The Impact of Cardiorespiratory and Metabolic Parameters on Match Running Performance (MRP) in National-Level Football Players: A Multiple Regression Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Anthropometric Characteristics
2.4. Cardiorespiratory Parameters
2.5. Lactate Concentration
2.6. Match Running Performance (MRP)
2.7. Cardiovascular and Metabolic Variables
2.8. MRP Variables
2.9. Statistics
3. Results
3.1. Descriptive Cardio-Respiratory, Metabolic, and Running Performance Parameters
3.2. Correlation Analysis
3.3. Residual Statistics
3.4. Multiple Regression Analysis
4. Discussion
Practical Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrašić, S.; Gušić, M.; Stanković, M.; Mačak, D.; Bradić, A.; Sporiš, G.; Trajković, N. Speed, change of direction speed and reactive agility in adolescent soccer players: Age related differences. Int. J. Environ. Res. Public Health 2021, 18, 5883. [Google Scholar] [CrossRef] [PubMed]
- Čaprić, I.; Stanković, M.; Manić, M.; Preljević, A.; Špirtović, O.; Đorđević, D.; Spehnjak, M.; Damjan, B.; Sporiš, G.; Trajković, N. Effects of plyometric training on agility in male soccer players—A systematic review. J. Men’s Health 2022, 18, 147. [Google Scholar]
- Stanković, M.; Đorđević, D.; Andrašić, S.; Tomac, Z.; Vlahović, T.; Franić, M.; Trajković, N. Gym Versus Home-Based Training During Transition Period in Adolescent Soccer Players: Effects on Physical Performance. J. Men’s Health 2022, 18, 134. [Google Scholar]
- Rampinini, E.; Coutts, A.J.; Sastagna, C. Variation in Top Level Soccer Match Performance. J. Sports Med. 2007, 28, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Gunglielmo, L.G. Vallidity of carminatti’s test of determine physiological indices of aerobic power and capacity in soccer and futsal players. J. Strength Cond. Res. 2011, 25, 3099–3106. [Google Scholar]
- Béres, B.; Györe, I.; Petridis, L.; Utczás, K.; Kalabiska, I.; Pálinkás, G.; Szabó, T. Relationship between biological age, body dimensions and cardiorespiratory performance in young soccer players. Acta Gymnica 2021, 51, e2021. [Google Scholar] [CrossRef]
- Tomlin, D.L.; Wenger, H.A. The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med. 2001, 31, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Higino, W.P.; de Souza Sorroche, A.; de Mattos Falqueiro, P.G.; Lima, Y.C.S.; Higa, C.L. Determination of aerobic performance in youth soccer players: Effect of direct and indirect methods. J. Hum. Kinet. 2017, 56, 109–118. [Google Scholar] [CrossRef]
- Stankovic, M.; Djordjevic, D.; Trajkovic, N.; Milanovic, Z. Effects of High-Intensity Interval Training (HIIT) on Physical Performance in Female Team Sports: A Systematic Review. Sports Med.-Open 2023, 9, 78. [Google Scholar] [CrossRef]
- Gabrys, T.; Stanula, A.; Szmatlan-Gabrys, U.; Garnys, M.; Charvát, L.; Gupta, S. Metabolic and cardiorespiratory responses of semiprofessional football players in repeated Ajax shuttle tests and curved sprint tests, and their relationship with football match play. Int. J. Environ. Res. Public Health 2020, 17, 7745. [Google Scholar] [CrossRef]
- Wells, C.M.; Edwards, A.M.; Winter, E.M.; Fysh, M.L.; Drust, B. Sport-specific fitness testing differentiates professional from amateur soccer players where VO2max and VO2 kinetics do not. J. Sports Med. Phys. Fitness 2012, 52, 245. [Google Scholar] [PubMed]
