is of great significance to CBM exploration and development. The CBM resources in the Southern Sichuan Coalfield (SSC) of China are very abundant; however, the CBM investigation works in this area are only just beginning, and the basic geological research of CBM is seriously inadequate, restricting CBM exploration and development. Therefore, in this study, a representative CBM block (Dacun) in the SSC was selected, and the CBM geological conditions were evaluated based on field injection/fall-off well testing, gas content and composition measurements, and a series of laboratory experiments. The results show that the CH4 concentrations of coal seams in the Dacun Block, overall, take on an increasing trend as the depth increases, and the CH4 weathering zone depth is 310 m. Due to the coupled control of temperature and formation pressure, the gas content shows a “increase→decrease” trend as the depth increases, and the critical depth is around 700 m. The CBM is enriched in the hinge zone of the Dacun syncline. The moisture content shows a negative correlation with CBM gas content. The porosities of coal seams vary from 4.20% to 5.41% and increase with the Ro,max. The permeabilities of coal seams show a strong heterogeneity with values ranging from 0.001mD to 2.85 mD and present a decreasing trend with the increase in depth. Moreover, a negative relationship exists between coal permeability and minimum horizontal stress magnitude. The reservoir pressure coefficients are between 0.51 and 1.26 and show a fluctuation change trend (increase→decrease→increase) as the depth increases, reflecting that three sets of independent superposed gas-bearing systems possibly exist vertically in the Longtan Formation of the study area. The Langmuir volumes (VL) of coals range from 22.67 to 36.84 m3/t, indicating the coals have strong adsorptivity. The VL presents a parabolic change of first increasing and then decreasing with the increase in depth, and the turning depth is around 700 m, consistent with the critical depth of gas content. The gas saturations of coal seams are, overall, low, with values varying from 29.10% to 116.48% (avg. 68.45%). Both gas content and reservoir pressure show a positive correlation with gas saturation. The CBM development in the Dacun Block needs a large depressurization of reservoir pressure due to the low ratio (avg. 0.37) of critical desorption pressure to reservoir pressure. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

17 pages, 4580 KiB  
Article
Modal Derivatives for Efficient Vibration Prediction of Geometrically Nonlinear Structures with Friction Contact
by Fahimeh Mashayekhi and Stefano Zucca
Appl. Sci. 2024, 14(9), 3936; https://doi.org/10.3390/app14093936 (registering DOI) - 05 May 2024
Viewed by 94
Abstract
This paper evaluates the performance of the Rubin reduction methods, enhanced with static modal derivatives, for vibration analysis of geometrically nonlinear structures with friction contact. Static modal derivatives are computed numerically based on Rubin reduction, which includes free interface normal modes and residual [...] Read more.
This paper evaluates the performance of the Rubin reduction methods, enhanced with static modal derivatives, for vibration analysis of geometrically nonlinear structures with friction contact. Static modal derivatives are computed numerically based on Rubin reduction, which includes free interface normal modes and residual flexibility attachment modes, by introducing a finite displacement around these modes. Then, the most relevant static modal derivatives are selected using an improved strategy that incorporates weighting factors derived from both a nonlinear static analysis and a geometrically linear transient run. This enhanced Rubin method is also compared with the previously used enhanced Craig–Bampton method, which is based on fixed normal modes, constraint modes, and their static derivatives. The effectiveness of these methods is demonstrated through vibration analysis of a geometrically nonlinear beam in different contact configurations. Both methods proved their robustness, achieving accurate results with a relatively small number of modes in the reduced space, thus ensuring low online computation times. Furthermore, the analyses show the significant impact of using a geometrically nonlinear model on the accurate prediction of a contact state. Full article
14 pages, 2198 KiB  
Article
Facile Fabrication of Superhydrophobic and Superoleophilic Polyurethane Foil with Micropillar and Microporous Structures for Efficient Oil/Water Separation
by Weibin Wu, Mingjin Xu, Qinqin Wang, Xue Yang and Changgeng Shuai
Appl. Sci. 2024, 14(9), 3935; https://doi.org/10.3390/app14093935 (registering DOI) - 05 May 2024
Viewed by 117
Abstract
Oil spill cleanup in water remains a critical challenge due to the harmful secondary pollution from conventional methods such as burning or chemical degradation. Herein, we present a facile method to fabricate a superhydrophobic and superoleophilic polyurethane (PU) foil for efficient and environmentally [...] Read more.
Oil spill cleanup in water remains a critical challenge due to the harmful secondary pollution from conventional methods such as burning or chemical degradation. Herein, we present a facile method to fabricate a superhydrophobic and superoleophilic polyurethane (PU) foil for efficient and environmentally friendly oil/water separation. More specifically, micropillar arrays were embedded onto the foil surface through a nanoimprinting process. Microporous structures were generated at the foil cross-section by a supercritical carbon dioxide (CO2) saturation method. The dimensions of pillar and pore structures were optimized with the aim of boosting selective wetting (i.e., water repellency and oil attraction) properties. As a result, the developed PU foil shows an oil absorption efficiency nearly 4 times higher than a pristine reference. Moreover, the structured PU foil stably retains the absorbed oil for over a week, demonstrating an absorption capacity of nearly 400%, which is also much superior than the unstructured sample. Our concept of combining both topographical micropillars and cross-sectional micropores onto PU foil provides a novel approach for achieving efficient and environmental friendly oil/water separation. Full article
(This article belongs to the Special Issue Ultra-Precision Machining Technology and Equipments)
22 pages, 6228 KiB  
Article
Detecting Malicious Devices in IPSEC Traffic with IPv4 Steganography
by Gabriel Jekateryńczuk, Damian Jankowski, René Veyland and Zbigniew Piotrowski
Appl. Sci. 2024, 14(9), 3934; https://doi.org/10.3390/app14093934 (registering DOI) - 05 May 2024
Viewed by 120
Abstract
This study investigates the application of steganography for enhancing network security by detecting and promptly eliminating malicious packets to prevent flooding and consequent denial of service attacks while also identifying malicious equipment. The paper discusses foundational concepts such as the prisoner’s dilemma, covert [...] Read more.
This study investigates the application of steganography for enhancing network security by detecting and promptly eliminating malicious packets to prevent flooding and consequent denial of service attacks while also identifying malicious equipment. The paper discusses foundational concepts such as the prisoner’s dilemma, covert channels, qualitative metrics, and existing steganography techniques in computer communications. An architecture was developed to assess the effectiveness of this solution, and experiments were conducted, with their results presented. This contribution leverages established steganographic principles and seamlessly integrates with widely adopted IPsec protocols, offering a solution to improve covert communication within computer networks. Full article
(This article belongs to the Special Issue Emerging Technologies in Network Security and Cryptography)
Show Figures

