A Building Heat Load Prediction Method Driven by a Multi-Component Fusion LSTM Ridge Regression Ensemble Model
Abstract
:1. Introduction
2. Methodology
2.1. Data Analysis and Processing
2.1.1. Data Acquisition and Correlation Analysis
2.1.2. Data Analysis
- 1.
- Trend Analysis
- 2.
- Seasonal Analysis
- 3.
- Randomness Analysis
2.1.3. Data Processing
- 1.
- STL Seasonal Decomposition:
- 2.
- Dataset Division
- 3.
- Normalization
- 4.
- Sliding window
2.1.4. Evaluation Indicators
2.2. Relevant Basic Theories
2.2.1. Seasonal Decomposition STL Algorithm
- 1.
- Detrending. The time series is de-trended from the last iteration to obtain a new , where, initially, .
- 2.
- Cyclic subsequence smoothing. Each subsequence in step (1) is processed using LOESS regression, extending one cycle each before and after, with the smoothing parameter , and obtaining a smoothing result denoted as .
- 3.
- Low flux filtering of subsequences. The smoothing result in (2) is sequentially subjected to a sliding average of lengths , , 3 and then a LOESS regression with parameter is performed to obtain a sequence of length N.
- 4.
- Removing seasonal trends. Obtain the seasonal component .
- 5.
- De-seasonalization. The seasonal component of de-seasonalization is .
- 6.
- Trend smoothing. The series obtained in step (5) is subjected to LOESS regression to obtain the trend component . Determine if there is convergence; if there is convergence, output the result; otherwise, return to (1).
2.2.2. Long Short-Term Memory Network
2.2.3. Ridge Regression
2.2.4. Ensemble Deep Learning
- 1.
- Data sample techniques used in training: Enhancing data quality by introducing other data features or using different data sampling techniques, such as bootstrapping and cross-validation, thereby increasing the robustness and generalization performance of the ensemble.
- 2.
- Types of basic models: Selecting different types of basic models can increase the diversity of the ensemble and improve overall performance—for example, models like decision trees, support vector machines, and neural networks.
- 3.
- Diversity of basic models: Ensuring differences among basic models to avoid overfitting. This can be achieved by adjusting model parameters, selecting different feature subsets, or using different training algorithms to increase model diversity.
- 4.
- Methods of combining basic models: This includes voting methods and meta-learning approaches. The main ensemble learning methods include Bagging, Boosting, Stacking, and Ensemble Pruning. This paper employs the Stacking approach, which involves multiple basic models and a meta-model. Through parallel ensemble techniques for generating basic learners, it fully leverages the strengths of different models and obtains the final result through a meta-learning fusion method.
2.3. Proposed ST-LSTM-RR Ensemble Deep Learning Model
3. Results
3.1. Experimental Environment and Parameter Settings
3.2. Basic Model Training
3.2.1. Dataset Division
3.2.2. Time-Step Selection
3.3. Metamodel Selection
3.4. Model Comparison Experiment
3.4.1. Comparative Experiments between the Basic Model and Ensemble Model
