Comparison of Physicochemical Characteristics and Microbial Quality between Commercially Available Organic and Conventional Japanese Soy Sauces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physicochemical Characteristic
2.2. The Amino Acid Composition
2.3. Analysis of Volatile Compounds
2.4. Total Polyphenol Content Determination
2.5. Total Flavonoid Content
2.6. The Antioxidant Activity
2.7. Microbial Quality
2.8. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characteristics of Japanese Sauces
3.2. Amino Acid Profile of Shoyu Sauces
3.3. The Antioxidant Activity of Soy Sauces
3.4. Aroma Volatile Compounds of Soy Sauces
3.5. The Microbial Quality of Soya Sauces
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ito, K.; Matsuyama, A. Koji Molds for Japanese Soy Sauce Brewing: Characteristics and Key Enzymes. J. Fungi 2021, 7, 658. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, S.; Kumazawa, K.; Nishimura, O. Comparison of Key Aroma Compounds in Five Different Types of Japanese Soy Sauces by Aroma Extract Dilution Analysis (AEDA). J. Agric. Food Chem. 2012, 60, 3831–3836. [Google Scholar] [CrossRef] [PubMed]
- Lioe, H.N.; Selamat, J.; Yasuda, M. Soy Sauce and Its Umami Taste: A Link from the Past to Current Situation. J. Food Sci. 2010, 75, R71–R76. [Google Scholar] [CrossRef]
- Global Organic Food Market Report and Strategies to 2032. Available online: https://www.thebusinessresearchcompany.com/report/organic-food-market (accessed on 15 September 2023).
- Association of Analytical Chemists (AOAC). Official Methods of Analysis, Association of Analytical Chemists, 15th ed.; Association of Official Analytical Chemist, Inc.: Washington, DC, USA, 2000. [Google Scholar]
- Jaworska, G.; Bernaś, E. Comparison of Amino Acid Content in Canned Pleurotus Ostreatus and Agaricus Bisporus Mushrooms. J. Fruit Ornam. Plant Res. 2011, 74, 107–115. [Google Scholar] [CrossRef]
- Chmiel, M.; Roszko, M.; Hać-Szymańczuk, E.; Adamczak, L.; Florowski, T.; Pietrzak, D.; Cegiełka, A.; Bryła, M. Time evolution of microbiological quality and content of volatile compounds in chicken fillets packed using various techniques and stored under different conditions. Poult. Sci. 2020, 99, 2. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Ciurzynska, A.; Trusinska, M.; Rybak, K.; Wiktor, A.; Nowacka, M. The Influence of Pulsed Electric Field and Air Temperature on the Course of Hot-Air Drying and the Bioactive Compounds of Apple Tissue. Molecules 2023, 28, 2970. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Santos, J.S.; Maciel, L.G.; Nunes, D.S. Chemical Perspective and Criticism on Selected Analytical Methods Used to Estimate the Total Content of Phenolic Compounds in Food Matrices. TrAC Trends Anal. Chem. 2016, 80, 266–279. [Google Scholar] [CrossRef]
- Wiktor, A.; Chadzynska, M.; Rybak, K.; Dadan, M.; Witrowa-Rajchert, D.; Nowacka, M. The Influence of Polyols on the Process Kinetics and Bioactive Substance Content in Osmotic Dehydrated Organic Strawberries. Molecules 2022, 27, 1376. [Google Scholar] [CrossRef]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for antioxidant assays for food components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef]
- Pobiega, K.; Kot, A.M.; Przybył, J.L.; Synowiec, A.; Gniewosz, M. Comparison of the Chemical Composition and Antioxidant Properties of Propolis from Urban Apiaries. Molecules 2023, 28, 6744. [Google Scholar] [CrossRef] [PubMed]
- ISO 6887-1:1999; Microbiology of Food and Animal Feeding Stuffs. Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination-Part 1: General Rules for the Preparation of the Initial Suspension and Decimal Dilutions. International Standards Organization: Geneva, Switzerland, 2003.
- ISO 4833-1:2013; Microbiology of the Food Chain. Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique. International Standards Organization: Geneva, Switzerland, 2013.
