BIMO: Bootstrap Inter–Intra Modality at Once Unsupervised Learning for Multivariate Time Series
Abstract
:1. Introduction
2. Materials and Methods
Algorithm 1 BIMO’s training procedure |
|
2.1. BIMO’s Components
2.2. Training Details
2.3. Architecture and Optimization
3. Results and Discussion
3.1. Implementation
3.2. Univariate Time Series
3.3. Multivariate Time Series
3.4. Robustness to Noisy Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bone, D.; Lee, C.C.; Chaspari, T.; Gibson, J.; Narayanan, S. Signal processing and machine learning for mental health research and clinical applications [perspectives]. IEEE Signal Process. Mag. 2017, 34, 195–196. [Google Scholar] [CrossRef]
- Costello, Z.; Martin, H.G. A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data. NPJ Syst. Biol. Appl. 2018, 4, 19. [Google Scholar] [CrossRef] [PubMed]
- Parmezan, A.R.S.; Souza, V.M.; Batista, G.E. Evaluation of statistical and machine learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the use of each model. Inf. Sci. 2019, 484, 302–337. [Google Scholar] [CrossRef]
- Heo, S.; Kwon, S.; Lee, J. Stress Detection With Single PPG Sensor by Orchestrating Multiple Denoising and Peak-Detecting Methods. IEEE Access 2021, 9, 47777–47785. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, W.; Oates, T. Time series classification from scratch with deep neural networks: A strong baseline. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 1578–1585. [Google Scholar]
- Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification: A review. Data Min. Knowl. Discov. 2019, 33, 917–963. [Google Scholar] [CrossRef]
- Fawaz, H.I.; Lucas, B.; Forestier, G.; Pelletier, C.; Schmidt, D.F.; Weber, J.; Webb, G.I.; Idoumghar, L.; Muller, P.A.; Petitjean, F. Inceptiontime: Finding alexnet for time series classification. Data Min. Knowl. Discov. 2020, 34, 1936–1962. [Google Scholar] [CrossRef]
- Dempster, A.; Petitjean, F.; Webb, G.I. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Min. Knowl. Discov. 2020, 34, 1454–1495. [Google Scholar] [CrossRef]
- Kim, I.; Kim, D.; Kwon, S.; Lee, S.; Lee, J. Fall detection using biometric information based on multi-horizon forecasting. In Proceedings of the 2022 26th International Conference on Pattern Recognition (ICPR), Montreal, QC, Canada, 21–25 August 2022; pp. 1364–1370. [Google Scholar]
- Kim, I.; Lim, J.; Lee, J. Human Activity Recognition via Temporal Fusion Contrastive Learning. IEEE Access 2024, 12, 20854–20866. [Google Scholar] [CrossRef]
- He, K.; Fan, H.; Wu, Y.; Xie, S.; Girshick, R. Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9729–9738. [Google Scholar]
- Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 1597–1607. [Google Scholar]
- Chen, T.; Kornblith, S.; Swersky, K.; Norouzi, M.; Hinton, G. Big self-supervised models are strong semi-supervised learners. arXiv 2020, arXiv:2006.10029. [Google Scholar]