3.4.2. Comparative Experiments with Different Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dasi, H.; Ying, Z.; Ashab, M.F.B. Proposing Hybrid Prediction Approaches with the Integration of Machine Learning Models and Metaheuristic Algorithms to Forecast the Cooling and Heating Load of Buildings. Energy 2024, 291, 130297. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, P. Research on Carbon Emission Calculation and Emission Reduction Effect of Green Buildings from the Perspective of the Whole Life Cycle. Environ. Ecol. 2024, 6, 9–16, 25. [Google Scholar]
- Kent, M.G.; Huynh, N.K.; Mishra, A.K.; Tartarini, F.; Lipczynska, A.; Li, J.; Sultan, Z.; Goh, E.; Karunagaran, G.; Natarajan, A.; et al. Energy Savings and Thermal Comfort in a Zero Energy Office Building with Fans in Singapore. Build. Environ. 2023, 243, 110674. [Google Scholar] [CrossRef]
- Barman, M.; Dev Choudhury, N.B.; Sutradhar, S. A Regional Hybrid GOA-SVM Model Based on Similar Day Approach for Short-Term Load Forecasting in Assam, India. Energy 2018, 145, 710–720. [Google Scholar] [CrossRef]
- Chaganti, R.; Rustam, F.; Daghriri, T.; Díez, I.D.L.T.; Mazón, J.L.V.; Rodríguez, C.L.; Ashraf, I. Building Heating and Cooling Load Prediction Using Ensemble Machine Learning Model. Sensors 2022, 22, 7692. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Liu, H.; Nikitas, N.; Duan, Z.; Li, Y.; Li, Y. Short-Term Wind Speed Forecasting Using Deep Reinforcement Learning with Improved Multiple Error Correction Approach. Energy 2022, 239, 122128. [Google Scholar] [CrossRef]
- Yang, Z.; Ce, L.; Lian, L. Electricity Price Forecasting by a Hybrid Model, Combining Wavelet Transform, ARMA and Kernel-Based Extreme Learning Machine Methods. Appl. Energy 2017, 190, 291–305. [Google Scholar] [CrossRef]
- Jagait, R.K.; Fekri, M.N.; Grolinger, K.; Mir, S. Load Forecasting Under Concept Drift: Online Ensemble Learning with Recurrent Neural Network and ARIMA. IEEE Access 2021, 9, 98992–99008. [Google Scholar] [CrossRef]
- Gardner, E.S.; Acar, Y. Fitting the Damped Trend Method of Exponential Smoothing. J. Oper. Res. Soc. 2019, 70, 926–930. [Google Scholar] [CrossRef]
- Fan, C.; Ding, Y. Cooling Load Prediction and Optimal Operation of HVAC Systems Using a Multiple Nonlinear Regression Model. Energy Build. 2019, 197, 7–17. [Google Scholar] [CrossRef]
- Dawood, N. Short-Term Prediction of Energy Consumption in Demand Response for Blocks of Buildings: DR-BoB Approach. Buildings 2019, 9, 221. [Google Scholar] [CrossRef]
- Maiti, R.; Biswas, A.; Das, S. Coherent Forecasting for Count Time Series Using Box–Jenkins’s AR( p ) Model. Stat. Neerl. 2016, 70, 123–145. [Google Scholar] [CrossRef]
- Irshad, K.; Zahir, M.H.; Shaik, M.S.; Ali, A. Buildings’ Heating and Cooling Load Prediction for Hot Arid Climates: A Novel Intelligent Data-Driven Approach. Buildings 2022, 12, 1677. [Google Scholar] [CrossRef]
- Alani, A.Y.; Osunmakinde, I.O. Short-Term Multiple Forecasting of Electric Energy Loads for Sustainable Demand Planning in Smart Grids for Smart Homes. Sustainability 2017, 9, 1972. [Google Scholar] [CrossRef]
