Structural Design of Pressurized Tube Based on the Discrete Element Method–Computational Fluid Dynamics Coupled Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composition and Working Principle of Pneumatic Seed Delivery System
2.2. Pressurized Tube Structure Design
2.3. Simulation Analysis of Gas–Solid Two-Phase Flow Based on DEM-Fluent
2.4. Experimental Design
2.4.1. Orthogonal Experimental Design
2.4.2. Simulation Validation Experiment Design
2.4.3. Bench Test
3. Experimental Results and Discussion
3.1. Orthogonal Simulation Results and Analysis
3.1.1. Study on Seed Distribution Uniformity
3.1.2. Pressure Distribution within the Pressurized Tube
3.2. Simulation Validation Experiments
3.2.1. Velocity Vector Distribution
3.2.2. Pressure Distribution
3.2.3. Seed Distribution within the Pressurized Tube
3.3. Bench Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hilton, J.E.; Cleary, P.W. The influence of particle shape on flow modes in pneumatic conveying. Chem. Eng. Sci. 2011, 66, 231–240. [Google Scholar] [CrossRef]
- Chang, J.; Zhang, X. Design and test of one-step centralized type pneumatic conveying system. Trans. CSAE 2011, 27, 136–141. [Google Scholar]
- Peng, C.; Zhang, X.; Hou, C.; Bai, P.; Wang, Z. Design on test-bed of centralized pneumatic seed metering device. J. Chin. Agric. Mech. 2017, 38, 32–36. [Google Scholar]
- Yang, H.; Liu, L.; Zhou, J.; Zhao, Z.; Zhao, J. Analysis of air seed drill current situations and using situation in China. J. Agric. Mech. Res. 2013, 35, 216–220. [Google Scholar]
- Ashraf, M.; Tian, S.; Kondo, N.; Shigi, T. Machine Vision to Inspect Tomato Seedlings for Grafting Robot. Acta Hortic. 2014, 1054, 309–316. [Google Scholar] [CrossRef]
- Dimotakisp, E.; Lyer, C.; Papantonioud, Z. Viscous Flow in Pipes. In Fundamentals of Fluid Mechanics; Bruce, R.M., Ed.; Department of Aerospace Engineering and Engineering Mechanics: New York, NY, USA, 2009; pp. 383–460. [Google Scholar]
- Elyyan, M.A.; Rozati, A.; Tafti, D.K. Investigation of dimpled fins for heat transfer enhancement in compact heat exchangers. Int. J. Heat Mass Transf. 2008, 51, 2950–2966. [Google Scholar] [CrossRef]
- Daniel, W.K. Distribution Tube for Pneumatic Applicator. U.S. Patent 4575284, 11 March 1989. [Google Scholar]
- Wang, Y.; He, Y.-L.; Lei, Y.-G.; Zhang, J. Heat transfer and hydrodynamics analysis of a novel dimpled tube. Exp. Therm. Fluid Sci. 2010, 34, 1273–1281. [Google Scholar] [CrossRef]
- Lei, X.; Liao, Y.; Zhang, W.; Li, S.; Wang, D.; Liao, Q. Simulation and Experiment of Gas-Solid Flow in Seed Conveying Tube for Rapeseed and wheat. Trans. Chin. Soc. Agric. Mach. 2017, 48, 57–68. [Google Scholar]
- Yang, Q.; Li, Z.; Li, H.; He, J.; Wang, Q.; Lu, C. Numerical analysis of particle motion in pneumatic centralized fertilizer distribution device based on CFD-DEM. Trans. Chin. Soc. Agric. Mach. 2019, 50, 81–89. [Google Scholar]
- Bourges, G.; Medina, M. Air-seeds flow analysis in a Distribution head head of an “air drill” Seeder. Acta Hortic. 2013, 1008, 259–264. [Google Scholar] [CrossRef]