- Åstrand, P.O.; Rodahl, K. Textbook of Work Physiology. Physiological Bases of Exercise, 4th ed.; Human Kinetics: Champaign, IL, USA, 2003. [Google Scholar]
- Angoorani, H.; Basharkhah, A.; Mazaherinezhad, A.; Nazari, A. Evaluation of Cardiorespiratory Fitness and Its Correlation with Team Performance, Player Position and Physical Characteristics in the Soccer Premium League of Iran. Asian J. Sports Med. 2021, 12, e109724. [Google Scholar] [CrossRef]
- Redkva, P.E.; Paes, M.R.; Fernandez, R.; da-Silva, S.G. Correlation between match performance and field tests in professional soccer players. J. Hum. Kinet. 2018, 62, 213. [Google Scholar] [CrossRef] [PubMed]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Match performance of high-standard soccer players with special reference to development of fatigue. J. Sports Sci. 2003, 21, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.J.; Bradley, P.S.; Nassis, G.P. Factors affecting match running performance of elite soccer players: Shedding some light on the complexity. Int. J. Sports Physiol. Perform. 2015, 10, 516–519. [Google Scholar] [CrossRef] [PubMed]
- Modric, T.; Versic, S.; Morgans, R.; Sekulic, D. Match running performance characterizing the most elite soccer match-play. Biol. Sport 2023, 40, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.; Sparkes, W.; Northeast, J.; Cook, C.J.; Love, T.D.; Bracken, R.M.; Kilduff, L.P. Changes in acceleration and deceleration capacity throughout professional soccer match-play. J. Strength Cond. Res. 2016, 30, 2839–2844. [Google Scholar] [CrossRef] [PubMed]
- Lattier, G.; Millet, G.Y.; Martin, A.; Martin, V. Fatigue and recovery after high-intensity exercise Part II: Recovery interventions. Int. J. Sports Med. 2004, 25, 509–515. [Google Scholar] [CrossRef]
- Stanula, A.; Gabrys, T.; Szmatlan-Gabrys, U.; Roczniok, R.; Maszczyk, A.; Pietraszewski, P. Calculating lactate anaerobic thresholds in sports involving different endurance preparation. J. Exerc. Sci. Fitness 2013, 11, 12–18. [Google Scholar] [CrossRef]
- Tønnessen, E.; Hem, E.; Leirstein, S.; Haugen, T.; Seiler, S. Maximal aerobic power characteristics of male professional soccer players, 1989–2012. Int. J. Sports Physiol. Perform. 2013, 8, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Ostojić, S. Fiziologija Fudbala (Physiology of Football); Data Status: Belgrade, Serbia, 2015. [Google Scholar]
- Draper, N.; Brent, S.; Hale, B. The influence of sampling site and assay method on lactate concentration in response to rock climbing. Eur. J. Appl. Physiol. 2006, 98, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Noakes, T.D. The central governor model of exercise regulation applied to the marathon. Sports Med. 2007, 37, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Modric, T.; Versic, S.; Sekulic, D. Aerobic fitness and game performance indicators in professional football players; playing position specifics and associations. Heliyon 2020, 6, e05427. [Google Scholar] [CrossRef] [PubMed]
- Doncaster, G.; Iga, J.; Unnithan, V. Influence of Cardio-Respiratory Fitness on Physical Performance in Elite Youth Soccer. J. Phys. Fit. Med. Treat. Sports 2018, 4, 1–8. [Google Scholar] [CrossRef]