- Jurado, S.; Nebot, À.; Mugica, F.; Avellana, N. Hybrid Methodologies for Electricity Load Forecasting: Entropy-Based Feature Selection with Machine Learning and Soft Computing Techniques. Energy 2015, 86, 276–291. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, P.; Chu, Y.; Li, W.; Wu, Y.; Ni, L.; Bao, Y.; Wang, K. Short-Term Electrical Load Forecasting Using the Support Vector Regression (SVR) Model to Calculate the Demand Response Baseline for Office Buildings. Appl. Energy 2017, 195, 659–670. [Google Scholar] [CrossRef]
- Al-Rakhami, M.; Gumaei, A.; Alsanad, A.; Alamri, A.; Hassan, M.M. An Ensemble Learning Approach for Accurate Energy Load Prediction in Residential Buildings. IEEE Access 2019, 7, 48328–48338. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Zhang, F.; Chen, F.; Xin, Y. Building Load Forecasting Using Deep Neural Network with Efficient Feature Fusion. J. Mod. Power Syst. Clean Energy 2021, 9, 160–1691. [Google Scholar] [CrossRef]
- Rahman, A.; Smith, A. Predicting Heating Demand and Sizing a Stratified Thermal Storage Tank Using Deep Learning Algorithms. Appl. Energy 2018, 228, 108–121. [Google Scholar] [CrossRef]
- Jang, J.; Han, J.; Leigh, S. Prediction of Heating Energy Consumption with Operation Pattern Variables for Non-Residential Buildings Using LSTM Networks. Energy Build. 2022, 255, 111647. [Google Scholar] [CrossRef]
- Lv, R.; Yuan, Z.; Lei, B.; Zheng, J.; Luo, X. Building Thermal Load Prediction Using Deep Learning Method Considering Time-Shifting Correlation in Feature Variables. J. Build. Eng. 2022, 61, 105316. [Google Scholar] [CrossRef]
- Xue, G.; Song, J.; Kong, X.; Pan, Y.; Qi, C.; Li, H. Prediction of Natural Gas Consumption for City-Level DHS Based on Attention GRU: A Case Study for a Northern Chinese City. IEEE Access 2019, 7, 130685–130699. [Google Scholar] [CrossRef]
- Khan, N.; Haq, I.U.; Khan, S.U.; Rho, S.; Lee, M.Y.; Baik, S.W. DB-Net: A Novel Dilated CNN Based Multi-Step Forecasting Model for Power Consumption in Integrated Local Energy Systems. Int. J. Electr. Power Energy Syst. 2021, 133, 107023. [Google Scholar] [CrossRef]
- Zhao, A.; Mi, L.; Xue, X.; Xi, J.; Jiao, Y. Heating Load Prediction of Residential District Using Hybrid Model Based on CNN. Energy Build. 2022, 266, 112122. [Google Scholar] [CrossRef]
- Lu, Y.; Tian, Z.; Zhou, R.; Liu, W. A General Transfer Learning-Based Framework for Thermal Load Prediction in Regional Energy System. Energy 2021, 217, 119322. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, J.; Huang, K.; Zhang, J.; Zheng, L.; Zhou, Z.; Zhang, Y. Research on Thermal Load Prediction of District Heating Station Based on Transfer Learning. Energy 2022, 239, 122309. [Google Scholar] [CrossRef]
- Liu, T.; Tan, Z.; Xu, C.; Chen, H.; Li, Z. Study on Deep Reinforcement Learning Techniques for Building Energy Consumption Forecasting. Energy Build. 2020, 208, 109675. [Google Scholar] [CrossRef]
- Li, B.; Shao, Y.; Lian, Y.; Li, P.; Lei, Q. Bayesian Optimization-Based LSTM for Short-Term Heating Load Forecasting. Energies 2023, 16, 6234. [Google Scholar] [CrossRef]
- Jung, S.; Moon, J.; Park, S.; Hwang, E. An Attention-Based Multilayer GRU Model for Multistep-Ahead Short-Term Load Forecasting. Sensors 2021, 21, 1639. [Google Scholar] [CrossRef]
- Sun, J.; Gong, M.; Zhao, Y.; Han, C.; Jing, L.; Yang, P. A Hybrid Deep Reinforcement Learning Ensemble Optimization Model for Heat Load Energy-Saving Prediction. J. Build. Eng. 2022, 58, 105031. [Google Scholar] [CrossRef]