- Chen, X.; Fan, H.; Girshick, R.; He, K. Improved baselines with momentum contrastive learning. arXiv 2020, arXiv:2003.04297. [Google Scholar]
- Grill, J.B.; Strub, F.; Altché, F.; Tallec, C.; Richemond, P.H.; Buchatskaya, E.; Doersch, C.; Pires, B.A.; Guo, Z.D.; Azar, M.G.; et al. Bootstrap your own latent: A new approach to self-supervised learning. arXiv 2020, arXiv:2006.07733. [Google Scholar]
- Kim, D.; Yoo, Y.; Park, S.; Kim, J.; Lee, J. Selfreg: Self-supervised contrastive regularization for domain generalization. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 9619–9628. [Google Scholar]
- Kim, D.; Kim, J.; Lee, J. Inter-domain curriculum learning for domain generalization. ICT Express 2022, 8, 225–229. [Google Scholar] [CrossRef]
- Chen, X.; He, K. Exploring simple siamese representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 15750–15758. [Google Scholar]
- Tsay, R.S. Analysis of Financial Time Series; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 543. [Google Scholar]
- Cowpertwait, P.S.; Metcalfe, A.V. Introductory Time Series with R; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Pascual, S.; Ravanelli, M.; Serra, J.; Bonafonte, A.; Bengio, Y. Learning problem-agnostic speech representations from multiple self-supervised tasks. arXiv 2019, arXiv:1904.03416. [Google Scholar]
- Sarkar, P.; Etemad, A. Self-supervised learning for ecg-based emotion recognition. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 3217–3221. [Google Scholar]
- Franceschi, J.Y.; Dieuleveut, A.; Jaggi, M. Unsupervised scalable representation learning for multivariate time series. arXiv 2019, arXiv:1901.10738. [Google Scholar]
- Schneider, S.; Baevski, A.; Collobert, R.; Auli, M. wav2vec: Unsupervised pre-training for speech recognition. arXiv 2019, arXiv:1904.05862. [Google Scholar]
- Dau, H.A.; Bagnall, A.; Kamgar, K.; Yeh, C.C.M.; Zhu, Y.; Gharghabi, S.; Ratanamahatana, C.A.; Keogh, E. The UCR time series archive. IEEE/CAA J. Autom. Sin. 2019, 6, 1293–1305. [Google Scholar] [CrossRef]
- Bagnall, A.; Dau, H.A.; Lines, J.; Flynn, M.; Large, J.; Bostrom, A.; Southam, P.; Keogh, E. The UEA multivariate time series classification archive, 2018. arXiv 2018, arXiv:1811.00075. [Google Scholar]
- Fan, H.; Zhang, F.; Gao, Y. Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning. arXiv 2020, arXiv:2011.13548. [Google Scholar]
- Bengio, Y. Learning Deep Architectures for AI; Now Publishers Inc.: Norwell, MA, USA, 2009. [Google Scholar]
- Oord, A.v.d.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K. Wavenet: A generative model for raw audio. arXiv 2016, arXiv:1609.03499. [Google Scholar]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Schmidt, P.; Reiss, A.; Duerichen, R.; Marberger, C.; Van Laerhoven, K. Introducing wesad, a multimodal dataset for wearable stress and affect detection. In Proceedings of the 20th ACM International Conference on Multimodal Interaction, Boulder CO, USA, 16–18 October 2018; pp. 400–408. [Google Scholar]