- Helgerud, J.; Engen, L.C.; Wisløff, U.; Hoff, J.A.N. Aerobic endurance training improves soccer performance. Med. Sci. Sports Exerc. 2001, 33, 1925–1931. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Lindquist, F. Comparison of various exercise tests with endurance performance during soccer in professional players. Int. J. Sports Med. 1992, 13, 125–132. [Google Scholar] [CrossRef]
- Krustrup, P.; Mohr, M.; Ellingsgaard, H.; Bangsbo, J. Physical demands during an elite female soccer game: Importance of training status. Med. Sci. Sports Exerc. 2005, 37, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Abt, G.; Lovell, R.I.C. The use of individualized speed and intensity thresholds for determining the distance run at high-intensity in professional soccer. J. Sports Sci. 2009, 27, 893–898. [Google Scholar] [CrossRef]
- Metaxas, T.; Sendelides, T.; Koutlianos, N.; Mandroukas, K. Seasonal variation of aerobic performance in soccer players according to positional role. J. Sports Med. Phys. Fitness 2006, 46, 520. [Google Scholar]
- Aslan, A.; Acikada, C.; Güvenç, A.; Gören, H.; Hazir, T.; Özkara, A. Metabolic demands of match performance in young soccer players. J. Sports Sci. Med. 2012, 11, 170. [Google Scholar] [PubMed]
- McKay, A.K.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining training and performance caliber: A participant classification framework. Int. J. Sports Physiol. Perform. 2021, 17, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Eston, R.G.; Reilly, T. Kinanthropometry and Exercise Physiology Laboratory Manual: Exercise Physiology; Taylor & Francis: London, UK, 2009; Volume 2. [Google Scholar]
- Todorov, I. Efekti Specifičnog Treninga na Kardiorespiratornu Izdržljivost i Kontraktilni Potencijal Mišića Džudista [Effects of Specific Training on Cardiorespiratory Endurance and Muscle Contractile Potential of Judoka]; University of Nis: Nis, Serbia, 2014. [Google Scholar]
- Kolić, L. Utjecaj Protokola Testa Hodanja s Progresivnim Opterećenjem na Pokretnom Sagu na Pokazatelje Energetskih Kapaciteta [The Influence of the Walking Test Protocol with Progressive Load on a Moving Carpet on Indicators of Energy Capacities. Ph.D Thesis, University of Zagreb, Faculty of Kinesiology, Zagreb, Croatia, 2020. [Google Scholar]
- Von Duvillard, S.P.; Pokan, R.; Hofmann, P.; Wonisch, M.; Smekal, G.; Alkhatib, A.; Leithauser, R. Comparing blood lactate values of three different handheld lactate analyzers to YSI 1500 lactate analyzer. Med. Sci. Sports Exerc. 2005, 37, S25. [Google Scholar]
- Vulović, R.; Radaković, R.; Peulić, A.; Nikolić, D.; Filipović, N. Method for software tracking and analysis of players motion during a football match. In Abstract Book of: International Conference; FSFV: Belgrade, Serbia, 2012; pp. 314–323. [Google Scholar]
- Lago-Peñas, C.; Rey, E.; Lago-Ballesteros, J.; Casais, L.; Dominguez, E. Analysis of work-rate in soccer according to playing positions. Int. J. Perform. Anal. Sport 2009, 9, 218–227. [Google Scholar] [CrossRef]
- Di Salvo, V.; Gregson, W.; Atkinson, G.; Tordoff, P.; Drust, B. Analysis of high intensity activity in Premier League soccer. Int. J. Sports Med. 2009, 30, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Radaković, R.; Dopsaj Vulović, R.; Leontijević, B.; Filipović, N. Reliability of motion analysis of elite football players during the match measured by the Tracking Motion software system. In Abstract Book of: Internacional Conference Bioinformatics and Bioingeenering; BIBE: Belgrade, Serbia, 2016. [Google Scholar]