- Liu, Y. Design and Experiment of Pressure Balance Device for Pneumatic Conveying System; Chinese Academy of Agricultural Mechanization Science: Beijing, China, 2019. [Google Scholar]
- Li, Y.; Liu, Y.; Liu, L. Distribution mechanism of airflow in seed tube of different lengths in pneumatic seeder. Trans. Chin. Soc. Agric. Mach. 2020, 51, 55–64. [Google Scholar]
- Dai, Y.; Luo, X.; Wang, Z.; Zeng, S.; Zang, Y.; Yang, W.; Zhang, M.; Wang, B.; Xing, H. Design and experiment of rice pneumatic centralized seed Distribution head. Trans. CSAE 2016, 32, 36–42. [Google Scholar]
- Peng, Y.; Gu, S.; Chu, Q.; Zhang, Q.; Xu, X.; Li, B.; Wang, Y. Design of Stock Feeding Device of Grafting Robot for Solanaceae. Trans. Chin. Soc. Agric. Eng. 2016, 32, 76–82. [Google Scholar]
- Guan, J.; Pei, X.; Zhang, L. Research on flow characteristics of pneumatic conveying in dense phase stepped pipeline of grain Particles. China Powder Sci. Technol. 2018, 24, 38–43. [Google Scholar]
- Wen, X.; Jia, H.; Zhang, S.; Yuan, H.; Wang, G.; Chen, T. Test of suspension velocity of granular fertilizer based on EDEM-Fluent coupling. Trans. Chin. Soc. Agric. Mach. 2020, 51, 69–77. [Google Scholar]
- Kai, J.; Wang, J.; Li, C. Design and test of melon grafting device based on splice grafting. Int. Agric. Eng. J. 2018, 27, 65–74. [Google Scholar]
- Tang, H.; Xu, F.D.; Xu, C.S.; Zhao, J.L.; Wang, Y.J. The influence of a seed drop tube of the inside-filling air-blowing precision seed-metering device on seeding quality. Comput. Electron. Agric. 2023, 204, 107555. [Google Scholar] [CrossRef]
- Bao, Y.F.; Wang, F.Y.; Jiang, J.T.; Chen, F. Research progress and development trend of precision seeding equipment for vegetable seeds. J. Agric. Mechan. Res. 2021, 43, 247–254. [Google Scholar]
- Zhao, J.; Liu, L.; Yang, X.; Du, J.; Zhao, Z. Design and experiment of pneumatic seeding system of teff seeder. Trans. Chin. Soc. Agric. Mach. 2018, 49 (Suppl. S1), 101–107. [Google Scholar]
- Li, L.; Meng, Z.; Wang, X.; An, X.; Wang, P.; Wu, G. Simulation analysis of gas-solid two fhase flow in pneumatic conveying fertilizer feeder of rice fertilizer applicator. Trans. Chin. Soc. Agric. Mach. 2018, 49, 171–180. [Google Scholar]
- Li, F.; He, D. Research on the moving regularity of seeds in pneumatic pipes. Act. Univ. Sept. Occi. Agric. 1986, 14, 12–24. [Google Scholar]
- Li, Y.; Liu, R.; Liu, C.; Liu, L. Simulation and Test of Seed Velocity Coupling in Seed Tube of Pneumutic Seed Metering Device. Trans. Chin. Soc. Agric. Mach. 2021, 52, 54–61. [Google Scholar]
- Qin, J.; Zhang, X.; Chen, B.; Kong, A. Design and Test Research of Allotter in Centralized Pneumatic Seeding System. J. Agric. Mech. Res. 2007, 29, 131–133. [Google Scholar]
- Liu, Z.D.; Wang, Q.J.; Li, H.W.; He, J.; Lu, C.Y.; Yu, C.C. Fertilizer injecting route analysis and test for air-blowing seed-fertilizer hole-applicator via CFD-DEM coupling. Trans. CSAE 2019, 35, 18–125. [Google Scholar]
Material | Parameter | Value |
---|---|---|
Air | Gravitational Acceleration/(m·s−2) | 9.81 |
Viscosity Coefficient/(kg·m−1·s−1) | 5.1 × 107 | |
Density/(kg·m−3) | 1.225 | |
Stainless Steel | Poisson’s Ratio | 0.25 |
Shear Modulus/Pa | 7.5 × 107 | |
