The Effect of Carob Extract on Antioxidant, Antimicrobial and Sensory Properties of Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ingredients
2.2. Chemicals
2.3. Carob Flour Extract Preparation
2.4. Spray Drying
2.5. Bread Production
2.6. Microbial Load of Bread Samples
2.7. Challenge Test
2.8. Extraction of Phenols from Bread Samples
2.9. Total Phenol Content
2.10. Antioxidant Activity
2.11. Bread Colour
2.12. Textural Properties
2.13. Sensory Analysis
2.14. Statistical Analysis
3. Results and Discussion
3.1. Microbial Load of Bread Samples
3.2. Challenge Test
3.3. Antioxidant Potential of Bread with the Addition of Carob Extract
3.4. Colour of the Bread Crust and Crumb
3.5. Textural Parameters of the Bread Crumb
3.6. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tomás-Barberán, F.A.; Ferreres, F.; Gil, M.I. Antioxidant phenolic metabolites from fruit and vegetables and changes during postharvest storage and processing. Stud. Nat. Prod. Chem. 2000, 23, 739–795. [Google Scholar] [CrossRef]
- Jain, T.; Jain, V.; Pandey, R.; Vyas, A.; Shukla, S.S. Microwave assisted extraction for phytoconstituents—An overview. Asian J. Res. Chem. 2009, 2, 19–25. [Google Scholar]
- Ibrahim, U.K.; Salleh, R.M.; Maqsood-ul-Haque, S.N.S. Bread towards Functional Food: An Overview. Int. J. Food Eng. 2015, 1, 39–43. [Google Scholar] [CrossRef]
- Ioannou, I.; Hafsa, I.; Hamdi, S.; Charbonnel, C.; Ghoul, M. Review of the effects of food processing and formulation on flavonol and anthocyanin behaviour. J. Food Eng. 2012, 111, 208–217. [Google Scholar] [CrossRef]
- Lachowicz, S.; Michalska-Ciechanowska, A.; Oszmiański, J. The impact of maltodextrin and inulin on the protection of natural antioxidants in powders made of Saskatoon berry fruit, juice, and pomace as functional food ingredients. Molecules 2020, 25, 1805. [Google Scholar] [CrossRef]
- Kim, S.J.; Cho, A.R.; Han, J. Antioxidant and antimicrobial activities of leafy green vegetable extracts and their applications to meat product preservation. Food Cont. 2013, 29, 112–120. [Google Scholar] [CrossRef]
- Skandamis, P.N.; Nychas, G.J. Effect of oregano essential oil on microbiological and physico-chemical attributes of minced meat stored in air and modified atmospheres. J. Appl. Microbiol. 2001, 91, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Hsouna, A.B.; Trigui, M.; Mansour, R.B.; Jarraya, R.M.; Damak, M.; Jaoua, S. Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int. J. Food Microbiol. 2011, 148, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef]
- Papadoupoulo, C.; Soulti, K.; Roussis, I.G. Potential antimicrobial activity of red and white wine phenolic extracts against strains of Staphyloccocus aureus, Escherichia coli and Candida albicans. Food. Technol. Biotechnol. 2005, 43, 41–46. [Google Scholar]
