Computational Fluid Dynamics–Discrete Phase Method Simulations in Process Engineering: A Review of Recent Progress
Abstract
:1. Introduction
2. Method Overview
2.1. Governing Equations
2.1.1. Fluid Phase
2.1.2. Particle Phase
2.1.3. Coupling
3. Application
3.1. Transportation
3.2. Erosion
3.3. Spray
3.4. Comminution
3.5. Separation
3.6. Mixing
3.7. Tracking
3.8. Thermochemical Conversion
3.8.1. Gasification
3.8.2. Pyrolysis
3.8.3. Combustion
4. Challenges and Prospects
4.1. Improved Computing Performance
4.2. Further Numerical Strategies for Multiphase Complex Systems
4.3. Integration with Machine Learning Algorithm
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ding, J.; Gidaspow, D. A Bubbling Fluidization Model Using Kinetic-Theory of Granular Flow. Aiche J. 1990, 36, 523–538. [Google Scholar] [CrossRef]
- Tsuji, Y.; Kawaguchi, T.; Tanaka, T. Discrete Particle Simulation of 2-Dimensional Fluidized-Bed. Powder Technol. 1993, 77, 79–87. [Google Scholar] [CrossRef]
- Xu, B.H.; Yu, A.B. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem. Eng. Sci. 1997, 52, 2785–2809. [Google Scholar] [CrossRef]
- Popoff, B.; Popoff, B.; Braun, M.; Braun, M. A Lagrangian Approach to Dense Particulate Flows. In Proceedings of the International Conference on Multiphase Flow, Leipzig, Germany, 9–13 July 2007. [Google Scholar]
- Li, F.; Song, F.; Benyahia, S.; Wang, W.; Li, J. MP-PIC simulation of CFB riser with EMMS-based drag model. Chem. Eng. Sci. 2012, 82, 104–113. [Google Scholar] [CrossRef]
- Andrews, M.J.; Orourke, P.J. The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. Int. J. Multiph. Flow 1996, 22, 379–402. [Google Scholar] [CrossRef]
- Blais, B.; Tucny, J.-M.; Vidal, D.; Bertrand, F. A conservative lattice Boltzmann model for the volume-averaged Navier-Stokes equations based on a novel collision operator. J. Comput. Phys. 2015, 294, 258–273. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Ouyang, J. Lattice Boltzmann model for the volume-averaged Navier-Stokes equations. Europhys. Lett. 2014, 107, 2. [Google Scholar] [CrossRef]
- Wu, C.L.; Berrouk, A.S.; Nandakumar, K. Three-dimensional discrete particle model for gas-solid fluidized beds on unstructured mesh. Chem. Eng. J. 2009, 152, 514–529. [Google Scholar] [CrossRef]
- Wu, C.L.; Zhan, J.M.; Li, Y.S.; Lam, K.S.; Berrouk, A.S. Accurate void fraction calculation for three-dimensional discrete particle model on unstructured mesh. Chem. Eng. Sci. 2009, 64, 1260–1266. [Google Scholar] [CrossRef]
- Wu, C.L.; Nandakumar, K.; Berrouk, A.S.; Kruggel-Emden, H. Enforcing mass conservation in DPM-CFD models of dense particulate flows. Chem. Eng. J. 2011, 174, 475–481. [Google Scholar] [CrossRef]
- Elghobashi, S. On Predicting Particle-Laden Turbulent Flows. Appl. Sci. Res. 1994, 52, 309–329. [Google Scholar] [CrossRef]
- Stone, L.; Hastie, D.; Zigan, S. Using a coupled CFD-DPM approach to predict particle settling in a horizontal air stream. Adv. Powder Technol. 2019, 30, 869–878. [Google Scholar] [CrossRef]
- Narayanan, C.; Lakehal, D. Four-Way Coupling of Dense Particle Beds Of Black Powder in Turbulent Pipe Flows. In Proceedings of the 3rd Joint US-European Fluids Engineering Division Summer Meeting, Montreal, QC, Canada, 1–5 August 2010; pp. 269–274. [Google Scholar]
- Lain, S.; Sommerfeld, M.; Kussin, J. Experimental studies and modelling of four-way coupling in particle-laden horizontal channel flow. Int. J. Heat Fluid Flow 2002, 23, 647–656. [Google Scholar] [CrossRef]
- Filali, A.; Khezzar, L.; Alshehhi, M.; Kharoua, N. A One-D approach for modeling transport and deposition of Black Powder particles in gas network. J. Nat. Gas Sci. Eng. 2016, 28, 241–253. [Google Scholar] [CrossRef]
- Zhou, W.; Jiang, Y.; Liu, S.; Zhao, Q.; Long, T.; Li, Z. Detection of Gas-Solid Two-Phase Flow Based on CFD and Capacitance Method. Appl. Sci. 2018, 8, 1367. [Google Scholar] [CrossRef]
- Yang, D.; Li, G.; Wang, Y.; Wang, Q.; Li, J.; Huang, Q.; Xia, Y.; Li, Q. Prediction of Horizontal Pneumatic Conveying of Large Coal Particles Using Discrete Phase Model. Adv. Mater. Sci. Eng. 2020, 2020, 1967052. [Google Scholar] [CrossRef]