- Dosovitskiy, A.; Springenberg, J.T.; Riedmiller, M.; Brox, T. Discriminative unsupervised feature learning with convolutional neural networks. Adv. Neural Inf. Process. Syst. 2014, 27. [Google Scholar] [CrossRef] [PubMed]
- Doersch, C.; Gupta, A.; Efros, A.A. Unsupervised visual representation learning by context prediction. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1422–1430. [Google Scholar]
- Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; Efros, A.A. Context encoders: Feature learning by inpainting. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2536–2544. [Google Scholar]
- Wen, Q.; Sun, L.; Yang, F.; Song, X.; Gao, J.; Wang, X.; Xu, H. Time series data augmentation for deep learning: A survey. arXiv 2020, arXiv:2002.12478. [Google Scholar]
- Um, T.T.; Pfister, F.M.; Pichler, D.; Endo, S.; Lang, M.; Hirche, S.; Fietzek, U.; Kulić, D. Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural networks. In Proceedings of the 19th ACM International Conference on Multimodal Interaction, Glasgow, UK, 13–17 November 2017; pp. 216–220. [Google Scholar]
- Lei, Q.; Yi, J.; Vaculin, R.; Wu, L.; Dhillon, I.S. Similarity Preserving Representation Learning for Time Series Clustering. arXiv 2017, arXiv:1702.03584. [Google Scholar]
- Wu, L.; Yen, I.E.H.; Yi, J.; Xu, F.; Lei, Q.; Witbrock, M. Random warping series: A random features method for time-series embedding. In Proceedings of the International Conference on Artificial Intelligence and Statistics, PMLR, Lanzarote, Spain, 9–11 April 2018; pp. 793–802. [Google Scholar]
- Lucas, B.; Shifaz, A.; Pelletier, C.; O’Neill, L.; Zaidi, N.; Goethals, B.; Petitjean, F.; Webb, G.I. Proximity forest: An effective and scalable distance-based classifier for time series. Data Min. Knowl. Discov. 2019, 33, 607–635. [Google Scholar] [CrossRef]
- Lee, Y.K.; Kwon, O.W.; Shin, H.S.; Jo, J.; Lee, Y. Noise reduction of PPG signals using a particle filter for robust emotion recognition. In Proceedings of the 2011 IEEE International Conference on Consumer Electronics-Berlin (ICCE-Berlin), Berlin, Germany, 6–8 September 2011; pp. 202–205. [Google Scholar]
- Liang, Y.; Elgendi, M.; Chen, Z.; Ward, R. An optimal filter for short photoplethysmogram signals. Sci. Data 2018, 5, 180076. [Google Scholar] [CrossRef]
- Hanyu, S.; Xiaohui, C. Motion artifact detection and reduction in PPG signals based on statistics analysis. In Proceedings of the 2017 29th Chinese Control and Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; pp. 3114–3119. [Google Scholar]
- Sadhukhan, D.; Pal, S.; Mitra, M. PPG Noise Reduction based on Adaptive Frequency Suppression using Discrete Fourier Transform for Portable Home Monitoring Applications. In Proceedings of the 2018 15th IEEE India Council International Conference (INDICON), Coimbatore, India, 16–18 December 2018; pp. 1–6. [Google Scholar]