Figure 1

23 pages, 5523 KiB  
Article
Experimental Studies and Performance Characteristics Analysis of a Variable-Volume Heat Pump in a Ventilation System
by Anton Frik, Juozas Bielskus, Rasa Džiugaitė-Tumėnienė and Violeta Motuzienė
Appl. Sci. 2024, 14(9), 3933; https://doi.org/10.3390/app14093933 (registering DOI) - 05 May 2024
Viewed by 113
Abstract
Air-to-air heat pumps are used in today’s ventilation systems increasingly often as they provide heating and cooling for buildings. The energy transformation modes of these units are subject to constant change due to the varying outdoor air state, including temperature and humidity. When [...] Read more.
Air-to-air heat pumps are used in today’s ventilation systems increasingly often as they provide heating and cooling for buildings. The energy transformation modes of these units are subject to constant change due to the varying outdoor air state, including temperature and humidity. When choosing how to operate and control energy transformers, it is important to be able to adapt effectively to the changing outside air conditions. Nowadays, modern commercial heat pumps offer two levels of control flexibility: a compressor with a variable speed and an electronic expansion valve. This combination of control elements has boosted the seasonal energy efficiency of heat pumps. For a long time, cycle control possibilities have been dominated by electronic controls. The authors of this paper aim to present an additional element to the traditional heat pump controls, which provides a third level of control over the cycle. To achieve the objective, experimental investigations of a heat pump integrated into a ventilation unit have been carried out under real-life conditions. The experiments involved varying the operating modes of the unit by adjusting the compressor speed, the position of the expansion valve, and the volume of the system loop. The study examined the performance characteristics of the heat pump and found that the performance of a variable-volume heat pump is comparable to that of a conventionally operated typical constant-volume heat pump system. In addition, the study found that by adding a third level of volume control to the active heating circuit, in combination with conventional controls, the heat pump’s heat output range could be extended by 69.62%. The study determined the variation of the heat pump cycle in the p-h diagram with the variation of the loop volume. The benefits and drawbacks of a heat pump with a variable-volume loop are discussed in this study. Full article
Show Figures

Figure 1

12 pages, 664 KiB  
Article
The Aerodynamics of New Design Soccer Balls Using a Three-Dimensional Printer
by Sungchan Hong, John Eric Goff and Takeshi Asai
Appl. Sci. 2024, 14(9), 3932; https://doi.org/10.3390/app14093932 (registering DOI) - 05 May 2024
Viewed by 92
Abstract
Eight balls were manufactured with a 3D printer to resemble various types of 32-panel soccer balls. One ball was completely smooth, whereas the other seven possessed various dimple patterns on their surface panels. Seam width and seam depth were also varied. Wind-tunnel experiments [...] Read more.
Eight balls were manufactured with a 3D printer to resemble various types of 32-panel soccer balls. One ball was completely smooth, whereas the other seven possessed various dimple patterns on their surface panels. Seam width and seam depth were also varied. Wind-tunnel experiments were performed to extract aerodynamic coefficients, and also to determine the critical Reynolds number for each manufactured ball. A new surface roughness parameter is introduced, and a fitting formula is presented, which allows for the prediction of the critical Reynolds number if the new parameter is known. Full article
(This article belongs to the Special Issue Advances in Unsteady Aerodynamics and Aeroelasticity)
Show Figures

Figure 1

19 pages, 15358 KiB  
Article
Graphic Reconstruction of a Roman Mosaic with Scenes of the Abduction of Europa
by Gregor Oštir, Dejana Javoršek, Primož Stergar, Tanja Nuša Kočevar, Aleksandra Nestorović and Helena Gabrijelčič Tomc
Appl. Sci. 2024, 14(9), 3931; https://doi.org/10.3390/app14093931 (registering DOI) - 05 May 2024
Viewed by 167
Abstract
This paper presents the reconstruction framework of the Roman mosaic with the central scene from the abduction of Europa. The mosaic depicting Europa, discovered in Ptuj (Slovenia) and dated from the second half of the third to the beginning of the fourth century [...] Read more.
This paper presents the reconstruction framework of the Roman mosaic with the central scene from the abduction of Europa. The mosaic depicting Europa, discovered in Ptuj (Slovenia) and dated from the second half of the third to the beginning of the fourth century AD, once decorated the representative room of a Roman villa. The experimental section addresses the materials and methods used in the 2D reconstruction of the mosaic, including the creation of line drawings of the mosaic based on the preserved part of the mosaic, photogrammetric acquisition, and the creation and processing of 1:1 raster reconstructions of the entire mosaic. This is followed by color management and interpretation approaches which allow the mosaic elements to be implemented in a 3D animation. The presented approaches could be implemented in the reconstruction process of other mosaics and archaeological objects with adaptations to the specifics of related objects. Full article
(This article belongs to the Special Issue Advanced Technologies in Digitizing Cultural Heritage Volume II)
Show Figures