- Epelle, E.I.; Obande, W.; Okolie, J.A.; Wilberforce, T.; Gerogiorgis, D.I. CFD modelling and simulation of drill cuttings transport efficiency in annular bends: Effect of particle size polydispersity. J. Pet. Sci. Eng. 2022, 208, 109795. [Google Scholar] [CrossRef]
- Adamczyk, W.P.; Klimanek, A.; Bialecki, R.A.; Wecel, G.; Kozolub, P.; Czakiert, T. Comparison of the standard Euler-Euler and hybrid Euler-Lagrange approaches for modeling particle transport in a pilot-scale circulating fluidized bed. Particuology 2014, 15, 129–137. [Google Scholar] [CrossRef]
- Khaldi, N.; Chouari, Y.; Mhiri, H.; Bournot, P. Pulsation effects on pollutant and sediment transport in free-surface flow. Environ. Pollut. 2016, 219, 685–695. [Google Scholar] [CrossRef]
- Yang, K.; Hu, W. Simulation on debris particles conveying process in lubricant between gear engagement. Wear 2019, 426, 1391–1398. [Google Scholar] [CrossRef]
- Abduljabbar, A.; Mohyaldinn, M.; Younis, O.; Alghurabi, A. A numerical CFD investigation of sand screen erosion in gas wells: Effect of fine content and particle size distribution. J. Nat. Gas Sci. Eng. 2021, 95, 104228. [Google Scholar] [CrossRef]
- Parsi, M.; Najmi, K.; Najafifard, F.; Hassani, S.; McLaury, B.S.; Shirazi, S.A. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications. J. Nat. Gas Sci. Eng. 2014, 21, 850–873. [Google Scholar] [CrossRef]
- Zhu, H.; Qi, Y. Numerical investigation of flow erosion of sand-laden oil flow in a U-bend. Process Saf. Environ. Prot. 2019, 131, 16–27. [Google Scholar] [CrossRef]
- Zhu, H.; Pan, Q.; Zhang, W.; Feng, G.; Li, X. CFD simulations of flow erosion and flow-induced deformation of needle valve: Effects of operation, structure and fluid parameters. Nucl. Eng. Des. 2014, 273, 396–411. [Google Scholar] [CrossRef]
- Hong, B.; Li, Y.; Li, X.; Ji, S.; Yu, Y.; Fan, D.; Qian, Y.; Guo, J.; Gong, J. Numerical Simulation of Gas-Solid Two-Phase Erosion for Elbow and Tee Pipe in Gas Field. Energies 2021, 14, 6609. [Google Scholar] [CrossRef]
- Liang, W.; Xun, Q.; Shu, Z.; Lu, F.; Qian, H. Numerical Simulation of Erosion Characteristics for Solid-Air Particles in Liquid Hydrogen Elbow Pipe. Sustainability 2021, 13, 3303. [Google Scholar] [CrossRef]
- Hong, B.; Li, X.; Li, Y.; Li, Y.; Yu, Y.; Wang, Y.; Gong, J.; Ai, D. Numerical Simulation of Elbow Erosion in Shale Gas Fields under Gas-Solid Two-Phase Flow. Energies 2021, 14, 3804. [Google Scholar] [CrossRef]
- Zolfagharnasab, M.H.; Salimi, M.; Zolfagharnasab, H.; Alimoradi, H.; Shams, M.; Aghanajafi, C. A novel numerical investigation of erosion wear over various 90-degree elbow duct sections. Powder Technol. 2021, 380, 1–17. [Google Scholar] [CrossRef]
- Pouraria, H.; Darihaki, F.; Park, K.H.; Shirazi, S.A.; Seo, Y. CFD modelling of the influence of particle loading on erosion using dense discrete particle model. Wear 2020, 460, 203450. [Google Scholar] [CrossRef]
- Wang, G.R.; Chu, F.; Tao, S.Y.; Jiang, L.; Zhu, H. Optimization design for throttle valve of managed pressure drilling based on CFD erosion simulation and response surface methodology. Wear 2015, 338, 114–121. [Google Scholar] [CrossRef]
- Zhu, H.; Li, S. Numerical analysis of mitigating elbow erosion with a rib. Powder Technol. 2018, 330, 445–460. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, J.; Ba, B.; Wu, Z.; Wang, W. Numerical investigation of flow erosion and flow induced displacement of gas well relief line. J. Loss Prev. Process Ind. 2015, 37, 19–32. [Google Scholar] [CrossRef]
- Zhu, H.; Han, Q.; Wang, J.; He, S.; Wang, D. Numerical investigation of the process and flow erosion of flushing oil tank with nitrogen. Powder Technol. 2015, 275, 12–24. [Google Scholar] [CrossRef]
- Balan, A.S.S.; Kullarwar, T.; Vijayaraghavan, L.; Krishnamurthy, R. Computational fluid dynamics analysis of MQL spray parameters and its influence on superalloy grinding. Mach. Sci. Technol. 2017, 21, 603–616. [Google Scholar] [CrossRef]
- Xiao, J.; Li, Y.; George, O.A.; Li, Z.; Yang, S.; Woo, M.W.; Wu, W.D.; Chen, X.D. Numerical investigation of droplet pre-dispersion in a monodisperse droplet spray dryer. Particuology 2018, 38, 44–60. [Google Scholar] [CrossRef]