- Pollreisz, D.; TaheriNejad, N. Detection and removal of motion artifacts in PPG signals. Mob. Netw. Appl. 2019, 27, 728–738. [Google Scholar] [CrossRef]
Dataset | DConv. (BIMO) | ResNet | LSTM |
---|---|---|---|
Adiac | 0.760 | 0.482 | 0.342 |
ArrowHead | 0.814 | 0.763 | 0.388 |
Beef | 0.800 | 0.625 | 0.313 |
BeetleFly | 0.850 | 0.688 | 0.750 |
BirdChicken | 0.900 | 0.750 | 0.563 |
Car | 0.917 | 0.688 | 0.417 |
CBF | 0.998 | 0.992 | 0.401 |
ChlorineConcentration | 0.635 | 0.731 | 0.534 |
CinCECGTorso | 0.757 | 0.629 | 0.283 |
Coffee | 1.000 | 1.000 | 0.625 |
Computers | 0.681 | 0.729 | 0.571 |
CricketX | 0.750 | 0.651 | 0.107 |
CricketY | 0.716 | 0.628 | 0.216 |
CricketZ | 0.758 | 0.378 | 0.102 |
DiatomSizeReduction | 0.977 | 0.911 | 0.336 |
DistalPhalanxOutlineAgeGroup | 0.743 | 0.820 | 0.523 |
DistalPhalanxOutlineCorrect | 0.786 | 0.809 | 0.581 |
DistalPhalanxTW | 0.684 | 0.688 | 0.422 |
Earthquakes | 0.765 | 0.727 | 0.767 |
ECG200 | 0.900 | 0.906 | 0.698 |
Dataset | Unsupervised | Supervised | |||||
---|---|---|---|---|---|---|---|
BIMO | USRL | DTW | BOSS | PF | HIVE-COTE | ITime | |
Adiac | 0.760 | 0.716 | 0.604 | 0.765 | 0.734 | 0.811 | 0.836 * |
ArrowHead | 0.814 | 0.829 | 0.703 | 0.834 | 0.875 * | 0.863 | 0.829 |
Beef | 0.800 | 0.700 | 0.633 | 0.800 | 0.720 | 0.933 * | 0.700 |
BeetleFly | 0.850 | 0.900 | 0.700 | 0.900 | 0.875 | 0.950 * | 0.850 |
BirdChicken | 0.900 | 0.800 | 0.750 | 0.950 * | 0.865 | 0.867 | 0.950 * |
Car | 0.917 * | 0.817 | 0.733 | 0.833 | 0.847 | 0.867 | 0.900 |
CBF | 0.998 | 0.994 | 0.997 | 0.998 | 0.993 | 0.999 * | 0.998 |
ChlCon | 0.635 | 0.782 | 0.648 | 0.661 | 0.634 | 0.712 | 0.875 * |
CinCECGTorso | 0.757 | 0.740 | 0.651 | 0.887 | 0.934 | 0.996 * | 0.851 |
Coffee | 1.000 * | 1.000 * | 1.000 * | 1.000 * | 1.000 * | 1.000 * | 1.000 * |
Computers | 0.681 | 0.628 | 0.700 | 0.756 | 0.644 | 0.760 | 0.812 * |
CricketX | 0.750 | 0.777 | 0.754 | 0.736 | 0.802 | 0.823 | 0.867 * |
CricketY | 0.716 | 0.767 | 0.744 | 0.754 | 0.794 | 0.849 | 0.851 * |
CricketZ | 0.758 | 0.764 | 0.754 | 0.746 | 0.801 | 0.831 | 0.859 * |
DiaSizRed | 0.977 | 0.993 * | 0.967 | 0.931 | 0.966 | 0.941 | 0.931 |
DisPhaOutAgeGroup | 0.743 | 0.734 | 0.770 * | 0.748 | 0.731 | 0.763 | 0.727 |
DisPhaxOutCorrect | 0.786 | 0.768 | 0.717 | 0.728 | 0.793 | 0.772 | 0.794 * |
DistalPhalanxTW | 0.684 * | 0.676 | 0.590 | 0.676 | 0.660 | 0.683 | 0.676 |
Earthquakes | 0.765 * | 0.748 | 0.719 | 0.748 | 0.754 | 0.748 | 0.741 |
ECG200 | 0.900 | 0.900 | 0.770 | 0.870 | 0.909 | 0.850 | 0.910 * |
ECG5000 | 0.940 | 0.936 | 0.924 | 0.941 | 0.937 | 0.946 * | 0.941 |
ECGFiveDays | 1.000 * | 1.000 * | 0.768 | 1.000 * | 0.849 | 1.000 * | 1.000 * |
ElectricDevices | 0.632 | 0.732 | 0.602 | 0.799 * | 0.706 | 0.770 | 0.723 |