- ISO 21527-1:2008; Microbiology of Food and Animal Feeding Stuffs. Horizontal Method for the Enumeration of Yeasts and Moulds—Part 1: Colony Count Technique in Products with Water Activity Greater than 0.95. International Standards Organization: Geneva, Switzerland, 2008.
- ISO 21527-2:2008; Microbiology of Food and Animal Feeding Stuffs. Horizontal Method for the Enumeration of Yeasts and Moulds—Part 2: Colony Count Technique in Products with Water Activity Less than or Equal to 0.95. International Standards Organization: Geneva, Switzerland, 2008.
- ISO 4832:2006; Microbiology of Food and Animal Feeding Stuffs. Horizontal Method for the Enumeration of Coliforms-Colony-Count Technique. International Standards Organization: Geneva, Switzerland, 2006.
- ISO 6579:2002; Microbiology of Food and Animal Feeding Stuffs. Horizontal Method for the Detection of Salmonella spp. International Standards Organization: Geneva, Switzerland, 2002.
- ISO 6888-1:2022-03; Microbiology of Food and Animal Feeding Stuffs. Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and Other Species) Part 1: Technique Using Baird-Parker Agar Medium. International Standards Organization: Geneva, Switzerland, 2021.
- Hamano, M. Water Activity and Water Behavior of Soy Sauce, Dehydrated Soy Sauce and the Improvement on Hygroscopicity of Dehydrated Soy Sauce. In Developments in Food Engineering: Proceedings of the 6th International Congress on Engineering and Food; Yano, T., Matsuno, R., Nakamura, K., Eds.; Springer: Boston, MA, USA, 1994; pp. 179–181. [Google Scholar] [CrossRef]
- Lioe, H.N.; Wada, K.; Aoki, T.; Yasuda, M. Chemical and Sensory Characteristics of Low Molecular Weight Fractions Obtained from Three Types of Japanese Soy Sauce (Shoyu)—Koikuchi, Tamari and Shiro Shoyu. Food Chem. 2007, 4, 1669–1677. [Google Scholar] [CrossRef]
- Ginting, E.; Tarmizi, A. Mutant Promising Lines of Black-Seeded Soybean for Soy Sauce Preparation. IOP Conf. Ser. Earth Environ. Sci. 2021, 803, 012030. [Google Scholar] [CrossRef]
- Fukushima, D.; Steinkraus, K. Industrialization of Fermented Soy Sauce Production Centering around Japanese Shoyu; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Devanthi, P.V.P.; Gkatzionis, K. Soy Sauce Fermentation: Microorganisms, Aroma Formation, and Process Modification. Food Res. Int. 2019, 120, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Diez-Simon, C.; Eichelsheim, C.; Mumm, R.; Hall, R.D. Chemical and Sensory Characteristics of Soy Sauce: A Review. J. Agric. Food Chem. 2020, 68, 11612–11630. [Google Scholar] [CrossRef] [PubMed]
- Sato, A.; Oshima, K.; Noguchi, H.; Ogawa, M.; Takahashi, T.; Oguma, T.; Koyama, Y.; Itoh, T.; Hattori, M.; Hanya, Y. Draft Genome Sequencing and Comparative Analysis of Aspergillus Sojae NBRC4239. DNA Res. 2011, 18, 165–176. [Google Scholar] [CrossRef] [PubMed]
- O’toole, D.K. The Role of Microorganisms in Soy Sauce Production. Adv. Appl. Microbiol. 2019, 108, 45–113. [Google Scholar] [CrossRef] [PubMed]
- Basha, M.B.; Mason, C.; Shamsudin, M.F.; Hussain, H.I.; Salem, M.A. Consumers Attitude Towards Organic Food. Procedia Econ. Financ. 2015, 31, 444–452. [Google Scholar] [CrossRef]