- Abdelmaksoud, R.; Wang, T. A Numerical Investigation of Air/Mist Cooling Through a Conjugate, Rotating 3D Gas Turbine Blade With Internal, External, and Tip Cooling. J. Therm. Sci. Eng. Appl. 2021, 13, 021004. [Google Scholar] [CrossRef]
- Zhu, H.; Li, H.; Zhang, C.; Li, J.; Zhang, H. Performance Characterization of the UAV Chemical Application Based on CFD Simulation. Agronomy 2019, 9, 308. [Google Scholar] [CrossRef]
- Ishak, M.H.H.; Ismail, F.; Mat, S.C.; Abdullah, M.Z.; Aziz, M.S.A.; Idroas, M.Y. Numerical Analysis of Nozzle Flow and Spray Characteristics from Different Nozzles Using Diesel and Biofuel Blends. Energies 2019, 12, 281. [Google Scholar] [CrossRef]
- Masilungan-Manuel, J.T.; Soriano, A.N.; Manuel, M.C.E.; Lin, P.T. Simulation And Design Optimization Of A Tall-Form Spray Dryer. In Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Cleveland, OH, USA, 6–9 August 2017. [Google Scholar]
- Bing, X.; Sun, D.; Song, S.; Xue, X.; Dai, Q. Simulation and experimental research on droplet flow characteristics and deposition in airflow field. Int. J. Agric. Biol. Eng. 2020, 13, 16–24. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, X.; Li, J.; Hu, Y.; Qi, H.; Wen, W.; Du, K.; Ma, Y.; Yu, Y. Numerical Simulations of Molten Breakup Behaviors of a de Laval-Type Nozzle, and the Effects of Atomization Parameters on Particle Size Distribution. Processes 2020, 8, 1027. [Google Scholar] [CrossRef]
- Nakamura, H.; Kan, H.; Takeuchi, H.; Watano, S. Effect of stator geometry of impact pulverizer on its grinding performance. Chem. Eng. Sci. 2015, 122, 565–572. [Google Scholar] [CrossRef]
- Takeuchi, H.; Nakamura, H.; Iwasaki, T.; Watano, S. Numerical modeling of fluid and particle behaviors in impact pulverizer. Powder Technol. 2012, 217, 148–156. [Google Scholar] [CrossRef]
- Fang, H.; Yang, J.; Song, Y.; Huang, W.; Chen, J. Simulation and experimental study on the stone powder separator of a vertical shaft impact crusher. Adv. Powder Technol. 2020, 31, 1013–1022. [Google Scholar] [CrossRef]
- Brosh, T.; Kalman, H.; Levy, A. Fragments spawning and interaction models for DEM breakage simulation. Granul. Matter 2011, 13, 765–776. [Google Scholar] [CrossRef]
- Cleary, P.W. Recent advances in DEM modelling of tumbling mills. Miner. Eng. 2001, 14, 1295–1319. [Google Scholar] [CrossRef]
- Takeuchi, H.; Nakamura, H.; Watano, S. Numerical Simulation of Particle Breakage in Dry Impact Pulverizer. Aiche J. 2013, 59, 3601–3611. [Google Scholar] [CrossRef]
- Song, J.; Wei, Y.; Sun, G.; Chen, J. Experimental and CFD study of particle deposition on the outer surface of vortex finder of a cyclone separator. Chem. Eng. J. 2017, 309, 249–262. [Google Scholar] [CrossRef]
- Cristea, E.-D.; Conti, P. Hybrid Eulerian Multiphase Dense Discrete Phase Model Approach for Numerical Simulation of Dense Particle-Laden Turbulent Flows within Vertical Multi-Stage Cyclone Heat Exchanger. In Proceedings of the ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, Montreal, QC, Canada, 15 July 2018. [Google Scholar]
- Yuan, Q.; Chang, H.; Zhao, L.; Sun, B. Optimization and Numerical Simulation of the Structure of the Exhaust Gas Pipe of a Supercritical Cyclone Separator. J. Eng. Therm. Energy Power 2018, 33, 103–108. [Google Scholar]
- Liu, X.; Liu, Z.; Li, Y. Investigation on Separation Efficiency in Supersonic Separator with Gas-Droplet Flow Based on DPM Approach. Sep. Sci. Technol. 2014, 49, 2603–2612. [Google Scholar] [CrossRef]
- Wang, C.; Ji, C.; Zou, J. Simulation and experiment on transitional behaviours of multiphase flow in a hydrocyclone. Can. J. Chem. Eng. 2015, 93, 1802–1811. [Google Scholar] [CrossRef]
- Wang, C.-C.; Wu, R.-M. Experimental and simulation of a novel hydrocyclone-tubular membrane as overflow pipe. Sep. Purif. Technol. 2018, 198, 60–67. [Google Scholar] [CrossRef]
- Mou, X.; Jia, F.; Fang, Y.; Chen, C. CFD-Based Structural Optimization of Rotor Cage for High-Efficiency Rotor Classifier. Processes 2021, 9, 1148. [Google Scholar] [CrossRef]