FaceAll | 0.839 | 0.802 | 0.808 | 0.782 | 0.894 * | 0.803 | 0.804 |
FaceFour | 0.841 | 0.875 | 0.830 | 1.000 * | 0.974 | 0.955 | 0.966 |
FacesUCR | 0.948 | 0.918 | 0.905 | 0.957 | 0.946 | 0.963 | 0.973 * |
FiftyWords | 0.783 | 0.780 | 0.690 | 0.705 | 0.831 | 0.809 | 0.842 * |
Fish | 0.959 | 0.880 | 0.823 | 0.989* | 0.935 | 0.989 * | 0.983 |
FordA | 0.850 | 0.935 | 0.555 | 0.930 | 0.855 | 0.964 * | 0.948 |
FordB | 0.714 | 0.810 | 0.620 | 0.711 | 0.715 | 0.823 | 0.937 * |
GunPoint | 1.000 * | 0.993 | 0.907 | 1.000 * | 0.997 | 1.000 * | 1.000 * |
Ham | 0.740 * | 0.695 | 0.467 | 0.667 | 0.660 | 0.667 | 0.714 |
HandOutlines | 0.924 | 0.922 | 0.881 | 0.903 | 0.921 | 0.932 | 0.960 * |
Haptics | 0.510 | 0.455 | 0.377 | 0.461 | 0.445 | 0.519 | 0.568 * |
Herring | 0.703 * | 0.578 | 0.531 | 0.547 | 0.580 | 0.688 | 0.703 * |
InlineSkate | 0.372 | 0.447 | 0.384 | 0.516 | 0.542 * | 0.500 | 0.486 |
InsWinbeatSound | 0.630 | 0.623 | 0.355 | 0.523 | 0.619 | 0.655 * | 0.635 |
ItalyPowerDemand | 0.963 | 0.925 | 0.950 | 0.909 | 0.967 | 0.963 | 0.968 * |
LarKitAppliances | 0.866 | 0.848 | 0.795 | 0.765 | 0.782 | 0.864 | 0.907 * |
Lightning2 | 0.883 | 0.918 * | 0.869 | 0.836 | 0.866 | 0.820 | 0.803 |
Lightning7 | 0.819 | 0.795 | 0.726 | 0.685 | 0.822 * | 0.740 | 0.808 |
Mallat | 0.956 | 0.964 * | 0.934 | 0.938 | 0.958 | 0.962 | 0.963 |
Meat | 1.000 * | 0.950 | 0.933 | 0.900 | 0.933 | 0.933 | 0.950 |
MedicalImages | 0.730 | 0.784 | 0.737 | 0.718 | 0.758 | 0.778 | 0.799 * |
MidPhaOutAgeGroup | 0.618 | 0.656 * | 0.500 | 0.545 | 0.562 | 0.597 | 0.533 |
MidPhaOutCorrect | 0.826 | 0.814 | 0.698 | 0.780 | 0.836 * | 0.832 | 0.835 |
MiddlePhalanxTW | 0.566 | 0.610 * | 0.506 | 0.545 | 0.529 | 0.571 | 0.513 |
MoteStrain | 0.871 | 0.871 | 0.835 | 0.879 | 0.902 | 0.933 * | 0.903 |
NonInvFetECGTho1 | 0.923 | 0.910 | 0.790 | 0.838 | 0.906 | 0.930 | 0.962 * |
NonInvFetECGTho2 | 0.929 | 0.927 | 0.865 | 0.901 | 0.940 | 0.945 | 0.967 * |
OliveOil | 0.964 * | 0.900 | 0.833 | 0.867 | 0.867 | 0.900 | 0.867 |
OSULeaf | 0.729 | 0.831 | 0.591 | 0.955 | 0.827 | 0.979 * | 0.934 |
PhaOutCorrect | 0.801 | 0.801 | 0.728 | 0.772 | 0.824 | 0.807 | 0.854 * |
Phoneme | 0.263 | 0.289 | 0.228 | 0.265 | 0.320 | 0.382 * | 0.335 |
Plane | 1.000 * | 0.990 | 1.000 * | 1.000 * | 1.000 * | 1.000 * | 1.000 * |
ProPhaOutAgeGroup | 0.863 * | 0.854 | 0.805 | 0.834 | 0.846 | 0.859 | 0.854 |
ProPhaOutCorrect | 0.878 | 0.859 | 0.784 | 0.849 | 0.873 | 0.880 | 0.931 * |
ProximalPhalanxTW | 0.814 | 0.824 * | 0.761 | 0.800 | 0.779 | 0.815 | 0.776 |
RefrigerationDevices | 0.524 | 0.517 | 0.464 | 0.499 | 0.532 | 0.557 * | 0.509 |
ScreenType | 0.446 | 0.413 | 0.397 | 0.464 | 0.455 | 0.589 * | 0.576 |
ShapeletSim | 0.694 | 0.817 | 0.650 | 1.000 * | 0.776 | 1.000 * | 0.989 |
ShapesAll | 0.667 | 0.875 | 0.768 | 0.908 | 0.886 | 0.905 | 0.925 * |
SmaKitAppliances | 0.790 | 0.715 | 0.643 | 0.725 | 0.744 | 0.853 * | 0.779 |