- van der Sluis, C.; Tramper, J.; Wijffels, R.H. Enhancing and Accelerating Flavour Formation by Salt-Tolerant Yeasts in Japanese Soy-Sauce Processes. Trends Food Sci. Technol. 2001, 9, 322–327. [Google Scholar] [CrossRef]
- Tanaka, Y.; Watanabe, J.; Mogi, Y. Monitoring of the Microbial Communities Involved in the Soy Sauce Manufacturing Process by PCR-Denaturing Gradient Gel Electrophoresis. Food Microbiol. 2012, 31, 100–106. [Google Scholar] [CrossRef]
- Erickson, D.R. Practical Handbook of Soybean Processing and Utilization, 1st ed.; AOCS Press: Champaign, IL, USA; Elsevier Inc.: Amsterdam, The Netherlands, 1995. [Google Scholar] [CrossRef]
- Ouyang, Q.; Chen, Q.; Zhao, J.; Lin, H. Determination of Amino Acid Nitrogen in Soy Sauce Using Near Infrared Spectroscopy Combined with Characteristic Variables Selection and Extreme Learning Machine. Food Bioprocess Technol. 2013, 9, 2486–2493. [Google Scholar] [CrossRef]
- Sassi, S.; Wan-Mohtar, W.A.A.Q.I.; Jamaludin, N.S.; Ilham, Z. Recent Progress and Advances in Soy Sauce Production Technologies: A Review. J. Food Process. Preserv. 2021, 45, e15799. [Google Scholar] [CrossRef]
- Wu, T.Y.; Kan, M.S.; Siow, L.F.; Palniandy, L.K. Effect of Temperature on Moromi Fermentation of Soy Sauce with Intermittent Aeration. Afr. J. Biotechnol. (AJB) 2010, 9, 702–706. [Google Scholar]
- Bøhn, T.; Cuhra, M.; Traavik, T.; Sanden, M.; Fagan, J.; Primicerio, R. Compositional Differences in Soybeans on the Market: Glyphosate Accumulates in Roundup Ready GM Soybeans. Food Chem. 2014, 153, 207–215. [Google Scholar] [CrossRef]
- Kamal, G.M.; Uddin, J.; Muhsinah, A.B.; Wang, X.; Noreen, A.; Sabir, A.; Musharraf, S.G. 1H NMR-Based Metabolomics and 13C Isotopic Ratio Evaluation to Differentiate Conventional and Organic Soy Sauce. Arab. J. Chem. 2022, 15, 103516. [Google Scholar] [CrossRef]
- Kong, Y.; Zhang, L.L.; Zhang, Y.Y.; Sun, B.G.; Sun, Y.; Zhao, J.; Chen, H.T. Evaluation of Non-Volatile Taste Components in Commercial Soy Sauces. Int. J. Food Prop. 2018, 21, 1854–1866. [Google Scholar] [CrossRef]
- Nampoothiri, K.M.; Nagy, V.; Kovacs, K.; Szakacs, G.; Pandey, A. L-Leucine Aminopeptidase Production by Filamentous Aspergillus Fungi. Lett. Appl. Microbiol. 2005, 41, 498–504. [Google Scholar] [CrossRef]
- Dini, I.; Grumetto, L. Recent Advances in Natural Polyphenol Research. Molecules 2022, 27, 8777. [Google Scholar] [CrossRef]
- Lesschaeve, I.; Noble, A.C. Polyphenols: Factors Influencing Their Sensory Properties and Their Effects on Food and Beverage Preferences. Am. J. Clin. Nutr. 2005, 81 (Suppl. S1), 330S–335S. [Google Scholar] [CrossRef]
- Ham, Y.-K.; Hwang, K.-E.; Song, D.-H.; Choi, J.-H.; Choi, Y.-S.; Kim, H.-W. Relationship between the Antioxidant Capacity of Soy Sauces and Its Impact on Lipid Oxidation of Beef Patties. Meat Sci. 2019, 158, 107907. [Google Scholar] [CrossRef]
- Hsiao, W.Y.; Gu, K.L.; Weng, Y.M. Antioxidant Activity and Contents of Total Phenolic, Monacolin K, GABA and Citrinin of Monascus-Fermented Soy Sauce. Adv. Mater. Res. 2013, 807–809, 2066–2070. [Google Scholar] [CrossRef]