- Taylor, R. Interpretation of the correlation coefficient: A basic review. J. Diagn. Med. Sonogr. 1990, 6, 35–39. [Google Scholar] [CrossRef]
- Khamis, H.J.; Kepler, M. Sample size in multiple regression: 20+ 5k. J. Appl. Stat. Sci. 2010, 17, 505. [Google Scholar]
- Pallant, J. Survival Manual. A Step by Step Guide to Data Analysis Using SPSS; Allen & Unwin: Berkshire, UK, 2011. [Google Scholar]
- Mourtziapis, A.; Alexopoulos, P.; Kaprinis, S.; Dedes, V.; Panoutsopoulos, G.; Kipreos, G. Physiological profile of Greek elite soccer players. Int. J. Phys. Educ. Sports Health 2020, 7, 201–207. [Google Scholar]
- Metaxas, T.I. Match running performance of elite soccer players: VO2max and players position influences. J. Strength Cond. Res. 2021, 35, 162–168. [Google Scholar] [CrossRef]
- Colosio, A.L.; Lievens, M.; Pogliaghi, S.; Bourgois, J.G.; Boone, J. Heart rate-index estimates aerobic metabolism in professional soccer players. J. Sci. Med. Sport 2020, 23, 1208–1214. [Google Scholar] [CrossRef]
- Modric, T.; Versic, S.; Sekulic, D. Does aerobic performance define match running performance among professional soccer players? A position-specific analysis. Res. Sports Med. 2021, 29, 336–348. [Google Scholar]
- Rousopoulos, E.; Cooke, C.; Paradisis, G.; Zacharogiannis, E.; Kouyoufa, E.P.; Till, K. The Physiological Profile of Male Professional Soccer Players: The Effect of Playing Division. J. Biomed. Res. Environ. Sci. 2021, 2, 1078–1084. [Google Scholar] [CrossRef]
- Sassi, R.; Reilly, T.; Impellizzeri, F. A comparison of small-side games and interval training in elite professional soccer players. In Science and Football V; Reilly, T., Cabri, J., Araújo, D., Eds.; Routledge: Oxford, UK, 2005; pp. 352–354. [Google Scholar]
- Owen, A.L.; Wong, D.P.; McKenna, M.; Dellal, A. Heart rate responses and technical comparison between small-vs. large-sided games in elite professional soccer. J. Strength Cond. Res. 2011, 25, 2104–2110. [Google Scholar] [CrossRef] [PubMed]
- Casajús, J.A. Seasonal variation in fitness variables in professional soccer players. J. Sports Med. Phys. Fitness 2001, 41, 463–469. [Google Scholar] [PubMed]
- Clark, N.A.; Edwards, A.M.; Morton, R.H.; Butterly, R.J. Season-to-season variations of physiological fitness within a squad of professional male soccer players. J. Sports Sci. Med. 2008, 7, 157. [Google Scholar] [PubMed]
- Strudwick, A.; Doran, T.R.D. Anthropometric and fitness profiles of elite players in two football codes. J. Sports Med. Phys. Fitness 2002, 42, 239. [Google Scholar] [PubMed]
- Botek, M.; Krejčí, J.; McKune, A.J.; Klimešová, I. Somatic, Endurance Performance and Heart Rate Variability Profiles of Professional Soccer Players Grouped According to Age. J. Hum. Kinet. 2016, 54, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Parpa, K.; Michaelides, M. Aerobic capacity of professional soccer players before and after COVID-19 infection. Sci. Rep. 2022, 12, 11850. [Google Scholar] [CrossRef]
