Application of Digital Holographic Imaging to Monitor Real-Time Cardiomyocyte Hypertrophy Dynamics in Response to Norepinephrine Stimulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Breeding
2.2. Cardiomyocyte Isolation and Culture
2.3. Chemical Treatments
2.4. Digital Holographic Time-Lapse Imaging
2.5. Single-Cell Tracking of Surface Area and Optical Volume Dynamics
2.6. Statistical Analysis
3. Results
3.1. Validation of the Holomonitor M4 Digital Holographic Imaging System to Detect Norepinephrine-Induced Cardiomyocyte Hypertrophic Growth
3.2. Application of the Holomonitor M4 Digital Holographic Imaging System to Monitor Real-Time Cardiomyocyte Hypertrophic Growth Dynamics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hill, J.A.; Olson, E.N. Cardiac Plasticity. N. Engl. J. Med. 2008, 358, 1370–1380. [Google Scholar] [CrossRef]
- Adzika, G.K.; Machuki, J.O.; Shang, W.; Hou, H.; Ma, T.; Wu, L.; Geng, J.; Hu, X.; Ma, X.; Sun, H. Pathological Cardiac Hypertrophy: The Synergy of Adenylyl Cyclases Inhibition in Cardiac and Immune Cells during Chronic Catecholamine Stress. J. Mol. Med. 2019, 97, 897–907. [Google Scholar] [CrossRef]
- Liu, X.; Li, H.; Hastings, M.H.; Xiao, C.; Damilano, F.; Platt, C.; Lerchenmüller, C.; Zhu, H.; Wei, X.P.; Yeri, A.; et al. miR-222 Inhibits Pathological Cardiac Hypertrophy and Heart Failure. Cardiovasc. Res. 2024, 120, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Frey, N.; Katus, H.A.; Olson, E.N.; Hill, J.A. Hypertrophy of the Heart: A New Therapeutic Target? Circulation 2004, 109, 1580–1589. [Google Scholar] [CrossRef]
- Heineke, J.; Molkentin, J.D. Regulation of Cardiac Hypertrophy by Intracellular Signalling Pathways. Nat. Rev. Mol. Cell Biol. 2006, 7, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Bueno, O.F.; De Windt, L.J.; Tymitz, K.M.; Witt, S.A.; Kimball, T.R.; Klevitsky, R.; Hewett, T.E.; Jones, S.P.; Lefer, D.J.; Peng, C.F.; et al. The MEK1-ERK1/2 Signaling Pathway Promotes Compensated Cardiac Hypertrophy in Transgenic Mice. EMBO J. 2000, 19, 6341–6350. [Google Scholar] [CrossRef]
- Molkentin, J.D.; Lu, J.R.; Antos, C.L.; Markham, B.; Richardson, J.; Robbins, J.; Grant, S.R.; Olson, E.N. A Calcineurin-Dependent Transcriptional Pathway for Cardiac Hypertrophy. Cell 1998, 93, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, X.; Capasso, J.M.; Gerdes, A.M. Rapid Transition of Cardiac Myocytes from Hyperplasia to Hypertrophy during Postnatal Development. J. Mol. Cell. Cardiol. 1996, 28, 1737–1746. [Google Scholar] [CrossRef]
- Nakano, H.; Minami, I.; Braas, D.; Pappoe, H.; Wu, X.; Sagadevan, A.; Vergnes, L.; Fu, K.; Morselli, M.; Dunham, C.; et al. Glucose Inhibits Cardiac Muscle Maturation through Nucleotide Biosynthesis. eLife 2017, 6, e29330. [Google Scholar] [CrossRef]
- Satoh, H.; Delbridge, L.M.; Blatter, L.A.; Bers, D.M. Surface:Volume Relationship in Cardiac Myocytes Studied with Confocal Microscopy and Membrane Capacitance Measurements: Species-Dependence and Developmental Effects. Biophys. J. 1996, 70, 1494–1504. [Google Scholar] [CrossRef]
- Watkins, S.J.; Borthwick, G.M.; Oakenfull, R.; Robson, A.; Arthur, H.M. Angiotensin II-Induced Cardiomyocyte Hypertrophy in Vitro Is TAK1-Dependent and Smad2/3-Independent. Hypertens. Res. 2012, 35, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Mölder, A.; Sebesta, M.; Gustafsson, M.; Gisselson, L.; Wingren, A.G.; Alm, K. Non-Invasive, Label-Free Cell Counting and Quantitative Analysis of Adherent Cells Using Digital Holography. J. Microsc. 2008, 232, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Huang, H.; Ross, I.; Moreno, J.; Khyeam, S.; Simmons, J.; Huang, G.N.; Payumo, A.Y. Quantitative Three-Dimensional Label-Free Digital Holographic Imaging of Cardiomyocyte Size, Ploidy, and Cell Division. bioRxiv 2023. 2023.11.02.565407. [Google Scholar] [CrossRef]