- Pachauri, N.; Ahn, C.W. Regression Tree Ensemble Learning-Based Prediction of the Heating and Cooling Loads of Residential Buildings. Build. Simul. 2022, 15, 2003–2017. [Google Scholar] [CrossRef]
- Moradzadeh, A.; Mohammadi-Ivatloo, B.; Abapour, M.; Anvari-Moghaddam, A.; Roy, S.S. Heating and Cooling Loads Forecasting for Residential Buildings Based on Hybrid Machine Learning Applications: A Comprehensive Review and Comparative Analysis. IEEE Access 2022, 10, 2196–22151. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, J.; Dong, F.; Wang, R.; Deng, H.; Feng, Y. A Decomposition-Ensemble Prediction Method of Building Thermal Load with Enhanced Electrical Load Information. J. Build. Eng. 2022, 61, 105330. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E. Terpenning, lrma STL: A Seasonal-Trend Decomposition Procedure Based on Loess. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Fan, G.-F.; Liu, Y.-R.; Wei, H.-Z.; Yu, M.; Li, Y.-H. The New Hybrid Approaches to Forecasting Short-Term Electricity Load. Electr. Power Syst. Res. 2022, 213, 108759. [Google Scholar] [CrossRef]
- Mohammed, A.; Kora, R. A Comprehensive Review on Ensemble Deep Learning: Opportunities and Challenges. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 757–774. [Google Scholar] [CrossRef]
- Ganaie, M.A.; Hu, M.; Malik, A.K.; Tanveer, M.; Suganthan, P.N. Ensemble Deep Learning: A Review. Eng. Appl. Artif. Intell. 2022, 115, 105151. [Google Scholar] [CrossRef]
- Song, J.; Xue, G.; Pan, X.; Ma, Y.; Li, H. Hourly Heat Load Prediction Model Based on Temporal Convolutional Neural Network. IEEE Access 2020, 8, 16726–16741. [Google Scholar] [CrossRef]
- He, N.; Qian, C.; Liu, L.; Cheng, F. Air Conditioning Load Prediction Based on Hybrid Data Decomposition and Non-Parametric Fusion Model. J. Build. Eng. 2023, 80, 108095. [Google Scholar] [CrossRef]
- Ullah, F.U.M.; Ullah, A.; Khan, N.; Lee, M.Y.; Rho, S.; Baik, S.W. Deep Learning-Assisted Short-Term Power Load Forecasting Using Deep Convolutional LSTM and Stacked GRU. Complexity 2022, 2022, 2993184. [Google Scholar] [CrossRef]
- Khan, S.U.; Khan, N.; Ullah, F.U.M.; Kim, M.J.; Lee, M.Y.; Baik, S.W. Towards Intelligent Building Energy Management: AI-Based Framework for Power Consumption and Generation Forecasting. Energy Build. 2023, 279, 112705. [Google Scholar] [CrossRef]
Group Name | Heating Area (m2) | Number of Aboveground Floors | Number of Underground Floors |
---|---|---|---|
Rg1 | 11,407 | 4 | / |
Rg2 | 9570 | 3 | 1 |
Rg3 | 9637 | 4 | / |
Rg4 | 6268 | 5 | 1 |
Rg5 | 7104 | 5 | 1 |
Rg6 | 8831 | 5 | 2 |
Og1 | 5235 | 2 | / |
Og2 | 18,402 | 4 | 2 |
Experimental Environment | Configuration | |
---|---|---|
Hardware | Operating System | Windows 10 |
CPU | Intel(R) Core(TM) i7-9750H | |
GPU | NVIDIA GeForce RTX 2060 | |
Memory | 32G | |
Software | Programming Language | Python 3.7, ipython 7.31.1 |
Development Tools | Pycharm 2020, Anaconda 3, Jupyter Notebook 7.3.5 | |
Deep Learning Framework | Tensorflow 2.1, Keras 1.0.8 | |
Software Packages | Matplotlib 3.4.3, Numpy 1.19.2, Pandas 1.3.2, Sklearn 0.0, Statsmodels 0.13.0 |
Dataset | Division Ratio | RMSE | MAE |
---|---|---|---|
Office Group 1 | 8:1:1 | 22.108 | 8.532 |
7:1.5:1.5 | 13.380 | 8.572 | |