- Reilly, T.; Bangsbo, J.; Franks, A. Anthropometric and physiological predispositions for elite soccer. J. Sports Sci. 2000, 18, 669–683. [Google Scholar] [CrossRef]
- Metaxas, T.I.; Koutlianos, N.; Sendelides, T.; Mandroukas, A. Preseason physiological profile of soccer and basketball players in different divisions. J. Strength Cond. Res. 2009, 23, 1704–1713. [Google Scholar] [CrossRef]
- Reilly, T.; Williams, A.M.; Nevill, A.; Franks, A. A multidisciplinary approach to talent identification in soccer. J. Sports Sci. 2000, 18, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.; Santos-Silva, P.; Pedrinelli, A.; Hernandez, A. Aerobic fitness in professional soccer players after anterior cruciate ligament reconstruction. PLoS ONE 2018, 13, e0194432. [Google Scholar] [CrossRef] [PubMed]
- Bok, D. Dinamika akutnog fiziološkog odgovora na različita opterećenja [Dynamics of acute physiological response to different loads]. In Zbornik Radova 19. Godišnje Međunarodne Konferencije Kondicijska Priprema Sportaša, 35; Kineziološki fakultet: Zagreb, Croatia, 2021. [Google Scholar]
- Arsić, K.; Radovanović, D.; Arsić, D. Mechanisms of physiological adaptation to endurance training. PONS-Med. Časopis 2011, 8, 30–33. [Google Scholar]
- Cosgrove, M.J.; Wilson, J.; Watt, D.; Grant, S.F. The relationship between selected physiological variables of rowers and rowing performance as determined by a 2000 m ergometer test. J. Sports Sci. 1999, 17, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Bentley, D.J.; McNaughton, L.R.; Thompson, D.; Vleck, V.E.; Batterham, A.M. Peak power output, the lactate threshold, and time trial performance in cyclists. Med. Sci. Sports Exerc. 2001, 33, 2077–2081. [Google Scholar] [CrossRef] [PubMed]
- Iaia, F.M.; Ermanno, R.; Bangsbo, J. High-intensity training in football. Int. J. Sports Physiol. Perform. 2009, 4, 291–306. [Google Scholar] [CrossRef] [PubMed]
- Laursen, P.; Buchheit, M. Science and Application of High-Intensity Interval Training; Human Kinetics: Champaign, IL, USA, 2019. [Google Scholar]
- Bangsbo, J. Physiological demands of football. Sports Sci. Exch. 2014, 27, 1–6. [Google Scholar]
- Murmu, S.K.; Chatterjee, K. Estimation of blood lactate with the progression of a football match. Indian J. Phys. Educ. Sports Appl. Sci. 2016, 10, 30–35. [Google Scholar]
- Bangsbo, J. The physiology of football—With special reference to intense intermittent exercise. Acta Physiol. Scand. 1994, 151, 1–155. [Google Scholar]
- Krustrup, P.; Mohr, M.; Steensberg, A.; Bencke, J.; Kjær, M.; Bangsbo, J. Muscle and blood metabolites during a soccer game: Implications for sprint performance. Med. Sci. Sports Exerc. 2006, 38, 1165–1174. [Google Scholar] [CrossRef]
- Bentley, D.J.; Newell, J.; Bishop, D. Incremental exercise test design and analysis: Implications for performance diagnostics in endurance athletes. Sports Med. 2007, 37, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, J.J.; Farrally, M.R. A comparison of lactate concentration in plasma collected from the toe, ear, and fingertip after a simulated rowing exercise. Br. J. Sports Med. 2000, 34, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Woodbridge, V. Effects of moderate dietary manipulations on swim performance and on blood lactate-swimming velocity curves. Int. J. Sports Med. 1999, 20, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Midgley, A.W.; McNaughton, L.R.; Jones, A.M. Training to enhance the physiological determinants of long-distance running performance: Can valid recommendations be given to runners and coaches based on current scientific knowledge? Sports Med. 2007, 37, 857–880. [Google Scholar] [CrossRef] [PubMed]