Figure 1

10 pages, 1367 KiB  
Article
Thymic Hyperplasia and COVID-19 Pulmonary Sequelae: A Bicentric CT-Based Follow-Up Study
by Michaela Cellina, Maurizio Cè, Andrea Cozzi, Simone Schiaffino, Deborah Fazzini, Enzo Grossi, Giancarlo Oliva, Sergio Papa and Marco Alì
Appl. Sci. 2024, 14(9), 3930; https://doi.org/10.3390/app14093930 (registering DOI) - 05 May 2024
Viewed by 231
Abstract
This study aimed to investigate the role of the thymus in influencing long-term outcomes of COVID-19 by comparing the thymic appearance in patients with and without COVID-19 pulmonary sequelae at chest computed tomography (CT). A total of 102 adult patients previously hospitalized for [...] Read more.
This study aimed to investigate the role of the thymus in influencing long-term outcomes of COVID-19 by comparing the thymic appearance in patients with and without COVID-19 pulmonary sequelae at chest computed tomography (CT). A total of 102 adult patients previously hospitalized for COVID-19 underwent a follow-up chest CT three months after discharge. Pulmonary sequelae and thymic appearance were independently assessed by two experienced radiologists. The thymus was detectable in 55/102 patients (54%), with only 7/55 (13%) having any kind of pulmonary sequelae, compared to 33 out of 47 (70%, p < 0.001) in patients without thymic visibility, as confirmed in age-stratified analysis and at logistic regression analysis, where thymic involution had a 9.3 odds ratio (95% CI 3.0–28.2, p < 0.001) for the development of pulmonary sequelae. These results support the hypothesis that thymic reactivation plays a protective role against adverse long-term outcomes of COVID-19. Full article
(This article belongs to the Special Issue Medical Imaging for Radiotherapy)
Show Figures

Figure 1

16 pages, 3089 KiB  
Article
Solvothermal Treatment of Micron-Sized Commercial SrAl2O4:Eu2+, Dy3+ Phosphors and One-Step Preparation of Nanophosphors for Fingerprint Imaging
by Rungang Liu, Xueting Liu, Weikai Lin and Yingliang Liu
Appl. Sci. 2024, 14(9), 3929; https://doi.org/10.3390/app14093929 (registering DOI) - 04 May 2024
Viewed by 233
Abstract
Preparing submicron and nanoscale phosphors with good optical properties for practical applications is a challenging task for current inorganic long afterglow luminescent materials. This study utilized commercialized SrAl2O4:Eu2+, Dy3+ phosphors (SAOED) as raw materials and employed [...] Read more.
Preparing submicron and nanoscale phosphors with good optical properties for practical applications is a challenging task for current inorganic long afterglow luminescent materials. This study utilized commercialized SrAl2O4:Eu2+, Dy3+ phosphors (SAOED) as raw materials and employed solvents with lower polarity or non-polar solvents for dynamic solvothermal treatment. The commercialized phosphor’s overall average particle size was reduced from 42.3 μm to 23.6 μm while maintaining the fluorescence intensity at 91.39% of the original sample. Additionally, the study demonstrated the applicability of the dynamic solvothermal method to most other commercialized inorganic phosphors. The experiment produced a high-brightness nano-sized phosphor with a yield of 5.64%. The average diameter of the phosphor was 85 nm, with an average thickness of 16 nm. The quantum efficiency of the phosphor was 74.46% of the original sample. The fingerprint imaging results suggest that the nano-sized phosphors have potential for practical applications. Full article
(This article belongs to the Section Applied Thermal Engineering)
20 pages, 1827 KiB  
Article
Efficient Crowd Anomaly Detection Using Sparse Feature Tracking and Neural Network
by Sarah Altowairqi, Suhuai Luo, Peter Greer and Shan Chen
Appl. Sci. 2024, 14(9), 3928; https://doi.org/10.3390/app14093928 (registering DOI) - 04 May 2024
Viewed by 279
Abstract
Crowd anomaly detection is crucial in enhancing surveillance and crowd management. This paper proposes an efficient approach that combines spatial and temporal visual descriptors, sparse feature tracking, and neural networks for efficient crowd anomaly detection. The proposed approach utilises diverse local feature extraction [...] Read more.
Crowd anomaly detection is crucial in enhancing surveillance and crowd management. This paper proposes an efficient approach that combines spatial and temporal visual descriptors, sparse feature tracking, and neural networks for efficient crowd anomaly detection. The proposed approach utilises diverse local feature extraction methods, including SIFT, FAST, and AKAZE, with a sparse feature tracking technique to ensure accurate and consistent tracking. Delaunay triangulation is employed to represent the spatial distribution of features in an efficient way. Visual descriptors are categorised into individual behaviour descriptors and interactive descriptors to capture the temporal and spatial characteristics of crowd dynamics and behaviour, respectively. Neural networks are then utilised to classify these descriptors and pinpoint anomalies, making use of their strong learning capabilities. A significant component of our study is the assessment of how dimensionality reduction methods, particularly autoencoders and PCA, affect the feature set’s performance. This assessment aims to balance computational efficiency and detection accuracy. Tests conducted on benchmark crowd datasets highlight the effectiveness of our method in identifying anomalies. Our approach offers a nuanced understanding of crowd movement and patterns by emphasising both individual and collective characteristics. The visual and local descriptors facilitate high-level analysis by closely relating to semantic information and crowd behaviour. The analysis observed shows that this approach offers an efficient framework for crowd anomaly detection, contributing to improved crowd management and public safety. The proposed model achieves accuracy of 99.5 %, 96.1%, 99.0% and 88.5% in the UMN scenes 1, 2, and 3 and violence in crowds datasets, respectively. Full article
Show Figures

Figure 1

13 pages, 2025 KiB  
Article
Evaluation of Antimutagenic and Antioxidant Properties in Fomes fomentarius L.: Potential Development as Functional Food
by Chang-Gyun Park and Heung-Bin Lim
Appl. Sci. 2024, 14(9), 3927; https://doi.org/10.3390/app14093927 (registering DOI) - 04 May 2024
Viewed by 293
Abstract
Numerous studies derived from medicinal herbs have been conducted to explore bioactive compounds as potential alternatives to synthetic drugs, aiming to mitigate harmful side effects and alleviate economic burdens. In this study, we assessed the safety and potential biological activities of extracts from [...] Read more.
Numerous studies derived from medicinal herbs have been conducted to explore bioactive compounds as potential alternatives to synthetic drugs, aiming to mitigate harmful side effects and alleviate economic burdens. In this study, we assessed the safety and potential biological activities of extracts from Fomes fomentarius L. (FFL). The FFL extracts were obtained through various ethanol concentrations, as follows: 0%, 30%, 50%, 70%, and 100%, respectively. All extracts did not induce mutagenicity even up to 5 mg/plate concentration. In the assessment of antioxidant activity, only the hot water extract exhibited weaker antioxidant activity than the other ethanol extracts. Notably, all extracts exhibited significant antimutagenetic effects only with a metabolically active enzyme system (S9 mix). The condition of 70% ethanol extract displayed the most robust antimutagenic activity; thus, the extract was sequentially fractionated with solvents of varying polarities to isolate inhibitory components. After the fractionization, the diethyl ether and butanol fractions effectively suppressed the growth of mutated colonies, suggesting that those such as essential oils, vitamins, alkaloids, and flavonoids can be considered major active compounds. Overall, our study demonstrated that FFL extracts induce potent antioxidant and antimutagenic effects. Further investigations are warranted to verify specific active compounds which induce an antimutagenic effect. Our findings provide valuable insights into FFL as a promising source for potential functional food development. Full article
(This article belongs to the Special Issue Advances in Biological Activities of Natural Products)
Show Figures