- Malenčić, D.; Cvejić, J.; Miladinović, J. Polyphenol Content and Antioxidant Properties of Colored Soybean Seeds from Central Europe. J. Med. Food 2012, 15, 89–95. [Google Scholar] [CrossRef]
- Taie, H.A.A.; El-Mergawi, R.; Radwan, S. Isoflavonoids, Flavonoids, Phenolic Acids Profiles and Antioxidant Activity of Soybean Seeds as Affected by Organic and Bioorganic Fertilization. Am.-Eurasian J. Agric. Environ. Sci. 2008, 4, 207–213. [Google Scholar]
- Cevallos-Casals, B.A.; Cisneros-Zevallos, L. Impact of Germination on Phenolic Content and Antioxidant Activity of 13 Edible Seed Species. Food Chem. 2010, 119, 1485–1490. [Google Scholar] [CrossRef]
- Kim, M.-A.; Kim, M.-J. Isoflavone Profiles and Antioxidant Properties in Different Parts of Soybean Sprout. J. Food Sci. 2020, 85, 689–695. [Google Scholar] [CrossRef]
- Aoshima, H.; Ooshima, S. Anti-Hydrogen Peroxide Activity of Fish and Soy Sauce. Food Chem. 2009, 112, 339–343. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Chen, J.; Tang, H.; Wang, C.; Li, Z.; Xiao, Y. Bioprocessing of Soybeans (Glycine max L.) by Solid-State Fermentation with Eurotium cristatum YL-1 Improves Total Phenolic Content, Isoflavone Aglycones, and Antioxidant Activity. RSC Adv. 2020, 10, 16928–16941. [Google Scholar] [CrossRef]
- Miri, S.; Hajihosseini, R.; Saedi, H.; Vaseghi, M.; Rasooli, A. Fermented Soybean Meal Extract Improves Oxidative Stress Factors in the Lung of Inflammation/Infection Animal Model. Ann. Microbiol. 2019, 69, 1507–1515. [Google Scholar] [CrossRef]
- Zhao, Y.-S.; Eweys, A.S.; Zhang, J.-Y.; Zhu, Y.; Bai, J.; Darwesh, O.M.; Zhang, H.-B.; Xiao, X. Fermentation Affects the Antioxidant Activity of Plant-Based Food Material through the Release and Production of Bioactive Components. Antioxidants 2021, 10, 2004. [Google Scholar] [CrossRef]
- Kuligowski, M.; Pawłowska, K.; Jasińska-Kuligowska, I.; Nowak, J. Isoflavone Composition, Polyphenols Content and Antioxidative Activity of Soybean Seeds during Tempeh Fermentation. CyTA-J. Food 2017, 15, 27–33. [Google Scholar] [CrossRef]
- Barnes, S.; Prasain, J.; D’Alessandro, T.; Arabshahi, A.; Botting, N.; Lila, M.; Jackson, G.; Janle, E.; Weaver, C. The Metabolism and Analysis of Isoflavones and Other Dietary Polyphenols in Foods and Biological Systems. Food Funct. 2011, 2, 235–244. [Google Scholar] [CrossRef]
- Murphy, P.A.; Song, T.; Buseman, G.; Barua, K.; Beecher, G.R.; Trainer, D.; Holden, J. Isoflavones in Retail and Institutional Soy Foods. J. Agric. Food Chem. 1999, 47, 2697–2704. [Google Scholar] [CrossRef]
- Fukutake, M.; Takahashi, M.; Ishida, K.; Kawamura, H.; Sugimura, T.; Wakabayashi, K. Quantification of Genistein and Genistin in Soybeans and Soybean Products. Food Chem. Toxicol. 1996, 34, 457–461. [Google Scholar] [CrossRef]
- Hutabarat, L.S.; Greenfield, H.; Mulholland, M. Isoflavones and Coumestrol in Soybeans and Soybean Products from Australia and Indonesia. J. Food Compos. Anal. 2001, 14, 43–58. [Google Scholar] [CrossRef]