- Modric, T.; Versic, S.; Sekulic, D.; Liposek, S. Analysis of the association between running performance and game performance indicators in professional soccer players. Int. J. Environ. Res. Public Health 2019, 16, 4032. [Google Scholar] [CrossRef] [PubMed]
- Jerkovic, Z.; Modric, T.; Versic, S. Analysis of the associations between contextual variables and match running performance in Croatian First Division Soccer. Sport Mont 2022, 20, 125–130. [Google Scholar] [CrossRef]
- Andrzejewski, M.; Chmura, J.; Pluta, B.; Konarski, J.M. Sprinting activities and distance covered by top level Europa league soccer players. Int. J. Sports Sci. Coach. 2015, 10, 39–50. [Google Scholar] [CrossRef]
- Gomez-Piqueras, P.; Gonzalez-Villora, S.; Castellano, J.; Teoldo, I. Relation between the physical demands and success in professional soccer players. J. Hum. Sport Exerc. 2019, 14, 1–11. [Google Scholar] [CrossRef]
- Andrzejewski, M.; Chmura, P.; Konefał, M.; Kowalczuk, E.; Chmura, J. Match outcome and sprinting activities in match play by elite German soccer players. J. Sports Med. Phys. Fitness 2018, 58, 785–792. [Google Scholar] [CrossRef]
- Chmura, P.; Konefał, M.; Chmura, J.; Kowalczuk, E.; Zając, T.; Rokita, A.; Andrzejewski, M. Match outcome and running performance in different intensity ranges among elite soccer players. Biol. Sport 2018, 35, 197–203. [Google Scholar] [CrossRef]
- Hawkins, M.N.; Raven, P.B.; Snell, P.G.; Stray-Gundersen, J.; Levine, B.D. Maximal oxygen uptake as a parametric measure of cardiorespiratory capacity. Med. Sci. Sports Exer. 2007, 39, 103–107. [Google Scholar]
- Bradley, P.S.; Sheldon, W.; Wooster, B.; Olsen, P.; Boanas, P.; Krustrup, P. High-intensity running in English FA Premier League soccer matches. J. Sports Sci. 2009, 27, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Krustrup, P.; Zebis, M.; Jensen, J.M.; Mohr, M. Game-induced fatigue patterns in elite female soccer. J. Strength Cond. Res. 2010, 24, 437–441. [Google Scholar]
- Mohr, M.; Krustrup, P.; Andersson, H.; Kirkendal, D.; Bangsbo, J. Match activities of elite women soccer players at different performance levels. J. Strength Cond. Res. 2008, 22, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Andersson, H.Å.; Randers, M.B.; Heiner-Møller, A.; Krustrup, P.; Mohr, M. Elite female soccer players perform more high-intensity running when playing in international games compared with domestic league games. J. Strength Cond. Res. 2010, 24, 912–919. [Google Scholar] [CrossRef]
- Nielsen, J.J.; Mohr, M.; Klarskov, C.; Kristensen, M.; Krustrup, P.; Juel, C.; Bangsbo, J. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle. Physiol. J. 2004, 554, 857–870. [Google Scholar] [CrossRef] [PubMed]
- Šentija, D. Fiziologija Sporta [Physiology of Sport]; Faculty of Kinesiology: Zagreb, Croatia, 2009. [Google Scholar]