Density/(kg·m−3) | 7750 | |
Seed–Stainless Steel | Collision Restitution Coefficient | 0.5 |
Static Friction Coefficient | 0.46 | |
Dynamic Friction Coefficient | 0.05 |
Level | Wave Depth S/mm | Wave Width K/mm | Wave Number N | Guide Tube Length L/mm |
---|---|---|---|---|
1 | 4 | 30 | 4 | 700 |
2 | 6 | 40 | 6 | 800 |
3 | 8 | 50 | 8 | 900 |
4 | 10 | 60 | 10 | 1000 |
Level | Inlet Airflow Velocity v/m·s−1 | Seeding Amount x2/g·s−1 |
---|---|---|
1 | 35 | 160 |
2 | 45 | 240 |
3 | 55 | 320 |
Serial Number | Wave Width K/mm | Wave Depth S/mm | Wave Number N | Pipe Length L/mm | Pressure Loss/Pa | Distribution Uniformity Coefficient/% | Consistency Coefficient of Each Row/% |
---|---|---|---|---|---|---|---|
1 | 30 | 4 | 4 | 700 | 208 | 47.22 | 6.79 |
2 | 50 | 8 | 4 | 900 | 268 | 86.54 | 4.12 |
3 | 60 | 10 | 4 | 1000 | 276 | 87.01 | 3.51 |
4 | 40 | 6 | 4 | 800 | 257 | 93.41 | 2.33 |
5 | 40 | 10 | 8 | 700 | 241 | 88.72 | 3.36 |
6 | 60 | 8 | 6 | 700 | 227 | 80.00 | 4.38 |
7 | 50 | 6 | 10 | 700 | 253 | 94.37 | 2.36 |
8 | 30 | 10 | 10 | 900 | 308 | 97.20 | 1.99 |
9 | 60 | 4 | 10 | 800 | 288 | 90.20 | 3.28 |
10 | 30 | 8 | 8 | 800 | 274 | 90.11 | 3.24 |
11 | 40 | 8 | 10 | 1000 | 360 | 95.20 | 2.18 |
12 | 40 | 4 | 6 | 900 | 271 | 88.65 | 3.58 |
13 | 50 | 4 | 8 | 1000 | 342 | 93.57 | 2.99 |
14 | 50 | 10 | 6 | 800 | 262 | 86.19 | 3.01 |
15 | 60 | 6 | 8 | 900 | 286 | 84.65 | 5.60 |
16 | 30 | 6 | 6 | 1000 | 306 | 88.04 | 3.71 |
Variance Analysis of Pressure Loss | Source of Variation | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p-Value |
Wave Width | 457.188 | 3 | 152.396 | 0.955 | 0.049 | |
Wave Depth | 228.188 | 3 | 76.063 | 0.477 | 0.037 | |
Wave Number | 5746.187 | 3 | 1915.396 | 12.004 | 0.025 | |
Pipe Length | 16,091.187 | 3 | 5363.729 | 33.615 | 0.008 | |
Variance Analysis of Distribution Uniformity Coefficient | Source of Variation | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p-Value |
Wave Width | 0.029 | 3 | 0.01 | 0.710 | 0.006 | |
Wave Depth | 0.027 | 3 | 0.009 | 0.667 | 0.026 | |
Wave Number | 0.052 | 3 | 0.017 | 1.271 | 0.042 | |
Pipe Length | 0.047 | 3 | 0.016 | 1.151 | 0.045 |
Wave Depth | Dependent Variable | S | Mean | Standard Error | 95% Confidence Interval | |
Lower Limit | Upper Limit | |||||
Pressure Loss | 4 | 269.25 | 6.316 | 253.9 | 294.1 | |
6 | 274.02 | 6.316 | 262.15 | 302.35 | ||
8 | 281.25 | 6.316 | 261.15 | 301.35 | ||
10 | 282.25 | 6.316 | 249.15 | 289.35 | ||
Distribution Uniformity Coefficient | 4 | 80.63 | 0.059 | 62.17 | 96.37 | |
6 | 91.51 | 0.059 | 72.92 | 97.54 | ||
8 | 90.27 | 0.059 | 71.55 | 99.80 | ||
10 | 85.56 | 0.059 | 66.83 | 98.71 | ||
Wave Width | Dependent Variable | K | Mean | Standard Error | 95% Confidence Interval | |
Lower Limit | Upper Limit | |||||
Pressure Loss | 30 | 277.25 | 6.316 | 257.15 | 297.35 | |
40 | 275.51 | 6.316 | 255.4 | 295.6 | ||
50 | 271.75 | 6.316 | 262.15 | 302.35 | ||
60 | 282.25 | 6.316 | 251.65 | 291.85 | ||
Distribution Uniformity Coefficient | 30 | 79.99 | 0.059 | 61.36 | 96.44 | |
40 | 90.15 | 0.059 | 71.50 | 99.21 | ||
50 | 89.83 | 0.059 | 69.37 | 98.53 | ||