- Negi, P.S. Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. Int. J. Food Microbiol. 2012, 156, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Gruendel, S.; Otto, B.; Garcia, A.L.; Wagner, K.; Mueller, C.; Weickert, M.O.; Koebnick, C. Carob pulp preparation rich in insoluble dietary fibre and polyphenols increases plasma glucose and serum insulin responses in combination with a glucose load in humans. Br. J. Nutr. 2007, 98, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Zunft, H.J.; Luder, W.; Harde, A.; Haber, B.; Graubaum, H.J.; Koebnick, C.; Grunwald, J. Carob pulp preparation rich in insoluble fibre lowers total and LDL cholesterol in hypercholesterolemic patients. Eur. J. Nutr. 2003, 42, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Klenow, S.; Glei, M.; Haber, B.; Owen, R.; Pool-Zobel, B.L. Carob fibre compounds modulate parameters of cell growth differently in human ht29 colon adenocarcinoma cells than in LT97 colon adenoma cells. Food Chem. Toxicol. 2008, 46, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Kivçak, B.; Mert, T.; Öztürk, H.T. Antimicrobial and cytotoxic activities of Ceratonia siliqua L. extracts. Turk. J. Biol. 2002, 26, 197–200. [Google Scholar]
- Šoronja-Simović, D.; Zahorec, J.; Šereš, Z.; Griz, A.; Sterniša, M.; Smole Možina, S. The food industry by-products in bread making: Single and combined effect of carob pod flour, sugar beet fibers and molasses on dough rheology, quality and food safety. J. Food Sci. Technol. 2022, 59, 1429–1439. [Google Scholar] [CrossRef] [PubMed]
- Rašković, A.; Martić, N.; Tomas, A.; Andrejić-Višnjić, B.; Bosanac, M.; Atanasković, M.; Nemet, M.; Popović, R.; Krstić, M.; Vukmirović, S.; et al. Carob Extract (Ceratonia siliqua L.): Effects on Dyslipidemia and Obesity in a High-Fat Diet-Fed Rat Model. Pharmaceutics 2023, 15, 2611. [Google Scholar] [CrossRef] [PubMed]
- Loullis, A.; Pinakoulaki, E. Carob as cocoa substitute: A review on composition, health benefits and food applications. Eur. Food Res. Technol. 2018, 244, 959–977. [Google Scholar] [CrossRef]
- Sivam, A.; Sun-Waterhouse, D.; Waterhouse, G.I.N.; Quek, S.Y.; Perera, C.O. Physicochemical properties of bread dough and finished bread with added pectin fiber and phenolic antioxidants. J. Food Sci. 2011, 76, H97–H107. [Google Scholar] [CrossRef]
- Martić, N.; Zahorec, J.; Stilinović, N.; Andrejić-Višnjić, B.; Pavlić, B.; Kladar, N.; Rašković, A. Hepatoprotective effect of carob pulp flour (Ceratonia siliqua L.) extract obtained by optimized microwave-assisted extraction. Pharmaceutics 2022, 14, 657. [Google Scholar] [CrossRef]
- ISO 4833-1; Microbiology of the Food Chain—Horizontala Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 Degrees C by the Pour Plate Technique. International Organization for Standardization (ISO): Geneva, Switzerland, 2013.
- ISO 7954:1987; Microbiology—General Guidance for Enumeration of Yeasts and Moulds—Colony Count Technique at 25 Degrees C. International Organization for Standardization (ISO): Geneva, Switzerland, 1987.
- Harrigan, W.F. Laboratory Methods in Food Microbiology, 3rd ed.; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- ISO 7932:2004; Microbiology of Food and Animal Feeding Stuffs–Horizontal Method for the Enumeration of Presumptive Bacillus cereus–Colony-Count Technique at 30 Degrees C. International Organization for Standardization (ISO): Geneva, Switzerland, 2004.