- Gharbi, Z.; Dardouri, W.; Haj-Sassi, R.; Chamari, K.; Souissi, N. Aerobic and anaerobic determinants of repeated sprint ability in team sports athletes. Biol. Sport 2015, 32, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Bradley, P.S.; Carling, C.; Archer, D.; Roberts, J.; Dodds, A.; Di Mascio, M.; Paul, D.; Gomez Diaz, A.; Peart, D.; Krustrup, P. The effect of playing formation on high-intensity running and technical profiles in English FA Premier League soccer matches. J. Sports Sci. 2011, 29, 821–830. [Google Scholar] [CrossRef]
- Bradley, P.S.; Lago-Peñas, C.; Rey, E.; Gomez Diaz, A. The effect of high and low percentage ball possession on physical and technical profiles in English FA Premier League soccer matches. J. Sports Sci. 2013, 31, 1261–1270. [Google Scholar] [CrossRef]
- Rampinini, E.; Impellizzeri, F.M.; Castagna, C.; Coutts, A.J.; Wisløff, U. Technical performance during soccer matches of the Italian Serie A league: Effect of fatigue and competitive level. J. Sci. Med. Sport 2009, 12, 227–233. [Google Scholar] [CrossRef]
Mean | SD | Min | Max | |
---|---|---|---|---|
Age | 23.20 | 3.40 | 18.00 | 32.00 |
Body height (cm) | 182.00 | 5.15 | 172.00 | 192.00 |
Body mass (kg) | 76.86 | 6.06 | 63.00 | 88.00 |
No. | Variable | Abbreviation |
---|---|---|
1. | Maximum heart rate | HRmax |
2. | Heart rate at the anaerobic threshold | HR AT |
3. | Heart rate at the first minute of recovery | HR 1′ |
4. | Heart rate at the second minute of recovery | HR 2′ |
5. | Maximum oxygen uptake | VO2max |
6. | Running efficiency | VO2max/v |
7. | Cardiorespiratory efficiency | VO2max/HR |
8. | Lactate at 4 min | LA 4′ |
9. | Lactate at 10 min | LA 10′ |
10. | Metabolic recovery index | Index LA |
11. | Metabolic efficiency index | Index ME |
No. | Variable | Abbreviation |
---|---|---|
1. | Walking (from 0 to 8 km/h) | <8 km/h |
2. | Jogging (from 8 to 15 km/h) | 8–15 km/h |
3. | Running (from 15.1 to 19 km/h) | 15.1–19 km/h |
4. | High-speed running (from 19.1 to 23 km/h) | 19.1–23 km/h |
5. | Sprinting (over 23 km/h) | >23 km/h |
6. | Total distance | Total |
Mean | SD | Min | Max | Range | Skew | Kurt | |
---|---|---|---|---|---|---|---|
HRmax (bpm) | 192.90 | 7.95 | 174.00 | 207.00 | 33.00 | −0.30 | −0.68 |
HR AT (bpm) | 167.20 | 8.02 | 152.00 | 180.00 | 28.00 | −0.07 | −0.92 |
HR 1′ (bpm) | 170.05 | 12.67 | 140.00 | 193.00 | 53.00 | −0.48 | −0.06 |
HR 2′ (bpm) | 129.44 | 17.52 | 103.00 | 174.00 | 71.00 | 0.70 | −0.01 |
VO2max (ml/kg/min) | 61.15 | 3.89 | 53.40 | 69.20 | 15.80 | 0.16 | −0.27 |
VO2max/v (mL·kg·min1/km/h) | 2.93 | 0.21 | 2.59 | 3.38 | 0.79 | 0.48 | −0.32 |
VO2max/HR | 0.32 | 0.02 | 0.27 | 0.36 | 0.09 | 0.15 | −0.60 |
La 4′ (mmol/L) | 9.42 | 1.73 | 6.50 | 14.10 | 7.60 | 0.36 | −0.25 |
La 10′ (mmol/L) | 6.94 | 1.37 | 3.80 | 11.70 | 7.90 | 0.67 | 2.74 |
Index LA | 39.01 | 31.77 | −2.35 | 165.79 | 168.14 | 1.79 | 5.01 |
Index ME | 2.29 | 0.45 | 1.56 | 3.33 | 1.77 | 0.52 | −0.43 |
<8 km/h (m) | 4522.56 | 450.43 | 3301.36 | 5243.99 | 1942.63 | −0.58 | 0.34 |
8.1–15 km/h (m) | 4193.87 | 831.19 | 2580.46 | 5850.53 | 3270.07 | 0.08 | −0.57 |
15.1–19 km/h (m) | 983.55 | 247.63 | 502.00 | 1393.53 | 891.53 | −0.22 | −1.27 |
19.1–23 km/h (m) | 611.45 | 154.36 | 319.33 | 885.60 | 566.27 | 0.22 | −0.75 |
>23 km/h (m) | 488.38 | 144.99 | 261.26 | 893.85 | 632.59 | 0.76 | 0.36 |
Total (m) | 10,799.79 | 1143.70 | 8429.52 | 12,602.25 | 4172.73 | −0.11 | −0.71 |