SonAIBORobSur1 | 0.967 * | 0.897 | 0.725 | 0.632 | 0.846 | 0.765 | 0.884 |
SonAIBORobSur2 | 0.858 | 0.934 | 0.831 | 0.859 | 0.896 | 0.928 | 0.953 * |
StarLightCurves | 0.970 | 0.965 | 0.907 | 0.978 | 0.981 | 0.982 * | 0.979 |
Strawberry | 0.962 | 0.946 | 0.941 | 0.976 | 0.968 | 0.970 | 0.984 * |
SwedishLeaf | 0.929 | 0.931 | 0.792 | 0.922 | 0.947 | 0.954 | 0.971 * |
Symbols | 0.960 | 0.965 | 0.950 | 0.967 | 0.962 | 0.974 | 0.982 * |
SyntheticControl | 0.900 | 0.983 | 0.993 | 0.967 | 0.995 | 0.997 * | 0.997 * |
ToeSeg1 | 0.917 | 0.952 | 0.772 | 0.939 | 0.925 | 0.982 * | 0.969 |
ToeSeg2 | 0.891 | 0.885 | 0.838 | 0.962 * | 0.862 | 0.954 | 0.939 |
Trace | 1.000 * | 1.000 * | 1.000 * | 1.000 * | 1.000 * | 1.000 * | 1.000 * |
TwoLeadECG | 0.996 | 0.997 * | 0.905 | 0.981 | 0.989 | 0.996 | 0.996 |
TwoPatterns | 1.000 * | 1.000 * | 1.000 * | 0.993 | 1.000 * | 1.000 * | 1.000 * |
UWavGesLibAll | 0.958 | 0.941 | 0.892 | 0.939 | 0.972 * | 0.968 | 0.955 |
UWavGesLibX | 0.802 | 0.811 | 0.728 | 0.762 | 0.829 | 0.840 * | 0.825 |
UWavGesLibY | 0.712 | 0.735 | 0.634 | 0.685 | 0.762 | 0.765 | 0.769 * |
UWavGesLibZ | 0.742 | 0.759 | 0.658 | 0.695 | 0.764 | 0.783 * | 0.770 |
Wafer | 0.996 | 0.993 | 0.980 | 0.995 | 0.996 | 0.999 * | 0.999 * |
Wine | 0.808 | 0.870 * | 0.574 | 0.741 | 0.569 | 0.778 | 0.667 |
WordSynonyms | 0.701 | 0.704 | 0.649 | 0.638 | 0.779 * | 0.738 | 0.756 |
Worms | 0.684 | 0.714 | 0.584 | 0.558 | 0.718 | 0.558 | 0.805 * |
WormsTwoClass | 0.842 * | 0.818 | 0.623 | 0.831 | 0.784 | 0.779 | 0.792 |
Yoga | 0.807 | 0.878 | 0.837 | 0.918 * | 0.879 | 0.918 * | 0.906 |
Single | Plural | |||
---|---|---|---|---|
Inter | Intra | Inter and Intra | Inter ↦ Intra | Intra ↦ Inter |
2.39 | 3.33 | 2.87 | 3.33 | 1.90 |
Dataset | Single | Plural | |||
---|---|---|---|---|---|
Inter | Intra | Inter and Intra | Inter ↦ Intra |
Intra
↦
Inter
(BIMO) | |
Adiac | 0.778 | 0.693 | 0.729 | 0.642 | 0.760 |
ArrowHead | 0.831 | 0.767 | 0.826 | 0.785 | 0.814 |
Beef | 0.750 | 0.786 | 0.786 | 0.821 | 0.800 |
BeetleFly | 0.850 | 0.850 | 0.900 | 0.850 | 0.850 |
BirdChicken | 0.850 | 0.900 | 0.800 | 0.797 | 0.900 |
Car | 0.917 | 0.850 | 0.883 | 0.983 | 0.916 |
CBF | 0.990 | 0.993 | 0.996 | 0.986 | 0.998 |
ChlCon | 0.613 | 0.627 | 0.597 | 0.733 | 0.635 |
CinCECGTorso | 0.745 | 0.737 | 0.766 | 1.000 | 0.757 |
Coffee | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Computers | 0.633 | 0.621 | 0.681 | 0.625 | 0.681 |
CricketX | 0.771 | 0.629 | 0.683 | 0.649 | 0.750 |
CricketY | 0.696 | 0.585 | 0.686 | 0.652 | 0.716 |
CricketZ | 0.750 | 0.626 | 0.706 | 0.670 | 0.758 |
DiaSizRed | 0.961 | 0.980 | 0.964 | 0.984 | 0.977 |
DisPhaOutAgeGroup | 0.735 | 0.699 | 0.735 | 0.721 | 0.786 |
DisPhaxOutCorrect | 0.772 | 0.772 | 0.761 | 0.750 | 0.743 |
DistalPhalanxTW | 0.721 | 0.669 | 0.669 | 0.713 | 0.684 |
Earthquakes | 0.750 | 0.735 | 0.735 | 0.706 | 0.765 |