Figure 1

15 pages, 4050 KiB  
Article
Transverse Spin Hall Effect and Twisted Polarization Ribbons at the Sharp Focus
by Victor V. Kotlyar, Alexey A. Kovalev, Alexey M. Telegin, Elena S. Kozlova, Sergey S. Stafeev, Alexander Kireev, Kai Guo and Zhongyi Guo
Appl. Sci. 2024, 14(9), 3926; https://doi.org/10.3390/app14093926 (registering DOI) - 04 May 2024
Viewed by 173
Abstract
In this work, using a Richards-Wolf formalism, we derive explicit analytical relationships to describe vectors of the major and minor axes of polarization ellipses centered in the focal plane when focusing a cylindrical vector beam of integer order n. In these beams, the [...] Read more.
In this work, using a Richards-Wolf formalism, we derive explicit analytical relationships to describe vectors of the major and minor axes of polarization ellipses centered in the focal plane when focusing a cylindrical vector beam of integer order n. In these beams, the major axis of a polarization ellipse is found to lie in the focal plane, with the minor axis being perpendicular to the focal plane. This means that the polarization ellipse is perpendicular to the focal plane, with its polarization vector rotating either clockwise or anticlockwise and forming “photonic wheels”. Considering that the wave vector is also perpendicular to the focal plane, we conclude that the polarization ellipse and the wave vector are in the same plane, so that at some point these can coincide, which is uncharacteristic of transverse electromagnetic oscillations. In a cylindrical vector beam, the spin angular momentum vector lies in the focal plane, so when making a circle centered on the optical axis, at some sections, the handedness of the spin vector and circular motion are the same, being opposite elsewhere. This effect may be called an azimuthal transverse spin Hall effect, unlike the familiar longitudinal spin Hall effect found at the sharp focus. The longitudinal spin Hall effect occurs when opposite-sign longitudinal projections of the spin angular momentum vector are spatially separated in the focal plane. In this work, we show that for the latter, there are always an even number of spatially separated regions and that, when making an axis-centered circle, the major-axis vector of polarization ellipse forms a two-sided twisted surface with an even number of twists. Full article
(This article belongs to the Section Optics and Lasers)
21 pages, 1842 KiB  
Article
Hemp Flour as a Functional Ingredient for the Partial Replacement of Nitrites in a Minced Meat Model: Effect on Nutrient Composition, Antioxidant Profile and Sensory Characteristics
by Georgios Papatzimos, Paraskevi Mitlianga, Zoitsa Basdagianni and Eleni Kasapidou
Appl. Sci. 2024, 14(9), 3925; https://doi.org/10.3390/app14093925 (registering DOI) - 04 May 2024
Viewed by 257
Abstract
Consumers are becoming increasingly concerned about synthetic preservatives like nitrites in meat, prompting the meat industry to explore alternatives in order to lower nitrite levels. This study investigated the effects of incorporating hemp flour on the chemical and shelf-life characteristics of minced meat [...] Read more.
Consumers are becoming increasingly concerned about synthetic preservatives like nitrites in meat, prompting the meat industry to explore alternatives in order to lower nitrite levels. This study investigated the effects of incorporating hemp flour on the chemical and shelf-life characteristics of minced meat products with reduced nitrite content. Three types of products were prepared: HF0 (control) (0% hemp flour, 30 mg/kg NaNO2), HF4 (4% hemp flour, 15 mg/kg NaNO2), and HF6 (6% hemp flour, 15 mg/kg NaNO2). Analyses were conducted on proximate composition, fatty acid composition, antioxidant properties, lipid oxidation, colour, texture, and sensory characteristics. The addition of hemp flour at 6% reduced moisture content and influenced ash and sodium chloride levels in minced meat products. Despite the favorable fatty acid profile of hemp flour, its inclusion did not significantly alter the composition of the products. However, it did lead to significantly lower levels of lipid oxidation and modified the antioxidant capacity. Colour attributes were affected, with a higher hemp flour content resulting in colour deterioration. Cooking loss increased with a higher hemp flour content, and the minced meat products were significantly harder. Visual and olfactory sensory evaluation indicated that there were no significant differences in most traits, suggesting consumer acceptance of hemp-flour-enriched minced meat products. Overall, this study highlights the potential of hemp as a functional ingredient in minced meat products, also exhibiting the ability to reduce lipid oxidation. Full article
(This article belongs to the Special Issue Advances in Meat Quality and Processing)
Show Figures