- Schlaich, M.P.; Kaye, D.M.; Lambert, E.; Sommerville, M.; Socratous, F.; Esler, M.D. Relation Between Cardiac Sympathetic Activity and Hypertensive Left Ventricular Hypertrophy. Circulation 2003, 108, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Simpson, P. Norepinephrine-Stimulated Hypertrophy of Cultured Rat Myocardial Cells Is an Alpha 1 Adrenergic Response. J. Clin. Investig. 1983, 72, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Blondel, B.; Roijen, I.; Cheneval, J.P. Heart Cells in Culture: A Simple Method for Increasing the Proportion of Myoblasts. Experientia 1971, 27, 356–358. [Google Scholar] [CrossRef] [PubMed]
- Sen, A.; Dunnmon, P.; Henderson, S.A.; Gerard, R.D.; Chien, K.R. Terminally Differentiated Neonatal Rat Myocardial Cells Proliferate and Maintain Specific Differentiated Functions Following Expression of SV40 Large T Antigen. J. Biol. Chem. 1988, 263, 19132–19136. [Google Scholar] [CrossRef] [PubMed]
- Orita, H.; Fukasawa, M.; Hirooka, S.; Uchino, H.; Fukui, K.; Washio, M. Modulation of Cardiac Myocyte Beating Rate and Hypertrophy by Cardiac Fibroblasts Isolated from Neonatal Rat Ventricle. Jpn. Circ. J. 1993, 57, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Logg, K.; Bodvard, K.; Blomberg, A.; Käll, M. Investigations on Light-Induced Stress in Fluorescence Microscopy Using Nuclear Localization of the Transcription Factor Msn2p as a Reporter. FEMS Yeast Res. 2009, 9, 875–884. [Google Scholar] [CrossRef]
- Wagner, M.; Weber, P.; Bruns, T.; Strauss, W.S.L.; Wittig, R.; Schneckenburger, H. Light Dose Is a Limiting Factor to Maintain Cell Viability in Fluorescence Microscopy and Single Molecule Detection. Int. J. Mol. Sci. 2010, 11, 956–966. [Google Scholar] [CrossRef]
- Moon, I.; Jaferzadeh, K.; Ahmadzadeh, E.; Javidi, B. Automated Quantitative Analysis of Multiple Cardiomyocytes at the Single-Cell Level with Three-Dimensional Holographic Imaging Informatics. J. Biophotonics 2018, 11, e201800116. [Google Scholar] [CrossRef] [PubMed]
- Rohr, S. Role of Gap Junctions in the Propagation of the Cardiac Action Potential. Cardiovasc. Res. 2004, 62, 309–322. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akter, W.; Huang, H.; Simmons, J.; Payumo, A.Y. Application of Digital Holographic Imaging to Monitor Real-Time Cardiomyocyte Hypertrophy Dynamics in Response to Norepinephrine Stimulation. Appl. Sci. 2024, 14, 3819. https://doi.org/10.3390/app14093819
Akter W, Huang H, Simmons J, Payumo AY. Application of Digital Holographic Imaging to Monitor Real-Time Cardiomyocyte Hypertrophy Dynamics in Response to Norepinephrine Stimulation. Applied Sciences. 2024; 14(9):3819. https://doi.org/10.3390/app14093819
Chicago/Turabian StyleAkter, Wahida, Herman Huang, Jacquelyn Simmons, and Alexander Y. Payumo. 2024. "Application of Digital Holographic Imaging to Monitor Real-Time Cardiomyocyte Hypertrophy Dynamics in Response to Norepinephrine Stimulation" Applied Sciences 14, no. 9: 3819. https://doi.org/10.3390/app14093819
APA StyleAkter, W., Huang, H., Simmons, J., & Payumo, A. Y. (2024). Application of Digital Holographic Imaging to Monitor Real-Time Cardiomyocyte Hypertrophy Dynamics in Response to Norepinephrine Stimulation. Applied Sciences, 14(9), 3819. https://doi.org/10.3390/app14093819