- Sun, Z.; Liang, L.; Liu, C.; Zhu, Y.; Zhang, L.; Yang, G. CFD simulation and performance optimization of a new horizontal turbo air classifier. Adv. Powder Technol. 2021, 32, 977–986. [Google Scholar] [CrossRef]
- Petit, H.A.; Paulo, C.I.; Cabrera, O.A.; Irassar, E.F. Modelling and optimization of an inclined plane classifier using CFD-DPM and the Taguchi method. Appl. Math. Model. 2020, 77, 617–634. [Google Scholar] [CrossRef]
- You, M.; Li, Z.; Zhan, M.; Liu, M.; Sun, G.; Chen, J. Flow simulation and performance analysis of a cyclone-granular bed filter. Powder Technol. 2020, 361, 210–219. [Google Scholar] [CrossRef]
- Majnis, M.F.; Koman, E.; Shaari, K.Z.K. Computational fluid dynamics simulation on the effect of pillar shapes on chitosan-coated zinc oxide nanoparticles flows in pillar-based microfilter. In Proceedings of the International Conference on Sustainable Energy and Green Technology (SEGT), Bangkok, Thailand, 11–14 December 2019. [Google Scholar]
- Motin, A.; Tarabara, V.V.; Benard, A. Cfd Study of Hydrodynamics and Separation Performance of A Novel Crossflow Filtration Hydrocyclone (Cffh). In Proceedings of the 4th ASME Joint US-European Fluids Engineering Diviison Summer Meeting, Chicago, IL, USA, 3–7 August 2014. [Google Scholar]
- Zhang, W.; Niu, F.; Wang, S.; Wang, H.; Guo, Z. Study on Performance of Mesoscopic Impactor Filters for Aerosol Removal. Sci. Technol. Nucl. Install. 2019, 2019, 7036957. [Google Scholar] [CrossRef]
- Zhu, Y.; Tao, S.; Chen, C.; Liu, J.; Chen, M.; Shangguan, W. Highly effective removal of PM2.5 from combustion products: An application of integrated two-stage electrostatic precipitator. Chem. Eng. J. 2021, 424, 130569. [Google Scholar] [CrossRef]
- Zhang, J.-P.; Hu, D.-M.; Dai, Y.-X.; Ding, Q.-F. An improved modeling for Collection Efficiency prediction of electrostatic precipitators under the applied magnetic field. Int. J. Appl. Electromagn. Mech. 2011, 35, 263–279. [Google Scholar] [CrossRef]
- Lim, B.Y.; Sharnsudin, R.; Baharudin, B.T.H.T.; Yunus, R. Performance evaluation and cfd multiphase modeling for Multistage Jatropha Fruit Shelling Machine. Ind. Crop. Prod. 2016, 85, 125–138. [Google Scholar] [CrossRef]
- Elsayed, K.; Lacor, C. Numerical modeling of the flow field and performance in cyclones of different cone-tip diameters. Comput. Fluids 2011, 51, 48–59. [Google Scholar] [CrossRef]
- Ijaz, M.; Farhan, M.; Farooq, M.; Moeenuddin, G.; Nawaz, S.; Soudagar, M.E.M.; Saqilo, H.M.; Ali, Q. Numerical investigation of particles characteristics on cyclone performance for sustainable environment. Part. Sci. Technol. 2021, 39, 495–503. [Google Scholar] [CrossRef]
- Vakamalla, T.R.; Vadlakonda, B.; Aketi, V.A.K.; Mangadoddy, N. Multiphase CFD Modelling of Mineral Separators Performance: Validation Against Tomography Data. Trans. Indian Inst. Met. 2017, 70, 323–340. [Google Scholar] [CrossRef]
- Farnoosh, N.; Adamiak, K.; Castle, G.S.P. 3-D numerical analysis of EHD turbulent flow and mono-disperse charged particle transport and collection in a wire-plate ESP. J. Electrost. 2010, 68, 513–522. [Google Scholar] [CrossRef]
- Jia, Z.; Diao, Y.; Zhang, L.; Zhuang, J.; Shen, H. Numerical simulation of the entrapment of Fe-based fine particles by magnetic fibers with different deflection angles. China Environ. Sci. 2021, 41, 643–649. [Google Scholar]
- Zhang, L.A.; Diao, Y.; Chu, M.; Zhou, F.; Li, Z.; Shen, H. Study on external magnetic field improving the capture of Fe-based fine particles by magnetic fibers with different arrangement structures. Part. Sci. Technol. 2021, 40, 675–685. [Google Scholar] [CrossRef]
- Khashan, S.A.; Furlani, E.P. Scalability analysis of magnetic bead separation in a microchannel. with an array of soft magnetic elements in a uniform magnetic field. Sep. Purif. Technol. 2014, 125, 311–318. [Google Scholar] [CrossRef]
- Khashan, S.A.; Furlani, E.P. Coupled particle-fluid transport and magnetic separation in microfluidic systems with passive magnetic functionality. J. Phys. D-Appl. Phys. 2013, 46, 12. [Google Scholar] [CrossRef]
- Schittl, F.; Unterpertinger, L.; Heschl, C.; Krail, J. Numerical and experimental development of integrated electrostatic precipitator concepts for small-scaled biomass furnaces. Biomass Bioenergy 2021, 154, 106247. [Google Scholar] [CrossRef]