Figure 1

14 pages, 1150 KiB  
Case Report
The Occurrence of a Rare Mandibular Retromolar Triangle Schwannoma and Its Differentiation from Other Rare and Atypical Oral Cavity Tumours
by Kamil Nelke, Maciej Janeczek, Edyta Pasicka, Krzysztof Żak, Szczepan Barnaś, Jan Nienartowicz, Grzegorz Gogolewski, Irma Maag and Maciej Dobrzyński
Appl. Sci. 2024, 14(9), 3924; https://doi.org/10.3390/app14093924 (registering DOI) - 04 May 2024
Viewed by 164
Abstract
Cone-beam computed tomography (CBCT) remains the diagnostic modality of choice. The involvement of the cortical bone and adjacent teeth can be easily established via CBCT. Magnetic resonance can be helpful in the estimation of any other soft-tissue tumour spread within this anatomical area. [...] Read more.
Cone-beam computed tomography (CBCT) remains the diagnostic modality of choice. The involvement of the cortical bone and adjacent teeth can be easily established via CBCT. Magnetic resonance can be helpful in the estimation of any other soft-tissue tumour spread within this anatomical area. The soft, hard-tissue, or mixed aetiology of tumours requires a differential diagnosis and accurate evaluation. If such pathologies arise, an adequate biopsy or incisional biopsy is essential to evaluate the type of tumour histopathologically. The occurrence of some neural tumours in the oral cavity is rare. Schwannomas (SCs), like some neuromas and other types of neural tumours, are rare and atypical. During clinical examination, a smooth, sponge-like, elastic mass could indicate other small salivary gland tumours rather than an oral neural tumour. Such pathologies of neural origins are quite rare and are uncommon findings in the oral cavity; therefore, their appearance may be conflated with other more typical benign or malignant tumours in the oral cavity. Establishing the status of bone via CBCT, the tooth involvement and the composition of the cortical bone may be helpful for establishing the best treatment of choice. The presented case report describes a rare schwannoma localised at the mandibular retromolar trigone. Full article
(This article belongs to the Special Issue Orthodontics and Maxillofacial Surgery)
20 pages, 687 KiB  
Article
Exploring Flexural Strength Variation in Polymeric Materials for Provisional Fixed Prosthetic Structures: Comparative Analysis with and without Reinforcement through Laboratory Experimentation and Statistical Evaluation
by Mariana Dimova-Gabrovska, Todor Uzunov, Angela Gusiyska, Dobromira Shopova, Iva Taneva, Ivan Gerdzhikov and Stefan Rangelov
Appl. Sci. 2024, 14(9), 3923; https://doi.org/10.3390/app14093923 (registering DOI) - 04 May 2024
Viewed by 185
Abstract
Provisional fixed partial dentures represent a critical phase in dental treatment, necessitating heightened mechanical durability, particularly in comprehensive and extended treatment plans. Strengthening these structures with various reinforcing materials offers a method to enhance their resilience. Utilizing a three-point testing methodology on standardized [...] Read more.
Provisional fixed partial dentures represent a critical phase in dental treatment, necessitating heightened mechanical durability, particularly in comprehensive and extended treatment plans. Strengthening these structures with various reinforcing materials offers a method to enhance their resilience. Utilizing a three-point testing methodology on standardized trial specimens allows for a comparative assessment of various materials and reinforcement techniques for pre-prosthetic applications. This study aims to validate and assess the significance of integrating different reinforcing materials into standardized test bodies. The study focuses on test specimens comprising three types of unreinforced laboratory and clinical polymers for provisional constructions (n = 6)—heat-cured PMMA (Superpont C+B, Spofa Dental, Czech Republic), CAD-CAM prefabricated PMMA (DD temp MED, Dental Direkt, Germany), CAD-CAM printing resin (Temporary CB Resin, FormLabs, USA), self-polymerizing PEMA (DENTALON plus, Kulzer, Germany), light-polymerizing composite (Revotek LC, GC, Japan), and dual-polymerizing composite (TempSpan, Pentron, USA). Additionally, laboratory polymers are evaluated in groups with five types of reinforcing filaments (n = 15)—Glass Fiber (Fiber Splint One-Layer, Polydentia, Switzerland), Polyethylene thread (Ribbond Regular 4.0 mm, Ribbond Inc., USA), triple-stranded chrome-cobalt wire for splinting 015″ (Leone S.p.a., Italy), Aesthetic ligature wire 012” (Leone S.p.a., Italy), and Glass Fiber coated with light-cured composite 8.5 × 0.2 mm (Interlig, Angelus, Brazil). Analysis of the data using Generalized Linear Models (GLMs) reveals that the experimental bodies, produced via the subtractive digital method using PMMA (DD temp MED, Dental Direkt GmbH, Germany) as the polymer and glass filaments as the reinforcement, exhibit superior mechanical properties, particularly when pre-wetted with Interlig liquid composite (Angelus, Brazil). Full article
(This article belongs to the Section Applied Dentistry and Oral Sciences)
18 pages, 8221 KiB  
Article
Experimental Study on the Relationship between Time-Varying Uplift Displacement and Grout Diffusion in Sand
by Huan-Xiao Hu, Wei Cao, Chao Deng and Yu-Fan Lu
Appl. Sci. 2024, 14(9), 3922; https://doi.org/10.3390/app14093922 (registering DOI) - 04 May 2024
Viewed by 214
Abstract
Traditional model tests for soil and rock materials face challenges in observing the slurry diffusion within the soil mass, hindering the understanding of the relationship between grouting-induced ground deformation and grout diffusion. This study conducts grouting diffusion model tests using a self-developed experimental [...] Read more.
Traditional model tests for soil and rock materials face challenges in observing the slurry diffusion within the soil mass, hindering the understanding of the relationship between grouting-induced ground deformation and grout diffusion. This study conducts grouting diffusion model tests using a self-developed experimental setup on both ordinary and transparent sand. We investigate cement slurry diffusion patterns, distribution characteristics, and temporal variations in ground uplift displacement during the grouting process. By leveraging a visualization grouting model and non-intrusive displacement measurements, we directly observe and verify the changes in cement slurry diffusion and ground displacement in transparent sand. The results indicate the following: during non-steady grouting in sand, slurry diffusion progresses from low-pressure infiltration to medium-pressure compaction, culminating in high-pressure fracturing; ground uplift displacement curves exhibit a consistent “step-like” increase with grouting time, featuring accelerated growth after each step; and visualization tests reveal a strong correlation between grouting pressure, slurry diffusion, and corresponding uplift displacement. Distinct features in the grouting pressure plot align with the acceleration phases of the displacement; at a water–cement ratio (w/c) of 0.8, the stratum’s vertical deformation shows a symmetric “higher in the middle, lower on the sides” distribution. As the burial depth decreases, the stratum’s uplift displacement tends to flatten horizontally, especially at w/c = 0.8 and 1.2. Full article
(This article belongs to the Special Issue Recent Advances in Soft Soil Engineering)
Show Figures