- Wang, H.; Jenner, A.M.; Lee, C.-Y.J.; Shui, G.; Tang, S.Y.; Whiteman, M.; Wenk, M.R.; Halliwell, B. The Identification of Antioxidants in Dark Soy Sauce. Free. Radic. Res. 2007, 41, 479–488. [Google Scholar] [CrossRef]
- Esaki, H.; Kawakishi, S.; Morimitsu, Y.; Osawa, T. New Potent Antioxidative O-Dihydroxyisoflavones in Fermented Japanese Soybean Products. Biosci. Biotechnol. Biochem. 1999, 63, 1637–1639. [Google Scholar] [CrossRef]
- Long, L.H.; Kwee, D.C.T.; Halliwell, B. The Antioxidant Activities of Seasonings Used in Asian Cooking. Powerful Antioxidant Activity of Dark Soy Sauce Revealed Using the ABTS Assay. Free. Radic. Res. 2000, 32, 181–186. [Google Scholar] [CrossRef]
- Ando, M.; Harada, K.; Kitao, S.; Kobayashi, M.; Tamura, Y. Relationship between Peroxyl Radical Scavenging Capability Measured by the Chemiluminescence Method and an Aminocarbonyl Reaction Product in Soy Sauce. Int. J. Mol. Med. 2003, 12, 923–928. [Google Scholar] [CrossRef]
- Feng, Y.; Su, G.; Zhao, H.; Cai, Y.; Cui, C.; Sun-Waterhouse, D.; Zhao, M. Characterisation of Aroma Profiles of Commercial Soy Sauce by Odour Activity Value and Omission Test. Food Chem. 2015, 167, 220–228. [Google Scholar] [CrossRef]
- Gao, X.; Liu, E.; Zhang, J.; Yang, L.; Huang, Q.; Chen, S.; Ma, H.; Ho, C.-T.; Liao, L. Accelerating Aroma Formation of Raw Soy Sauce Using Low Intensity Sonication. Food Chem. 2020, 329, 127118. [Google Scholar] [CrossRef]
- Qin, L.; Ding, X. Formation of Taste and Odor Compounds During Preparation of Douchiba, a Chinese Traditional Soy-Fermented Appetizer. J. Food Biochem. 2007, 31, 230–251. [Google Scholar] [CrossRef]
- Zhou, K.; Patrignani, F.; Sun, Y.-M.; Lanciotti, R.; Xu, Z.-L. Inhibition of Ethyl Carbamate Accumulation in Soy Sauce by Adding Quercetin and Ornithine during Thermal Process. Food Chem. 2021, 343, 128528. [Google Scholar] [CrossRef]
- Park, S.-R.; Ha, S.-D.; Yoon, J.-H.; Lee, S.-Y.; Hong, K.-P.; Lee, E.-H.; Yeom, H.-J.; Yoon, N.-G.; Bae, D.-H. Exposure to Ethyl Carbamate in Alcohol-Drinking and Nondrinking Adults and Its Reduction by Simple Charcoal Filtration. Food Control 2009, 20, 946–952. [Google Scholar] [CrossRef]
- Kim, Y.G.; Lyu, J.; Kim, M.K.; Lee, K.-G. Effect of Citrulline, Urea, Ethanol, and Urease on the Formation of Ethyl Carbamate in Soybean Paste Model System. Food Chem. 2015, 189, 74–79. [Google Scholar] [CrossRef]
- Zhang, J.; Du, G.; Chen, J.; Fang, F. Characterization of a Bacillus Amyloliquefaciens Strain for Reduction of Citrulline Accumulation during Soy Sauce Fermentation. Biotechnol. Lett. 2016, 38, 1723–1731. [Google Scholar] [CrossRef]
- Liu, Q.; Yao, X.; Liang, Q.; Li, J.; Fang, F.; Du, G.; Kang, Z. Molecular Engineering of Bacillus Paralicheniformis Acid Urease To Degrade Urea and Ethyl Carbamate in Model Chinese Rice Wine. J. Agric. Food Chem. 2018, 66, 13011–13019. [Google Scholar] [CrossRef]
- Steinhaus, P.; Schieberle, P. Characterization of the Key Aroma Compounds in Soy Sauce Using Approaches of Molecular Sensory Science. J. Agric. Food Chem. 2007, 55, 6262–6269. [Google Scholar] [CrossRef]