- Yang, D.; Guo, B.; Ye, X.; Yu, A.; Guo, J. Numerical simulation of electrostatic precipitator considering the dust particle space charge. Powder Technol. 2019, 354, 552–560. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, J.; Wang, W.; Yang, S.; Hu, X.; Feng, J. Design of vortex finder structure for decreasing the pressure drop of a cyclone separator. Korean J. Chem. Eng. 2020, 37, 743–754. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, G.; Yan, X. Evaluation and improvement of particle collection efficiency and pressure drop of cyclones by redistribution of dustbins. Chem. Eng. Res. Des. 2018, 139, 52–61. [Google Scholar] [CrossRef]
- Saputro, H.; Firdani, T.; Muslim, R.; Estriyanto, Y.; Wijayanto, D.S.; Lasmini, S.; Khaniffudin. The CFD Simulation of Cyclone Separator without and with the Counter-cone in the Gasification Process. In Proceedings of the 2nd Annual Applied Science and Engineering Conference (AASEC), Bandung, Indonesia, 24 August 2017.
- Sun, X.; Zhang, Z.; Chen, D.-R. Numerical modeling of miniature cyclone. Powder Technol. 2017, 320, 325–339. [Google Scholar] [CrossRef]
- Haddadi, M.M.; Hosseini, S.H.; Rashtchian, D.; Ahmadi, G. CFD modeling of immiscible liquids turbulent dispersion in Kenics static mixers: Focusing on droplet behavior. Chin. J. Chem. Eng. 2020, 28, 348–361. [Google Scholar] [CrossRef]
- Farzad, R.; Pirker, S.; Schneiderbauer, S. Application of Eulerian-Eulerian-Lagrangian hybrid model to simulate liquid-liquid drop size distribution in stirred tank reactors. J. Dispers. Sci. Technol. 2020, 42, 103–118. [Google Scholar] [CrossRef]
- Satjaritanun, P.; Khunatorn, Y.; Vorayos, N.; Shimpalee, S. Bringley, Numerical analysis of the mixing characteristic for napier grass in the continuous stirring tank reactor for biogas production. Biomass Bioenergy 2016, 86, 53–64. [Google Scholar] [CrossRef]
- Li, M.; Tan, Y.; Liu, Y.; Sun, J.; Xie, D.; Liu, Z. Effects of geometrical and physical factors on light particles dispersion by agitation characteristic curve. Chin. J. Chem. Eng. 2019, 27, 2313–2324. [Google Scholar] [CrossRef]
- Cao, Q.; Nastac, L. Mathematical modelling of slag-metal reactions and desulphurization behaviour in gas-stirred ladle based on the DPM-VOF coupled model. Ironmak. Steelmak. 2020, 47, 873–881. [Google Scholar] [CrossRef]
- Li, L. CFD-DPM Modeling of Gas-liquid Flow in a Stirred Vessel. In Proceedings of the 2nd International Conference on Chemical Engineering and Advanced Materials (CEAM 2012), Guangzhou, China, 13–15 July 2012; pp. 979–983. [Google Scholar]
- Li, L. CFD Simulation of Gas Residence Time Distribution in Agitated Tank. In Proceedings of the 2nd International Conference on Energy and Environmental Protection (ICEEP 2013), Guilin, China, 19–21 April 2013; pp. 467–471. [Google Scholar]
- Pirker, S.; Puttinger, S.; Roessler, R. Lichtenegger, Steel Alloy Homogenization During Rheinsahl-Heraeus Vacuum Treatment: Conventional Computational Fluid Dynamics, Recurrence Computational Fluid Dynamics, and Plant Observations. Steel Res. Int. 2020, 91, 2000214. [Google Scholar] [CrossRef]
- Wang, Q.; Jia, S.; Qi, F.; Li, G.; Li, Y.; Wang, T.; He, Z. A CFD Study on Refractory Wear in RH Degassing Process. ISIJ Int. 2020, 60, 1938–1947. [Google Scholar] [CrossRef]
- Rueckert, A.; Warzecha, M.; Koitzsch, R.; Pawlik, M.; Pfeifer, H. Particle Distribution and Separation in Continuous Casting Tundish. Steel Res. Int. 2009, 80, 568–574. [Google Scholar] [CrossRef]
- Vakhrushev, A.; Wu, M.; Ludwig, A.; Nitzl, G.; Tang, Y.; Hackl, G.; Wincor, R. A Water Experiment Benchmark to Evaluate Numerical Models for the Motion of Particles in Continuous Casting Tundish. Steel Res. Int. 2017, 88, 1600276. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, J.; Jiang, P. Measurement of Molten Steel Velocity near the Surface and Modeling for Transient Fluid Flow in the Continuous Casting Mold. Metals 2019, 9, 36. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, Y.; Wang, C.; Guo, C.; Deng, J.; Zhang, D.; Tian, W.; Qiu, S.; Su, G.H. Numerical simulation of bubble transport during steam generator tube rupture accident of Lead-cooled Fast Reactor. Ann. Nucl. Energy 2021, 153, 108066. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, J.; Ma, H.; Zhou, Q. Large Eddy Simulation of Transient Flow, Particle Transport, and Entrapment in Slab Mold with Double-Ruler Electromagnetic Braking. Steel Res. Int. 2021, 92, 2000582. [Google Scholar] [CrossRef]