ECG200 | 0.890 | 0.890 | 0.880 | 0.890 | 0.900 |
ECG5000 | 0.940 | 0.940 | 0.941 | 0.939 | 0.940 |
ECGFiveDays | 0.991 | 0.998 | 0.995 | 0.997 | 1.000 |
ElectricDevices | 0.606 | 0.521 | 0.625 | 0.585 | 0.632 |
FaceAll | 0.830 | 0.680 | 0.771 | 0.701 | 0.839 |
FaceFour | 0.853 | 0.875 | 0.841 | 0.841 | 0.841 |
FacesUCR | 0.947 | 0.920 | 0.922 | 0.917 | 0.948 |
FiftyWords | 0.774 | 0.792 | 0.785 | 0.788 | 0.783 |
Fish | 0.959 | 0.901 | 0.948 | 0.913 | 0.959 |
FordA | 0.867 | 0.920 | 0.870 | 0.918 | 0.850 |
FordB | 0.718 | 0.788 | 0.756 | 0.775 | 0.714 |
GunPoint | 1.000 | 0.986 | 0.993 | 0.986 | 1.000 |
Ham | 1.000 | 0.760 | 0.740 | 0.712 | 0.740 |
HandOutlines | 0.921 | 0.916 | 0.902 | 0.913 | 0.924 |
Haptics | 0.916 | 0.494 | 0.523 | 0.487 | 0.510 |
Herring | 0.594 | 0.688 | 0.625 | 0.703 | 0.703 |
InlineSkate | 0.352 | 0.367 | 0.367 | 0.374 | 0.372 |
InsWinbeatSound | 0.608 | 0.598 | 0.609 | 0.597 | 0.630 |
ItalyPowerDemand | 0.955 | 0.954 | 0.952 | 0.963 | 0.963 |
LarKitAppliances | 0.871 | 0.621 | 0.863 | 0.659 | 0.866 |
Lightning2 | 0.767 | 0.783 | 0.767 | 0.717 | 0.883 |
Lightning7 | 0.778 | 0.778 | 0.764 | 0.750 | 0.819 |
Mallat | 0.898 | 0.829 | 0.920 | 0.875 | 0.956 |
Meat | 1.000 | 0.950 | 0.983 | 0.983 | 1.000 |
MedicalImages | 0.733 | 0.726 | 0.730 | 0.746 | 0.730 |
MidPhaOutAgeGroup | 0.533 | 0.658 | 0.618 | 0.605 | 0.826 |
MidPhaOutCorrect | 0.799 | 0.792 | 0.799 | 0.823 | 0.618 |
MiddlePhalanxTW | 0.586 | 0.559 | 0.566 | 0.533 | 0.566 |
MoteStrain | 0.854 | 0.851 | 0.859 | 0.851 | 0.871 |
NonInvFetECGTho1 | 0.916 | 0.891 | 0.907 | 0.894 | 0.923 |
NonInvFetECGTho2 | 0.926 | 0.905 | 0.920 | 0.907 | 0.929 |
OliveOil | 1.000 | 0.964 | 0.964 | 0.964 | 0.964 |
OSULeaf | 0.717 | 0.650 | 0.696 | 0.667 | 0.729 |
PhaOutCorrect | 0.780 | 0.783 | 0.793 | 0.770 | 0.801 |
Phoneme | 0.249 | 0.216 | 0.275 | 0.220 | 0.263 |
Plane | 1.000 | 0.990 | 0.990 | 1.000 | 1.000 |
ProPhaOutAgeGroup | 0.848 | 0.843 | 0.814 | 0.843 | 0.878 |
ProPhaOutCorrect | 0.885 | 0.882 | 0.892 | 0.865 | 0.863 |
ProximalPhalanxTW | 0.789 | 0.819 | 0.784 | 0.789 | 0.814 |
RefrigerationDevices | 0.538 | 0.556 | 0.530 | 0.559 | 0.524 |
ScreenType | 0.460 | 0.454 | 0.457 | 0.419 | 0.446 |
ShapeletSim | 0.583 | 0.628 | 0.600 | 0.639 | 0.694 |
ShapesAll | 0.662 | 0.647 | 0.663 | 0.647 | 0.667 |
SmaKitAppliances | 0.755 | 0.728 | 0.796 | 0.726 | 0.790 |
SonAIBORobSur1 | 0.970 | 0.942 | 0.953 | 0.960 | 0.967 |
SonAIBORobSur2 | 0.853 | 0.860 | 0.843 | 0.873 | 0.858 |
StarLightCurves | 0.978 | 0.963 | 0.963 | 0.955 | 0.970 |
Strawberry | 0.962 | 0.943 | 0.965 | 0.948 | 0.962 |
SwedishLeaf | 0.929 | 0.925 | 0.918 | 0.923 | 0.929 |
Symbols | 0.929 | 0.935 | 0.945 | 0.933 | 0.960 |
SyntheticControl | 0.873 | 0.850 | 0.863 | 0.873 | 0.900 |
ToeSeg1 | 0.917 | 0.917 | 0.917 | 0.886 | 0.917 |
ToeSeg2 | 0.883 | 0.883 | 0.883 | 0.883 | 0.891 |
Trace | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