<8 km/h | 8.1–15 km/h | 15.1–19 km/h | 19.1–23 km/h | >23 km/h | Total | |
---|---|---|---|---|---|---|
HR max | 0.27 * | 0.18 | 0.10 | 0.26 | 0.01 | 0.30 * |
HR AT | 0.09 | −0.21 | −0.20 | −0.16 | −0.14 | −020 |
HR 1′ | 0.25 | 0.18 | 0.07 | 0.23 | 0.11 | 0.29 * |
HR 2′ | −0.16 | −0.42 ** | −0.22 | −0.50 ** | −0.10 | −0.50 ** |
VO2max | 0.00 | −0.21 | −0.17 | −0.28 * | −0.04 | −0.23 |
VO2max/v | −0.22 | −0.35 * | −0.13 | −0.39 ** | −0.18 | −0.45 ** |
VO2max/HR | −0.16 | −0.28 * | −0.20 | −0.39 ** | −0.05 | −0.37 ** |
LA 4′ | 0.08 | 0.21 | 0.07 | 0.07 | −0.06 | 0.07 |
LA 10′ | 0.16 | 0.17 | 0.10 | 0.10 | −0.06 | 0.20 |
Index LA | −0.10 | 0.01 | −0.01 | −0.01 | 0.11 | −0.09 |
Index ME | 0.01 | −0.21 | −0.03 | −0.03 | 0.13 | 0.05 |
<8 km/h | 8.1–15 km/h | 15.1–19 km/h | 19.1–23 km/h | >23 km/h | Total | |
---|---|---|---|---|---|---|
HR max | 0.258 | 0.429 | 0.478 | 0.526 * | −0.114 | 0.573 * |
HR AT | 0.011 | −0.311 | −0.383 | −0.250 | −0.168 | −0.360 * |
HR 1′ | 0.111 | 0.087 | −0.112 | 0.059 | 0.298 | 0.128 |
HR 2′ | −274 | −0.420 * | −0.146 | −0.551 * | −0.064 | −0.528 * |
R | 0.379 | 0.580 | 0.390 | 0.681 | 0.251 | 0.737 |
R2 | 0.144 | 0.336 | 0.152 | 0.464 | 0.063 | 0.543 |
p | 0.219 | 0.004 | 0.191 | 0.000 | 0.661 | 0.000 |
VO2max | 0.472 | 0.162 | 0.005 | 0.197 | 0.085 | 0.342 |
VO2max/v | −0.272 | −0.313 | −0.005 | −0.262 | −0.248 | −0.403 * |
VO2max/HR | −0.374 | −0.217 | −0.204 | −0.391 | 0.034 | −0.398 |
R | 0.344 | 0.371 | 0.203 | 0.447 | 0.196 | 0.498 |
R2 | 0.118 | 0.138 | 0.041 | 0.200 | 0.038 | 0.248 |
p | 0.194 | 0.135 | 0.664 | 0.039 | 0.690 | 0.014 |
LA 4′ | −0.500 | 0.793 | 0.367 | −0.050 | −0.869 | 0.342 |
LA 10′ | 1.216 | −0.149 | −0.178 | 0.361 | 1.210 | 0.534 |
Index LA | 1.072 | −0.329 | −0.279 | 0.278 | 1.300 | 0.325 |
Index ME | 0.684 | 0.545 | −0.055 | 0.186 | 0.360 | 0.725 |
R | 0.468 | 0.272 | 0.240 | 0.156 | 0.415 | 0.368 |
R2 | 0.219 | 0.074 | 0.058 | 0.024 | 0.173 | 0.135 |
p | 0.058 | 0.583 | 0.699 | 0.922 | 0.136 | 0.250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radaković, R.; Katanić, B.; Stanković, M.; Masanovic, B.; Fišer, S.Ž. The Impact of Cardiorespiratory and Metabolic Parameters on Match Running Performance (MRP) in National-Level Football Players: A Multiple Regression Analysis. Appl. Sci. 2024, 14, 3807. https://doi.org/10.3390/app14093807
Radaković R, Katanić B, Stanković M, Masanovic B, Fišer SŽ. The Impact of Cardiorespiratory and Metabolic Parameters on Match Running Performance (MRP) in National-Level Football Players: A Multiple Regression Analysis. Applied Sciences. 2024; 14(9):3807. https://doi.org/10.3390/app14093807
Chicago/Turabian StyleRadaković, Radivoje, Borko Katanić, Mima Stanković, Bojan Masanovic, and Suzana Žilić Fišer. 2024. "The Impact of Cardiorespiratory and Metabolic Parameters on Match Running Performance (MRP) in National-Level Football Players: A Multiple Regression Analysis" Applied Sciences 14, no. 9: 3807. https://doi.org/10.3390/app14093807
APA StyleRadaković, R., Katanić, B., Stanković, M., Masanovic, B., & Fišer, S. Ž. (2024). The Impact of Cardiorespiratory and Metabolic Parameters on Match Running Performance (MRP) in National-Level Football Players: A Multiple Regression Analysis. Applied Sciences, 14(9), 3807. https://doi.org/10.3390/app14093807