- Kou, B.; Hou, Y.; Fu, W.; Yang, N.; Liu, J.; Xie, G. Simulation of Multi-Phase Flow in Autoclaves Using a Coupled CFD-DPM Approach. Processes 2023, 11, 890. [Google Scholar] [CrossRef]
- Cloete, S.; Olsen, J.E.; Skjetne, P. CFD modeling of plume and free surface behavior resulting from a sub-sea gas release. Appl. Ocean. Res. 2009, 31, 220–225. [Google Scholar] [CrossRef]
- El-Sayed, S.A.; Noseir, E.H. Simulation of combustion of sesame and broad bean stalks in the freeboard zone inside a pilot-scale bubbling fluidized bed combustor using CFD modeling. Appl. Therm. Eng. 2019, 158, 113767. [Google Scholar] [CrossRef]
- Chen, P.; Cui, B.; Li, J.; Zheng, J.; Zhao, Y. Particle erosion under multiphase bubble flow in horizontal-vertical-upward elbows. Powder Technol. 2022, 397, 117002. [Google Scholar] [CrossRef]
- Cui, B.; Chen, P.; Zhao, Y. Numerical simulation of particle erosion in the vertical-upward-horizontal elbow under multiphase bubble flow. Powder Technol. 2022, 404, 117437. [Google Scholar] [CrossRef]
- Balat, M.; Balat, M.; Kirtay, E.; Balat, H. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Convers. Manag. 2009, 50, 3147–3157. [Google Scholar] [CrossRef]
- Gomez-Barea, A.; Leckner, B. Modeling of biomass gasification in fluidized bed. Prog. Energy Combust. Sci. 2010, 36, 444–509. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Hao, W.; Xu, Z.H. Conceptual design and simulation study of a co-gasification technology. Energy Convers. Manag. 2006, 47, 1416–1428. [Google Scholar] [CrossRef]
- Fanelli, E. CFD Hydrodynamics Investigations for Optimum Biomass Gasifier Design. Processes 2020, 8, 1323. [Google Scholar] [CrossRef]
- Kumar, U.; Paul, M.C. CFD modelling of biomass gasification with a volatile break-up approach. Chem. Eng. Sci. 2019, 195, 413–422. [Google Scholar] [CrossRef]
- Klimanek, A.; Adamczyk, W.; Katelbach-Wozniak, A.; Wecel, G.; Szlek, A. Towards a hybrid Eulerian-Lagrangian CFD modeling of coal gasification in a circulating fluidized bed reactor. Fuel 2015, 152, 131–137. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, Y.; Li, B.; Yu, X. Model development for biomass gasification in an entrained flow gasifier using intrinsic reaction rate submodel. Energy Convers. Manag. 2016, 108, 120–131. [Google Scholar] [CrossRef]
- Chen, L.; Ghoniem, A.F. Development of a three-dimensional computational slag flow model for coal combustion and gasification. Fuel 2013, 113, 357–366. [Google Scholar] [CrossRef]
- Marra, F.S.; Troiano, M.; Montagnaro, F.; Salatino, P.; Solimene, R. Particle-wall interaction in entrained-flow slagging coal gasifiers: Granular flow simulation and experiments in a cold flow model reactor. Int. J. Multiph. Flow 2017, 91, 142–154. [Google Scholar] [CrossRef]
- Xu, J.; Liang, Q.; Dai, Z.; Liu, H. Comprehensive model with time limited wall reaction for entrained flow gasifier. Fuel 2016, 184, 118–127. [Google Scholar] [CrossRef]
- Bhuiyan, A.A.; Naser, J. Development of 3D transient wall filming mechanism during combustion by coupling Eulerian-Lagrangian approach and particle-wall interaction model. Appl. Therm. Eng. 2017, 112, 911–923. [Google Scholar] [CrossRef]
- Troiano, M.; Montagnaro, F.; Solimene, R.; Salatino, P. Modelling entrained-flow slagging gasification of solid fuels with near-wall particle segregation. Chem. Eng. J. 2019, 377, 119962. [Google Scholar] [CrossRef]
- Joliet, S.; Plotnik, V.; Dinkelacker, F. Development of a Pyrolysis Reaction Model for the numerical Simulation of Wood Pyrolysis. In Proceedings of the 25th German Flame Day: Combustion and Firing, Karlsruhe, Germany, 14–15 September 2011; Karlsruhe Institute of Technology: Karlsruhe, Germany; pp. 153–158.