6:2:2 | 13.287 | 6.982 | |
Residential Group 4 | 8:1:1 | 34.381 | 25.224 |
7:1.5:1.5 | 29.730 | 23.174 | |
6:2:2 | 27.232 | 22.149 |
Dataset | Time Step | RMSE | MAE |
---|---|---|---|
Office Group 1 | 1 h | 114.624 | 35.112 |
3 h | 114.158 | 35.021 | |
6 h | 106.223 | 26.599 | |
12 h | 26.273 | 16.013 | |
24 h | 13.287 | 6.982 | |
48 h | 6.142 | 4.105 | |
72 h | 17.809 | 12.120 | |
Residential Group 4 | 1 h | 49.946 | 35.363 |
3 h | 44.805 | 30.101 | |
6 h | 37.849 | 27.433 | |
12 h | 33.277 | 26.455 | |
24 h | 27.232 | 22.149 | |
48 h | 24.697 | 20.195 | |
72 h | 35.663 | 29.567 |
Dataset | Metamodel | RMSE | MAE |
---|---|---|---|
Office Group 1 | Ridge Regression | 3.809 | 2.655 |
Lasso | 6.392 | 4.905 | |
Random Forest | 6.883 | 3.012 | |
SVR | 4.317 | 2.978 | |
DNN | 5.755 | 3.938 | |
Residential Group 4 | Ridge Regression | 17.907 | 14.688 |
Lasso | 19.940 | 15.794 | |
Random Forest | 20.775 | 16.316 | |
SVR | 19.595 | 14.228 | |
DNN | 19.593 | 14.981 |
Error | Model | Rg1 | Rg2 | Rg3 | Rg4 | Rg5 | Rg6 | Og1 | Og2 |
---|---|---|---|---|---|---|---|---|---|
RMSE | OLSTM | 53.804 | 39.272 | 44.810 | 24.697 | 22.045 | 29.088 | 6.142 | 33.878 |
TLSTM | 40.623 | 30.734 | 35.349 | 18.896 | 24.564 | 19.172 | 6.950 | 21.329 | |
SLSTM | 50.138 | 26.680 | 36.116 | 22.139 | 23.056 | 24.636 | 4.428 | 36.639 | |
Proposed model | 40.935 | 25.533 | 34.790 | 17.907 | 20.843 | 24.739 | 3.809 | 13.397 | |
MAE | OLSTM | 42.111 | 30.632 | 34.958 | 20.195 | 16.919 | 22.549 | 4.105 | 21.672 |
TLSTM | 29.958 | 20.310 | 27.741 | 15.150 | 17.173 | 24.330 | 4.907 | 10.883 | |
SLSTM | 41.020 | 22.047 | 29.496 | 17.149 | 17.497 | 18.063 | 3.020 | 26.009 | |
Proposed model | 30.924 | 20.638 | 26.792 | 14.688 | 15.058 | 19.172 | 2.655 | 8.328 |
Error | Model | Rg1 | Rg2 | Rg3 | Rg4 | Rg5 | Rg6 | Og1 | Og2 |
---|---|---|---|---|---|---|---|---|---|
RMSE | ConvLSTM | 64.419 | 48.049 | 53.009 | 38.214 | 35.013 | 44.749 | 6.238 | 21.651 |
TCN | 58.189 | 37.044 | 39.808 | 27.939 | 30.347 | 38.851 | 15.582 | 32.418 | |
Proposed model | 40.935 | 25.533 | 34.790 | 17.907 | 20.843 | 24.739 | 3.809 | 13.397 | |
MAE | ConvLSTM | 54.764 | 41.755 | 43.825 | 29.303 | 26.798 | 37.101 | 2.985 | 9.522 |
TCN | 45.521 | 30.418 | 29.702 | 23.554 | 24.415 | 32.130 | 12.438 | 18.090 | |
Proposed model | 30.924 | 20.638 | 26.792 | 14.688 | 15.058 | 19.172 | 2.655 | 8.328 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Chen, G. A Building Heat Load Prediction Method Driven by a Multi-Component Fusion LSTM Ridge Regression Ensemble Model. Appl. Sci. 2024, 14, 3810. https://doi.org/10.3390/app14093810
Zhang Y, Chen G. A Building Heat Load Prediction Method Driven by a Multi-Component Fusion LSTM Ridge Regression Ensemble Model. Applied Sciences. 2024; 14(9):3810. https://doi.org/10.3390/app14093810
Chicago/Turabian StyleZhang, Yu, and Guangshu Chen. 2024. "A Building Heat Load Prediction Method Driven by a Multi-Component Fusion LSTM Ridge Regression Ensemble Model" Applied Sciences 14, no. 9: 3810. https://doi.org/10.3390/app14093810
APA StyleZhang, Y., & Chen, G. (2024). A Building Heat Load Prediction Method Driven by a Multi-Component Fusion LSTM Ridge Regression Ensemble Model. Applied Sciences, 14(9), 3810. https://doi.org/10.3390/app14093810