- Samapundo, S.; de Baenst, I.; Eeckhout, M.; Devlieghere, F. Inhibitory activity of fermenters towards Zygosaccharomyces bailii and their potential to replace potassium sorbate in dressings. Lebensm.-Wiss. Technol. 2017, 79, 309–315. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. Soc. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Espín, J.C.; Soler-Rivas, C.; Wichers, H.J. Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2,2-diphenyl-1-picrylhydrazyl radical. J. Agric. Food Chem. 2000, 48, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggenete, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- CIE. International Commission on Illumination, Colorimetry: Official Recommendation of the International Commission on Illumination; Publication CIE No. (E-1.31); Bureau Central de la CIE: Paris:, France, 1976. [Google Scholar]
- American Association of Cereal Chemists. Approved Methods of the AACC; Method 74-09; The Association: St. Paul, MN, USA, 2000. [Google Scholar]
- Stone, H.; Sidel, J.L. Sensory Evaluation Practices, 3rd ed.; Elservier Academic Press: California, CA, USA, 2004; p. 377. [Google Scholar]
- Rosenkvist, H.; Hansen, Å. Contamination profiles and characterization of Bacillus species in wheat bread and raw materials for bread production. Int. J. Food Microbiol. 1994, 26, 353–363. [Google Scholar] [CrossRef]
- Kaur, P. Survival and growth of Bacillus cereus in bread. J. Appl. Bacteriol. 1986, 60, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Jääskeläinen, E.L.; Häggblom, M.M.; Anderson, M.A.; Vanne, L.; Salkinoja-Salonen, M.S. Potential of Bacillus cereus for producing an emetic toxin, cereulide, in bakery products: Quantitative analysis by chemical and biological methods. J. Food Prot. 2003, 66, 1047–1054. [Google Scholar] [CrossRef]
- Pinho, E.; Ferreira, I.; Barros, L.; Carvalho, A.M.; Soares, G.; Henriques, M. Antibacterial potential of northeastern Portugal wild plant extracts and respective phenolic compounds. BioMed Res. Int. 2014, 2014, 814590. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S. Fortification of multigrain flour with onion skin powder as a natural preservative: Effect on quality and shelf life of the bread. Food Biosci. 2021, 41, 100992. [Google Scholar] [CrossRef]
- Pravilnik o Mikrobiološkoj Ispravnosti Namirnica u Prometu (2002). Official Gazette of the Federal Republic of Yugoslavia, No. 26/93, 53/95, and 46/2002. Available online: http://demo.paragraf.rs/demo/combined/Old/t/t2002_09/t09_0001.htm (accessed on 21 April 2024).
- Notermans, S.; In’t Veld, P. Microbiological challenge testing for ensuring safety of food products. Int. J. Food Microbiol. 1994, 24, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Saranraj, P.; Geetha, M. Microbial spoilage of bakery products and its control by preservatives. Int. J. Pharm. Biol. Arch. 2012, 3, 38–48. [Google Scholar]
- Al-Khail, A.A. Antifungal activity of some extracts against some plant pathogenic fungi. Pak. J. Biol. Sci. 2005, 8, 413–417. [Google Scholar] [CrossRef]