- Yan, B.; Cheng, Y.; Jin, Y. Cross-Scale Modeling and Simulation of Coal Pyrolysis to Acetylene in Hydrogen Plasma Reactors. Aiche J. 2013, 59, 2119–2133. [Google Scholar] [CrossRef]
- Yan, B.; Cheng, Y.; Jin, Y.; Guo, C.Y. Analysis of particle heating and devolatilization during rapid coal pyrolysis in a thermal plasma reactor. Fuel Process. Technol. 2012, 100, 1–10. [Google Scholar] [CrossRef]
- Pico, P.; Ratkovich, N.; Munoz, F.; Dufaud, O. CFD-DPM and experimental study of the dynamics of wheat starch powder/pyrolysis gases hybrid mixtures in the 20-L Sphere. Powder Technol. 2020, 372, 638–658. [Google Scholar] [CrossRef]
- Pico, P.; Ratkovich, N.; Munoz, F.; Dufaud, O. Analysis of the explosion behaviour of wheat starch/pyrolysis gases hybrid mixtures through experimentation and CFD-DPM simulations. Powder Technol. 2020, 374, 330–347. [Google Scholar] [CrossRef]
- Somwangthanaroj, S.; Fukuda, S. Investigation of multi-fuel combustion behavior and synergy effect using improved steady-state discrete particle model simulation. Int. J. Energy Res. 2021, 45, 17291–17301. [Google Scholar] [CrossRef]
- Xiong, Q.; Yang, Y.; Xu, F.; Pan, Y.; Zhang, J.; Hong, K.; Lorenzini, G.; Wang, S. Overview of Computational Fluid Dynamics Simulation of Reactor-Scale Biomass Pyrolysis. Acs Sustain. Chem. Eng. 2017, 5, 2783–2798. [Google Scholar] [CrossRef]
- Pan, G.; Zheng, H.; Zhou, C.; Song, Z. Numerical Research on Dual Fuel Combustor Combustion Performance. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE2013), San Diego, CA, USA, 15–21 November 2013. [Google Scholar]
- Gomez, M.A.; Porteiro, J.; de la Cuesta, D.; Patino, D.; Miguez, J.L. Numerical simulation of the combustion process of a pellet-drop-feed boiler. Fuel 2016, 184, 987–999. [Google Scholar] [CrossRef]
- Elorf, A.; Sarh, B.; Tabet, F.; Bostyn, S.; Asbik, M.; Bonnamy, S.; Chaoufi, J.; Boushaki, T.; Gillon, P. Effect of Swirl Strength on the Flow and Combustion Characteristics of Pulverized Biomass Flames. Combust. Sci. Technol. 2019, 191, 629–644. [Google Scholar] [CrossRef]
- Chakraborty, S.; Rajora, A.; Singh, S.P.; Talukdar, P. Heat transfer and discrete phase modelling of coal combustion in a pusher type reheating furnace. Appl. Therm. Eng. 2017, 116, 66–78. [Google Scholar] [CrossRef]
- Gao, X.; Li, C.; Zhang, D.; Gao, H.; Han, X. Numerical analysis of the activated combustion high-velocity air-fuel (AC-HVAF) thermal spray process: A survey on the parameters of operation and nozzle geometry. Surf. Coat. Technol. 2021, 405, 126588. [Google Scholar] [CrossRef]
- Adamczyk, W.P.; Kozolub, P.; Wecel, G.; Klimanek, A.; Bialecki, R.A.; Czakiert, T. Modeling oxy-fuel combustion in a 3D circulating fluidized bed using the hybrid Euler-Lagrange approach. Appl. Therm. Eng. 2014, 71, 266–275. [Google Scholar] [CrossRef]
- Farid, M.M.; Jeong, H.J.; Kim, K.H.; Lee, J.; Kim, D.; Hwang, J. Numerical investigation of particle transport hydrodynamics and coal combustion in an industrial-scale circulating fluidized bed combustor: Effects of coal feeder positions and coal feeding rates. Fuel 2017, 192, 187–200. [Google Scholar] [CrossRef]
- Magnussen, B.F.; Hjertager, B.H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp. (Int.) Combust. 1977, 16, 719–729. [Google Scholar] [CrossRef]
- Magnussen, B.F. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. In Proceedings of the 19th Aerospace Sciences Meeting, St. Louis, MO, USA, 12–15 January 1981. [Google Scholar]