60 | 88.57 | 0.059 | 71.15 | 97.27 | ||
Wave Number | Dependent Variable | N | Mean | Standard Error | 95% Confidence Interval | |
Lower Limit | Upper Limit | |||||
Pressure Loss | 4 | 252.25 | 6.316 | 232.15 | 272.35 | |
6 | 266.5 | 6.316 | 246.4 | 286.6 | ||
8 | 285.75 | 6.316 | 265.65 | 305.85 | ||
10 | 302.25 | 6.316 | 282.15 | 322.35 | ||
Distribution Uniformity Coefficient | 4 | 78.51 | 0.059 | 59.93 | 94.24 | |
6 | 85.72 | 0.059 | 67.17 | 96.85 | ||
8 | 89.37 | 0.059 | 70.64 | 97.23 | ||
10 | 94.23 | 0.059 | 75.60 | 98.48 | ||
Pipe Length | Dependent Variable | L | Mean | Standard Error | 95% Confidence Interval | |
Lower Limit | Upper Limit | |||||
Pressure Loss | 700 | 232.25 | 6.316 | 212.15 | 252.35 | |
800 | 270.25 | 6.316 | 250.15 | 290.35 | ||
900 | 283.25 | 6.316 | 263.15 | 303.35 | ||
1000 | 321 | 6.316 | 300.9 | 341.1 | ||
Distribution Uniformity Coefficient | 700 | 77.62 | 0.059 | 58.93 | 96.28 | |
800 | 90.13 | 0.059 | 71.37 | 97.60 | ||
900 | 89.30 | 0.059 | 70.62 | 99.34 | ||
1000 | 91.07 | 0.059 | 72.37 | 99.61 |
Serial Number | Inlet Air Velocity v/m·s−1 | Seeding Rate x2/g·s−1 | Seed Velocity at the Top of the Pressurized Tube/m·s−1 | Air Velocity at the Top of the Pressurized Tube/m·s−1 | Pressure Loss/Pa | Distribution Uniformity Coefficient/% | Consistency Coefficient of Each Row/% |
---|---|---|---|---|---|---|---|
1 | 35 | 160 | 1.85 | 33.71 | 636 | 95.24 | 3.12 |
2 | 35 | 240 | 4.63 | 33.04 | 700 | 96.85 | 2.79 |
3 | 35 | 320 | 4.85 | 32.69 | 784 | 95.77 | 2.91 |
4 | 45 | 160 | 6.29 | 40.67 | 511 | 97.18 | 2.72 |
5 | 45 | 240 | 6.46 | 39.61 | 544 | 98.24 | 2.54 |
6 | 45 | 320 | 6.11 | 38.98 | 784 | 97.63 | 2.63 |
7 | 55 | 160 | 7.70 | 50.37 | 898 | 95.86 | 2.94 |
8 | 55 | 240 | 8.16 | 49.57 | 900 | 96.72 | 2.77 |
9 | 55 | 320 | 7.38 | 48.81 | 1015 | 96.83 | 2.83 |
Experimental Design | Inlet Airflow Velocity v/m·s−1 | Seeding Quantity x2/g·s−1 | Pressure Loss/Pa |
---|---|---|---|
1 | 35 | 160 | 767 |
2 | 35 | 240 | 816 |
3 | 35 | 320 | 874 |
4 | 45 | 160 | 629 |
5 | 45 | 240 | 701 |
6 | 45 | 320 | 893 |
7 | 55 | 160 | 913 |
8 | 55 | 240 | 952 |
9 | 55 | 320 | 1046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Li, Y.; Liu, L.; Liu, Z. Structural Design of Pressurized Tube Based on the Discrete Element Method–Computational Fluid Dynamics Coupled Simulation. Appl. Sci. 2024, 14, 3836. https://doi.org/10.3390/app14093836
Zhao J, Li Y, Liu L, Liu Z. Structural Design of Pressurized Tube Based on the Discrete Element Method–Computational Fluid Dynamics Coupled Simulation. Applied Sciences. 2024; 14(9):3836. https://doi.org/10.3390/app14093836
Chicago/Turabian StyleZhao, Jinhui, Yanjun Li, Lijing Liu, and Zhongjun Liu. 2024. "Structural Design of Pressurized Tube Based on the Discrete Element Method–Computational Fluid Dynamics Coupled Simulation" Applied Sciences 14, no. 9: 3836. https://doi.org/10.3390/app14093836
APA StyleZhao, J., Li, Y., Liu, L., & Liu, Z. (2024). Structural Design of Pressurized Tube Based on the Discrete Element Method–Computational Fluid Dynamics Coupled Simulation. Applied Sciences, 14(9), 3836. https://doi.org/10.3390/app14093836