- Sittisart, P.; Yossan, S.; Prasertsan, P. Antifungal property of chili, shallot and garlic extracts against pathogenic fungi, Phomopsis spp., isolated from infected leaves of para rubber (Hevea brasiliensis Muell. Arg.). J. Agric. Nat. Resour. 2017, 51, 485–491. [Google Scholar] [CrossRef]
- Torgbo, S.; Sukatta, U.; Kamonpatana, P.; Sukyai, P. Ohmic heating extraction and characterization of rambutan (Nephelium lappaceum L.) peel extract with enhanced antioxidant and antifungal activity as a bioactive and functional ingredient in white bread preparation. Food Chem. 2022, 382, 132332. [Google Scholar] [CrossRef] [PubMed]
- Avallone, R.; Plessi, M.; Baraldi, M.; Monzani, A. Determination of chemical composition of carob (Ceratonia siliqua): Protein, fat, carbohydrate and tannins. J. Food. Comp. Anal. 1997, 10, 166–172. [Google Scholar] [CrossRef]
- Czaja, A.; Czubaszek, A.; Wyspianska, D.; Sokoł-Łeztowska, A.; Kucharska, A.Z. Quality of wheat bread enriched with onion extract and polyphenols content and antioxidant activity changes during bread storage. Int. J. Food Sci. Technol. 2020, 55, 1725–1734. [Google Scholar] [CrossRef]
- Peng, X.; Ma, J.; Cheng, K.-W.; Jiang, Y.; Chen, F.; Wang, M. The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chem. 2010, 119, 49–53. [Google Scholar] [CrossRef]
- Strgar Kurečić, M. Uvođenje CGRT Testne Karte Boja za Karakterizaciju Digitalnog Fotografskog Sustava. Ph.D. Thesis, Grafički fakultet, Zagreb, Croatia, 2007. [Google Scholar]
- Czubaszek, A.; Czaja, A.; Sokół-Łętowska, A.; Kolniak-Ostek, J.; Kucharska, A.Z. Changes in Antioxidant Properties and Amounts of Bioactive Compounds during Simulated In Vitro Digestion of Wheat Bread Enriched with Plant Extracts. Molecules 2021, 26, 6292. [Google Scholar] [CrossRef]
- Miyazaki, M.; Maeda, T.; Morita, N. Effect of various dextrin substitutions for wheat flour on dough properties and bread qualities. Food Res. Int. 2004, 7, 59–65. [Google Scholar] [CrossRef]
- Pasrija, D.; Ezhilarasi, P.N.; Indrani, D.; Anandharamakrishnan, C. Microencapsulation of green tea polyphenols and its effect on incorporated bread quality. Lebensm.-Wiss. Technol. 2015, 64, 289–296. [Google Scholar] [CrossRef]
- Czubaszek, A.; Czaja, A.; Sokół-Łętowska, A.; Kolniak-Ostek, J.; Kucharska, A.Z. Quality of bread enriched with microencapsulated anthocyanin extracts during in vitro simulated digestion. J. Cereal Sci. 2023, 113, 103724. [Google Scholar] [CrossRef]
- Karolini-Skaradzińska, Z.; Czubaszek, A.; Stanisławska, M.; Szewców, P. Zmiany właściwości wypiekowych mąki pszennej pod wpływem dodatku maltodekstryn. Żywność Nauka Technol. Jakość 2012, 4, 108–121. [Google Scholar]
- Kimani, B.G.; Kerekes, E.B.; Szebenyi, C.; Krisch, J.; Vágvölgyi, C.; Papp, T.; Takó, M. In vitro activity of selected phenolic compounds against planktonic and biofilm cells of food-contaminating yeasts. Foods 2021, 10, 1652. [Google Scholar] [CrossRef]
Sample | Amount of Total Aerobic Bacteria (log CFU/g) | Amount of Sporogenous Bacteria (log CFU/g) | Amount of Yeasts and Moulds (log CFU/g) | Presence of Bacillus cereus |
---|---|---|---|---|