Figure 1

23 pages, 5487 KiB  
Article
Cardiorespiratory Response to Workload Volume and Ergonomic Risk: Automotive Assembly Line Operators’ Adaptations
by Dania Furk, Luís Silva, Mariana Dias, Carlos Fujão, Phillip Probst, Hui Liu and Hugo Gamboa
Appl. Sci. 2024, 14(9), 3921; https://doi.org/10.3390/app14093921 (registering DOI) - 04 May 2024
Viewed by 219
Abstract
Repetitive tasks can lead to long-term cardiovascular problems due to continuous strain and inadequate recovery. The automobile operators on the assembly line are exposed to these risks when workload volume changes according to the workstation type. However, the current ergonomic assessments focus primarily [...] Read more.
Repetitive tasks can lead to long-term cardiovascular problems due to continuous strain and inadequate recovery. The automobile operators on the assembly line are exposed to these risks when workload volume changes according to the workstation type. However, the current ergonomic assessments focus primarily on observational and, in some cases, biomechanical methods that are subjective and time-consuming, overlooking cardiorespiratory adaptations. This study aimed to analyze the cardiorespiratory response to distinct workload volumes and ergonomic risk (ER) scores for an automotive assembly line. Sixteen male operators (age = 38 ± 8 years; BMI = 25 ± 3 kg·m2) volunteered from three workstations (H1, H2, and H3) with specific work cycle duration (1, 3, and 5 min respectively). Electrocardiogram (ECG), respiratory inductance plethysmography (RIP), and accelerometer (ACC) data were collected during their shift. The results showed significant differences from the first to the last 10 min, where H3 had its SDRRi reduced (p = 0.014), H1’s phase synchrony and H2’s coordination between thoracic and abdominal movements decreased (p < 0.001, p = 0.039). In terms of ergonomic risk, the moderate-high rank showed a reduction in SDRRi (p = 0.037) and moderate-risk activities had diminished phase synchrony (p = 0.018) and correlation (p = 0.004). Thus, the explored parameters could have the potential to develop personalized workplace adaptation and risk assessment systems. Full article
(This article belongs to the Special Issue Biomechanics and Motor Control on Human Movement Analysis)
Show Figures

Figure 1

13 pages, 8883 KiB  
Article
Dielectric Properties and Magnetoelectric Effect of Bi7Fe3Ti3O21 Ceramic Material Doped with Gadolinium Ions
by Diana Szalbot, Joanna A. Bartkowska, Jolanta Makowska, Maciej Chrunik, Katarzyna Osińska and Małgorzata Adamczyk-Habrajska
Appl. Sci. 2024, 14(9), 3920; https://doi.org/10.3390/app14093920 (registering DOI) - 04 May 2024
Viewed by 200
Abstract
Pure Bi7Fe3Ti3O21 ceramic material and gadolinium ion (Gd3+)-doped ones were prepared by solid-state reaction method using simple oxides. The findings of the XRD measurements confirmed the initial author’s assumption that the dopant ions substituted [...] Read more.
Pure Bi7Fe3Ti3O21 ceramic material and gadolinium ion (Gd3+)-doped ones were prepared by solid-state reaction method using simple oxides. The findings of the XRD measurements confirmed the initial author’s assumption that the dopant ions substituted in perovskite blocks influenced the dimensions of the unit cell parameters. All obtained materials are single-phase and show an orthorhombic structure with the Fm2m space group. Microstructure studies show that the admixture gadolinium doping changes the microstructure of the base material, changing grain shapes from plate-like to rounded. The temperature dependences of the electric permittivity have shown the existence of a maximum, the temperature location of which depends on both the frequency and the concentration of Gd3+ ions. The highest values of electric permittivity were characteristic of the material with an admixture of Gd3+ ions in the amount of x = 0.6 (f = 1 kHz), and the lowest values were for material with x = 0.2 (f = 1 kHz). Studies of the magnetoelectric effect have shown that the strongest coupling between magnetic and electrical properties was demonstrated by a material doped with Ga3+ ions in the amount of x = 0.2, for which the magnetoelectric coupling coefficient is equal to α = 12.58·10−9 s/m. Full article
(This article belongs to the Special Issue Novel Ceramic Materials: Processes, Properties and Applications)
Show Figures

Figure 1

14 pages, 3077 KiB  
Article
Few-Shot Federated Learning: A Federated Learning Model for Small-Sample Scenarios
by Junfeng Tian, Xinyao Chen and Shuo Wang
Appl. Sci. 2024, 14(9), 3919; https://doi.org/10.3390/app14093919 (registering DOI) - 04 May 2024
Viewed by 198
Abstract
Traditional federated learning relies heavily on mature datasets, which typically consist of large volumes of uniformly distributed data. While acquiring extensive datasets is relatively straightforward in academic research, it becomes prohibitively expensive in practical applications, especially in emerging or specialized medical fields characterized [...] Read more.
Traditional federated learning relies heavily on mature datasets, which typically consist of large volumes of uniformly distributed data. While acquiring extensive datasets is relatively straightforward in academic research, it becomes prohibitively expensive in practical applications, especially in emerging or specialized medical fields characterized by data scarcity. This poses a significant challenge. To address this issue, our study introduces a federated learning model that integrates few-shot learning techniques and is complemented by personalized knowledge distillation to further enhance the model’s classification accuracy. This innovative approach significantly reduces the dependence on large-scale datasets, enabling efficient model training under limited data conditions. Our experimental evaluations conducted on small-scale datasets, including Omniglot, FC100, and mini-ImageNet, indicate that our model surpasses existing state-of-the-art federated learning models in terms of accuracy, achieving a substantial improvement. Specifically, on the FC100 dataset, the classification accuracy of the conventional federated learning algorithm FedAvg was merely 19.6%, whereas the method proposed in this study achieved a classification accuracy of 41%, representing an improvement of more than double. This advancement not only highlights our model’s superiority in alleviating the challenges of limited data availability, but also expands the applicability of federated learning to a broader range of applications. Full article
Show Figures