TwoLeadECG | 0.996 | 0.996 | 0.995 | 0.996 | 0.996 |
TwoPatterns | 1.000 | 0.997 | 1.000 | 0.996 | 1.000 |
UWavGesLibAll | 0.954 | 0.956 | 0.951 | 0.962 | 0.742 |
UWavGesLibX | 0.804 | 0.799 | 0.811 | 0.802 | 0.958 |
UWavGesLibY | 0.726 | 0.686 | 0.717 | 0.690 | 0.802 |
UWavGesLibZ | 0.735 | 0.719 | 0.748 | 0.734 | 0.712 |
Wafer | 0.996 | 0.991 | 0.995 | 0.991 | 0.996 |
Wine | 0.827 | 0.731 | 0.750 | 0.731 | 0.808 |
WordSynonyms | 0.682 | 0.690 | 0.700 | 0.662 | 0.701 |
Worms | 0.671 | 0.618 | 0.658 | 0.592 | 0.684 |
WormsTwoClass | 0.803 | 0.724 | 0.763 | 0.711 | 0.842 |
Yoga | 0.807 | 0.810 | 0.796 | 0.797 | 0.807 |
Dataset | BIMO | USRL | DTW |
---|---|---|---|
ArticularyWordRecognition | 0.830 | 0.987 | 0.987 |
AtrialFibrillation | 0.417 | 0.133 | 0.200 |
BasicMotions | 1.000 | 1.000 | 0.975 |
Cricket | 0.861 | 0.986 | 1.000 |
DuckDuckGeese | 0.688 | 0.675 | 0.600 |
EigenWorms | 0.852 | 0.878 | 0.618 |
Epilepsy | 0.926 | 0.957 | 0.964 |
Ering | 0.922 | 0.133 | 0.133 |
EthanolConcentration | 0.354 | 0.236 | 0.323 |
FaceDetection | 0.550 | 0.528 | 0.529 |
FingerMovements | 0.550 | 0.540 | 0.530 |
HandMovementDirection | 0.444 | 0.270 | 0.231 |
Handwriting | 0.346 | 0.533 | 0.286 |
Heartbeat | 0.740 | 0.737 | 0.717 |
Libras | 0.650 | 0.867 | 0.870 |
LSST | 0.404 | 0.558 | 0.551 |
MotorImagery | 0.600 | 0.540 | 0.500 |
NATOPS | 0.872 | 0.944 | 0.883 |
PEMS-SF | 0.733 | 0.688 | 0.711 |
PenDigits | 0.975 | 0.983 | 0.977 |
Phoneme | 0.280 | 0.246 | 0.151 |
RacketSports | 0.737 | 0.862 | 0.803 |
SelfRegulationSCP1 | 0.853 | 0.846 | 0.775 |
SelfRegulationSCP2 | 0.550 | 0.556 | 0.539 |
StandWalkJump | 0.500 | 0.400 | 0.200 |
UWaveGestureLibrary | 0.819 | 0.884 | 0.903 |
Accuracy (F1) | ||||||
---|---|---|---|---|---|---|
ML Algorithms | DT | RF | AB | LDA | kNN | BIMO (Ours) |
weak FE | 0.78 (0.81) | 0.81 (0.84) | 0.81 (0.84) | 0.83 (0.86) | 0.79 (0.82) | 0.87 (0.85) |
strong FE (OMDP) | 0.87 (0.81) | 0.91 (0.87) | 0.91 (0.87) | 0.97 (0.93) | 0.89 (0.89) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heo, S.; Kim, S.; Lee, J. BIMO: Bootstrap Inter–Intra Modality at Once Unsupervised Learning for Multivariate Time Series. Appl. Sci. 2024, 14, 3825. https://doi.org/10.3390/app14093825
Heo S, Kim S, Lee J. BIMO: Bootstrap Inter–Intra Modality at Once Unsupervised Learning for Multivariate Time Series. Applied Sciences. 2024; 14(9):3825. https://doi.org/10.3390/app14093825
Chicago/Turabian StyleHeo, Seongsil, Sungsik Kim, and Jaekoo Lee. 2024. "BIMO: Bootstrap Inter–Intra Modality at Once Unsupervised Learning for Multivariate Time Series" Applied Sciences 14, no. 9: 3825. https://doi.org/10.3390/app14093825
APA StyleHeo, S., Kim, S., & Lee, J. (2024). BIMO: Bootstrap Inter–Intra Modality at Once Unsupervised Learning for Multivariate Time Series. Applied Sciences, 14(9), 3825. https://doi.org/10.3390/app14093825