- Pu, D.; Shi, Y.; Meng, R.; Yong, Q.; Shi, Z.; Shao, D.; Sun, B.; Zhang, Y. Decoding the Different Aroma-Active Compounds in Soy Sauce for Cold Dishes via a Multiple Sensory Evaluation and Instrumental Analysis. Foods 2023, 12, 3693. [Google Scholar] [CrossRef]
- Liu, H.; Chen, X.; Lu, J.; Wu, D. Evaluation of the differences between low-salt solid-state fermented soy sauce and high-salt diluted-state fermented soy sauce in China: From taste-active compounds and aroma-active compounds to sensory characteristics. J. Sci. Food Agric. 2024, 104, 340–351. [Google Scholar] [CrossRef]
- Shi, Y.-C.; Lai, C.-Y.; Lee, B.-H.; Wu, S.-C. The Bacterial and Fungi Microbiota of Soy Sauce-Supplied Lactic Acid Bacteria Treated with High-Pressure Process. Fermentation 2022, 8, 97. [Google Scholar] [CrossRef]
KS_C | KS_O | TS_C | TS_O | |
---|---|---|---|---|
Density [g × 100 cm−3] | 1.1746 ± 0.0033 a | 1.1685 ± 0.0013 a | 1.6430 ± 0.0013 c | 1.5471 ± 0.0005 b |
Dry weight [%] | 29.74 ± 0.08 a | 31.22 ± 0.05 b | 29.14 ± 0.06 a | 29.76 ± 0.11 a |
pH | 4.78 ± 0.04 b | 4.60 ± 0.01 a | 4.45 ± 0.02 a | 4.78 ± 0.05 b |
Nitrogen [g × 100 cm−3] | 1.628 ± 0.016 a | 1.661 ± 0.066 a | 1.643 ± 0.014 a | 2.112 ± 0.059 b |
Soy Sauce | Total Polyphenol Content | Total Flavonoid Content | The Antioxidant Capacities Measured by DPPH | The Antioxidant Capacities Measured by ABTS | ||
---|---|---|---|---|---|---|
µg Gallic Acid/mL | µg Quercetin/mL | mg TE/mL | µmol TE/mL | mg TE/mL | µmol TE/mL | |
KS_C | 226.26 ± 7.81 b | 41.55 ± 2.95 b | 0.316 ± 0.008 b | 1.258 ± 0.030 b | 3.689 ± 0.124 c | 14.900 ± 0.500 c |
KS_O | 202.43 ± 10.10 a | 34.02 ± 3.33 a | 0.284 ± 0.022 b | 1.129 ± 0.087 b | 3.162 ± 0.119 b | 12.771 ± 0.481 b |
TS_C | 225.87 ± 7.65 b | 32.39 ± 1.81 a | 0.201 ± 0.033 a | 0.799 ± 0.131 a | 2.848 ± 0.119 a | 11.501 ± 0.481 a |
TS_O | 206.43 ± 2.56 a | 46.31 ± 3.37 b | 0.399 ± 0.018 c | 1.590 ± 0.071 c | 3.470 ± 0.082 c | 14.015 ± 0.332 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gientka, I.; Synowiec, A.; Roszko, M.; Nguyen, C.N.K.; Pobiega, K.; Kot, A.M. Comparison of Physicochemical Characteristics and Microbial Quality between Commercially Available Organic and Conventional Japanese Soy Sauces. Appl. Sci. 2024, 14, 3784. https://doi.org/10.3390/app14093784
Gientka I, Synowiec A, Roszko M, Nguyen CNK, Pobiega K, Kot AM. Comparison of Physicochemical Characteristics and Microbial Quality between Commercially Available Organic and Conventional Japanese Soy Sauces. Applied Sciences. 2024; 14(9):3784. https://doi.org/10.3390/app14093784
Chicago/Turabian StyleGientka, Iwona, Alicja Synowiec, Marek Roszko, Cac Ngo Khoa Nguyen, Katarzyna Pobiega, and Anna M. Kot. 2024. "Comparison of Physicochemical Characteristics and Microbial Quality between Commercially Available Organic and Conventional Japanese Soy Sauces" Applied Sciences 14, no. 9: 3784. https://doi.org/10.3390/app14093784
APA StyleGientka, I., Synowiec, A., Roszko, M., Nguyen, C. N. K., Pobiega, K., & Kot, A. M. (2024). Comparison of Physicochemical Characteristics and Microbial Quality between Commercially Available Organic and Conventional Japanese Soy Sauces. Applied Sciences, 14(9), 3784. https://doi.org/10.3390/app14093784