Control | 4.84 ± 0.47 a | 3.26 ± 1.17 | <2 | + |
E0.5% | 4.25 ± 0.41 a | <2 | <2 | + |
E1.5% | 3.29 ± 0.78 a,b | <2 | <2 | − |
E2.5% | 2.54 ± 0.52 b,c | <2 | <2 | − |
E3.5% | 2.49 ± 0.87 c | <2 | <2 | − |
Sample | TP (mg GAE/g) | DPPH (µM TE/g) | FRAP (µM Fe2+/g) | ABTS (µM TE/g) |
---|---|---|---|---|
Control | 0.12 ± 0.04 a | 0.04 ± 0.02 a | 0.70 ± 0.03 a | 0.85 ± 0.05 a |
E0.5% | 0.14 ± 0.03 a | 0.12 ± 0.02 b | 0.92 ± 0.05 b | 0.89 ± 0.03 a |
E1.5% | 0.18 ± 0.03 a,b | 0.14 ± 0.02 b | 0.99 ± 0.03 b | 1.07 ± 0.03 b |
E2.5% | 0.19 ± 0.05 a,b | 0.76 ± 0.12 c | 0.89 ± 0.02 b | 1.92 ± 0.02 c |
E3.5% | 0.27 ± 0.04 b | 1.24 ± 0.05 d | 1.19 ± 0.02 c | 1.96 ± 0.07 c |
Sample | L* | a* | b* |
---|---|---|---|
Crust colour | |||
Control | 65.92 ± 1.33 c | 7.57 ± 0.20 a | 32.19 ± 2.41 b |
E0.5% | 65.44 ± 1.72 c | 7.67 ±1.12 a | 29.07 ± 2.97 a,b |
E1.5% | 60.45 ± 3.31 b,c | 9.02 ± 1.01 a | 28.82 ± 3.24 a,b |
E2.5% | 55.28 ± 5.14 a,b | 11.94 ± 0.48 b | 28.55 ± 2.87 a,b |
E3.5% | 54.58 ± 1.74 a | 12.82 ± 0.80 b | 26.42 ± 1.53 a |
Crumb colour | |||
Control | 71.41 ± 1.48 b | −0.94 ± 0.10 a | 16.05 ± 0.57 b |
E0.5% | 68.59 ± 2.59 b | 0.29 ± 0.09 b | 13.48 ± 1.06 a |
E1.5% | 64.61 ± 0.91 a | 1.36 ± 0.21 c | 13.15 ± 0.56 a |
E2.5% | 63.83 ± 1.90 a | 2.07 ± 0.17 d | 13.07 ± 0.42 a |
E3.5% | 63.32 ± 1.22 a | 2.61 ± 0.21 e | 13.04 ± 0.98 a |
Sample | Hardness (N) | Chewiness (N) | Cohesiveness | Springiness |
---|---|---|---|---|
Control | 10.87 ± 0.36 a | 4.18 ± 0.14 a | 0.68 ± 0.01 a | 0.91 ± 0.05 a |
E0.5% | 11.01 ± 0.17 a | 4.55 ± 0.22 b | 0.69 ± 0.02 a,b | 0.88 ± 0.01 a |
E1.5% | 11.94 ± 0.31 b | 4.87 ± 0.11 b,c | 0.67 ± 0.01 a,b | 0.82 ± 0.03 b |
E2.5% | 12.39 ± 0.43 b | 5.10 ± 0.27 c | 0.65 ± 0.03 a,b | 0.74 ± 0.02 c |
E3.5% | 12.44 ± 0.36 b | 5.09 ± 0.21 c | 0.66 ± 0.02 a | 0.70 ± 0.01 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahorec, J.; Šoronja-Simović, D.; Petrović, J.; Šereš, Z.; Pavlić, B.; Sterniša, M.; Smole Možina, S.; Ačkar, Đ.; Šubarić, D.; Jozinović, A. The Effect of Carob Extract on Antioxidant, Antimicrobial and Sensory Properties of Bread. Appl. Sci. 2024, 14, 3603. https://doi.org/10.3390/app14093603
Zahorec J, Šoronja-Simović D, Petrović J, Šereš Z, Pavlić B, Sterniša M, Smole Možina S, Ačkar Đ, Šubarić D, Jozinović A. The Effect of Carob Extract on Antioxidant, Antimicrobial and Sensory Properties of Bread. Applied Sciences. 2024; 14(9):3603. https://doi.org/10.3390/app14093603
Chicago/Turabian StyleZahorec, Jana, Dragana Šoronja-Simović, Jovana Petrović, Zita Šereš, Branimir Pavlić, Meta Sterniša, Sonja Smole Možina, Đurđica Ačkar, Drago Šubarić, and Antun Jozinović. 2024. "The Effect of Carob Extract on Antioxidant, Antimicrobial and Sensory Properties of Bread" Applied Sciences 14, no. 9: 3603. https://doi.org/10.3390/app14093603
APA StyleZahorec, J., Šoronja-Simović, D., Petrović, J., Šereš, Z., Pavlić, B., Sterniša, M., Smole Možina, S., Ačkar, Đ., Šubarić, D., & Jozinović, A. (2024). The Effect of Carob Extract on Antioxidant, Antimicrobial and Sensory Properties of Bread. Applied Sciences, 14(9), 3603. https://doi.org/10.3390/app14093603