Figure 1

18 pages, 6064 KiB  
Article
Discrete Element Study on the Mechanical Response of Soft Rock Considering Water-Induced Softening Effect
by Chi Liu, Xiaoli Liu, Haoyang Peng, Enzhi Wang and Sijing Wang
Appl. Sci. 2024, 14(9), 3918; https://doi.org/10.3390/app14093918 (registering DOI) - 04 May 2024
Viewed by 212
Abstract
Soft rocks are prone to softening upon contact with water, and their rapid deterioration in mechanical properties is a significant cause of instability and failure soft rock masses. Besides, the macroscopic mechanical response of rocks is closely related to the mineral composition and [...] Read more.
Soft rocks are prone to softening upon contact with water, and their rapid deterioration in mechanical properties is a significant cause of instability and failure soft rock masses. Besides, the macroscopic mechanical response of rocks is closely related to the mineral composition and microstructure. The purpose of this research is to consider the heterogeneity factors and softening effects, and systematically investigate the influence of confining pressure and softening time on the damage and failure characteristics of soft rocks. The Voronoi polygons generated using a built-in Voronoi diagram algorithm and contact elements (the substances with cementing capacity) of UDEC discrete element method are employed to represent the clastic grains and interfacial cemented bonding (ICB) structures in soft rock. Based on the Voronoi probabilistic method, the grain-based discrete element model (GB-DEM) considering the softening effect is established by introducing a meso-scale softening damage factor, along with a detailed calibration method for meso-scale parameters. The damage parameters such as the crack initiation threshold, the crack damage threshold, the damage degree, and the tensile and shear crack ratio are then analyzed. The study results indicate that the simulated strengths of the heterogeneous models under different water immersion time are in good agreement with the experimental results. The thresholds for crack initiation and damage, the proportions of tensile and shear cracks, and the degree of damage are positively correlated with the confining pressure. The attenuation patterns of the crack initiation threshold and damage threshold in the heterogeneous models with water immersion time are highly consistent with the meso-scale softening damage factor. The damage parameters show a trend of increasing first and then decreasing with the extension of water immersion time. The cement–cement contact elements are the main locations for crack initiation and propagation. The research outcomes have significant theoretical and practical implications for understanding and predicting the mechanical behavior of soft rocks under a water–rock interaction. Full article
Show Figures

Figure 1

13 pages, 5613 KiB  
Article
Effects of Amyloid Beta (Aβ) Oligomers on Blood–Brain Barrier Using a 3D Microfluidic Vasculature-on-a-Chip Model
by Samuel Chidiebere Uzoechi, Boyce Edwin Collins, Cody Joseph Badeaux, Yan Li, Sang Su Kwak, Doo Yeon Kim, Daniel Todd Laskowitz, Jin-Moo Lee and Yeoheung Yun
Appl. Sci. 2024, 14(9), 3917; https://doi.org/10.3390/app14093917 (registering DOI) - 04 May 2024
Viewed by 277
Abstract
The disruption of the blood–brain barrier (BBB) in Alzheimer’s Disease (AD) is largely influenced by amyloid beta (Aβ). In this study, we developed a high-throughput microfluidic BBB model devoid of a physical membrane, featuring endothelial cells interacting with an extracellular matrix (ECM). This [...] Read more.
The disruption of the blood–brain barrier (BBB) in Alzheimer’s Disease (AD) is largely influenced by amyloid beta (Aβ). In this study, we developed a high-throughput microfluidic BBB model devoid of a physical membrane, featuring endothelial cells interacting with an extracellular matrix (ECM). This paper focuses on the impact of varying concentrations of Aβ1–42 oligomers on BBB dysfunction by treating them in the luminal. Our findings reveal a pronounced accumulation of Aβ1–42 oligomers at the BBB, resulting in the disruption of tight junctions and subsequent leakage evidenced by a barrier integrity assay. Additionally, cytotoxicity assessments indicate a concentration-dependent increase in cell death in response to Aβ1–42 oligomers (LC50 ~ 1 µM). This study underscores the utility of our membrane-free vascular chip in elucidating the dysfunction induced by Aβ with respect to the BBB. Full article
(This article belongs to the Collection BioMEMS)
Show Figures

Figure 1

17 pages, 2817 KiB  
Article
A Multi-Stance Detection Method by Fusing Sentiment Features
by Weidong Huang and Jinyuan Yang
Appl. Sci. 2024, 14(9), 3916; https://doi.org/10.3390/app14093916 (registering DOI) - 04 May 2024
Viewed by 178
Abstract
Stance information has a significant influence on market strategy, government policy, and public opinion. Users differ not only in their polarity but also in the degree to which they take a stand. The traditional classification of stances is quite simple and cannot fully [...] Read more.
Stance information has a significant influence on market strategy, government policy, and public opinion. Users differ not only in their polarity but also in the degree to which they take a stand. The traditional classification of stances is quite simple and cannot fully depict the diversity of stances. At the same time, traditional approaches ignore user sentiment features when expressing their stances. As a result, this paper develops a multi-stance detection model by fusing sentiment features. First, a five-category stance indicator system is built based on the LDA model, then sentiment features are extracted from the reviews using the sentiment lexicon, and finally, stance detection is implemented using a hybrid neural network model. The experiment shows that the proposed method can classify stances into five categories and perform stance detection more accurately. Full article
Show Figures

Figure 1

13 pages, 1213 KiB  
Article
Quarterly Percentual Change in Height, Weight, Body Fat and Muscle Mass in Young Football Players of Different Categories
by Moisés Falces-Prieto, Ricardo Martín-Moya, Gabriel Delgado-García, Rui Miguel Silva, Halil Ibrahim Ceylan and Juan Carlos de la Cruz-Márquez
Appl. Sci. 2024, 14(9), 3915; https://doi.org/10.3390/app14093915 (registering DOI) - 04 May 2024
Viewed by 243
Abstract
The purpose of this study was to compare the change of Body Composition (BC) (height, weight, body fat percentage and muscle mass) as a function of the trimester and category in a sample of young soccer players. Data collection was performed in five [...] Read more.
The purpose of this study was to compare the change of Body Composition (BC) (height, weight, body fat percentage and muscle mass) as a function of the trimester and category in a sample of young soccer players. Data collection was performed in five consecutive seasons (2016–2021). The sample consisted of 741 young male football players of different categories (Under 14 year old (U14), U15, U16, U17 and U18) belonging to a high-performance football academy. Considering the trimestral change of all the raw anthropometrics variables a set of new variables called the trimestral change in percentage (TC) of each raw variable was computed. Two-way repeated measures ANOVA (including the raw anthropometric variables as dependent and trimester and the age-category as independent) revealed differences for the anthropometric variables (p value < 0.001 in all cases), concluding that the effect of trimester reaches conventional levels of statistical significance. The trimester by age in contrast was significant (p < 0.05) in all raw variables except for the height. Considering the TC variables, the variable height-TC showed an increase (p value < 0.05) while the variable muscle mass-TC was near the significative value (p = 0.09). In this case the interaction trimester by age category was not significative (p > 0.05 in all cases). It seems that height suffers more changes in the first trimester but the weight, body fat percentage and muscle mass changes more in the second and third trimester. It is important to modulate the training load according to the trimester-specific response, although these improvements may vary according to factors such as genetics, diet, sleep and the specific training. Full article
Show Figures

Figure 1

21 pages, 3653 KiB  
Article
Design and Implementation of an Automated Disaster-Recovery System for a Kubernetes Cluster Using LSTM
by Ji-Beom Kim, Je-Bum Choi and Eun-Sung Jung
Appl. Sci. 2024, 14(9), 3914; https://doi.org/10.3390/app14093914 - 03 May 2024
Viewed by 332
Abstract
With the increasing importance of data in modern business environments, effective data management and protection strategies are gaining increasing research attention. Data protection in a cloud environment is crucial for safeguarding information assets and maintaining sustainable services. This study introduces a system structure [...] Read more.
With the increasing importance of data in modern business environments, effective data management and protection strategies are gaining increasing research attention. Data protection in a cloud environment is crucial for safeguarding information assets and maintaining sustainable services. This study introduces a system structure that integrates Kubernetes management platforms with backup and restoration tools. This system is designed to immediately detect disasters and automatically recover applications from another Kubernetes cluster. The experimental results show that this system executes the restoration process within 15 s without human intervention, enabling rapid recovery. This, in turn, significantly reduces the potential for delays and errors compared to manual recovery processes, thereby enhancing data management and recovery efficiency in cloud environments. Moreover, our research model predicts the CPU utilization of the cluster using Long Short-Term Memory (LSTM). The necessity of scheduling through this predict is made clearer through comparison with experiments without scheduling, demonstrating its ability to prevent performance degradation. This research highlights the efficiency and necessity of automatic recovery systems in cloud environments, setting a new direction for future research. Full article
Show Figures

Figure 1

8 pages, 479 KiB  
Editorial
Applied Maritime Engineering and Transportation Problems 2022
by Lucjan Gucma, Krzysztof Naus, Marko Perkovič and Cezary Specht
Appl. Sci. 2024, 14(9), 3913; https://doi.org/10.3390/app14093913 - 03 May 2024
Viewed by 290
Abstract
It is probable that the term marine traffic engineering (MTE) was first used by Toyoda and Fuji [...] Full article
(This article belongs to the Special Issue Applied Maritime Engineering and Transportation Problems 2022)
Show Figures

Figure 1

9 pages, 507 KiB  
Article
Degree of Hamstring Extensibility and Its Relationship with Pelvic Tilt in Professional Cyclists
by José M. Muyor, Pedro A. López-Miñarro, Fernando Alacid and Daniel López-Plaza
Appl. Sci. 2024, 14(9), 3912; https://doi.org/10.3390/app14093912 - 03 May 2024
Viewed by 256
Abstract
The cyclist’s posture is typically characterized by a trunk flexion position to reach the handlebar of the bike. The pelvis serves as the base of the spine, and its tilt has been associated with the degree of extensibility of the hamstring, particularly in [...] Read more.
The cyclist’s posture is typically characterized by a trunk flexion position to reach the handlebar of the bike. The pelvis serves as the base of the spine, and its tilt has been associated with the degree of extensibility of the hamstring, particularly in flexion postures of the trunk. The aim of this study was to determine whether, in professional cyclists, the degree of hamstring extensibility influences the pelvic tilt maintained while seated on the bicycle with support from the three handlebar grips of the road bike, as well as in other positions of the bicycle. To evaluate pelvic tilt, all participants were measured using the Spinal Mouse system. The results revealed statistically significant differences in pelvic tilt among the six positions assessed (p ≤ 0.05). Furthermore, the degree of hamstring extensibility of the hamstrings presented a strong and positive correlation with pelvic tilt in standing posture (r = 0.82), Sit-and-Reach (r = 0.76), and Toe-Touch (r = 0.88). However, the degree of hamstring extensibility showed no significant correlations with pelvic tilt in any posture maintained on the bicycle. Full article
(This article belongs to the Special Issue Research of Sports Medicine on Health Care)
20 pages, 2500 KiB  
Article
Explainable Artificial Intelligence to Support Work Safety in Forestry: Insights from Two Large Datasets, Open Challenges, and Future Work
by Ferdinand Hoenigsberger, Anna Saranti, Anahid Jalali, Karl Stampfer and Andreas Holzinger
Appl. Sci. 2024, 14(9), 3911; https://doi.org/10.3390/app14093911 - 03 May 2024
Viewed by 267
Abstract
Forestry work, which is considered one of the most demanding and dangerous professions in the world, is claiming more and more lives. In a country as small as Austria, more than 50 forestry workers are killed in accidents every year, and the number [...] Read more.
Forestry work, which is considered one of the most demanding and dangerous professions in the world, is claiming more and more lives. In a country as small as Austria, more than 50 forestry workers are killed in accidents every year, and the number is increasing rapidly. This serves as a catalyst for us to implement more stringent measures for workplace safety in order to achieve the sustainability objective of SDG 3, which focuses on health and well-being. This study contributes to the analysis of occupational accidents and focuses on two large real-world datasets from both the Austrian Federal Forests (ÖBf) and the Austrian Workers’ Compensation Board (AUVA). Decision trees, random forests, and fully connected neural networks are used for the analysis. By exploring different interpretation methods, this study sheds light on the decision-making processes ranging from basic association to causal inference and emphasizes the importance of causal inference in providing actionable insights for accident prevention. This paper contributes to the topic of explainable AI, specifically in its application to occupational safety in forestry. As a result, it introduces novel aspects to decision support systems in this application domain. Full article
(This article belongs to the Section Ecology Science and Engineering)
Previous Issue
Back to TopTop