- Prieler, R.; Demuth, M.; Spoljaric, D.; Hochenauer, C. Evaluation of a steady flamelet approach for use in oxy-fuel combustion. Fuel 2014, 118, 55–68. [Google Scholar] [CrossRef]
- Mayr, B.; Prieler, R.; Demuth, M.; Potesser, M.; Hochenauer, C. CFD and experimental analysis of a 115 kW natural gas fired lab-scale furnace under oxy-fuel and air-fuel conditions. Fuel 2015, 159, 864–875. [Google Scholar] [CrossRef]
- Edwards, D.K. Thermal-Radiation by Combustion Gases. Int. J. Heat Mass Transf. 1973, 16, 25–40. [Google Scholar] [CrossRef]
- Yin, C.; Johansen, L.C.R.; Rosendahl, L.A.; Kaer, S.K. New Weighted Sum of Gray Gases Model Applicable to Computational Fluid Dynamics (CFD) Modeling of Oxy-Fuel Combustion: Derivation, Validation, and Implementation. Energy Fuels 2010, 24, 6275–6282. [Google Scholar] [CrossRef]
- Adnan, M.; Zhang, N.; Sun, F.; Wang, W. Numerical Simulation of A Semi-Industrial Scale Cfb Riser Using Coarse-Grained Ddpm-Emms Modelling. Can. J. Chem. Eng. 2018, 96, 1403–1416. [Google Scholar] [CrossRef]
- Adnan, M.; Sun, J.; Ahmad, N.; Wei, J.J. Verification and validation of the DDPM-EMMS model for numerical simulations of bubbling, turbulent and circulating fluidized beds. Powder Technol. 2021, 379, 69–88. [Google Scholar] [CrossRef]
- Lichtenegger, T.; Pirker, S. Recurrence CFD—A novel approach to simulate multiphase flows with strongly separated time scales. Chem. Eng. Sci. 2016, 153, 394–410. [Google Scholar] [CrossRef]
- Pirker, S.; Lichtenegger, T. Efficient time-extrapolation of single- and multiphase simulations by transport based recurrence CFD (rCFD). Chem. Eng. Sci. 2018, 188, 65–83. [Google Scholar] [CrossRef]
- Xu, M.; Chen, F.; Liu, X.; Ge, W.; Li, J. Discrete particle simulation of gas-solid two-phase flows with multi-scale CPU-GPU hybrid computation. Chem. Eng. J. 2012, 207, 746–757. [Google Scholar] [CrossRef]
- Lu, L.; Xu, J.; Ge, W.; Gao, G.; Jiang, Y.; Zhao, M.; Liu, X.; Li, J. Computer virtual experiment on fluidized beds using a coarse-grained discrete particle method-EMMS-DPM. Chem. Eng. Sci. 2016, 155, 314–337. [Google Scholar] [CrossRef]
- Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine Learning for Fluid Mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508. [Google Scholar] [CrossRef]
- Mohammadpour, J.; Salehi, F.; Sheikholeslami, M.; Masoudi, M.; Lee, A. Optimization of nanofluid heat transfer in a microchannel heat sink with multiple synthetic jets based on CFD-DPM and MLA. Int. J. Therm. Sci. 2021, 167, 107008. [Google Scholar] [CrossRef]
- Yang, D.; Zhong, W.; Chen, X.; Zhan, J.; Wang, G. Structure Optimization of Vessel Seawater Desulphurization Scrubber Based on CFD and SVM-GA Methods. Can. J. Chem. Eng. 2019, 97, 2899–2909. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Xi, T.; Qin, Y.; Zhang, H.; Wang, Y. Computational Fluid Dynamics–Discrete Phase Method Simulations in Process Engineering: A Review of Recent Progress. Appl. Sci. 2024, 14, 3856. https://doi.org/10.3390/app14093856
Yang X, Xi T, Qin Y, Zhang H, Wang Y. Computational Fluid Dynamics–Discrete Phase Method Simulations in Process Engineering: A Review of Recent Progress. Applied Sciences. 2024; 14(9):3856. https://doi.org/10.3390/app14093856
Chicago/Turabian StyleYang, Xiaolian, Te Xi, Yebo Qin, Hui Zhang, and Yongwei Wang. 2024. "Computational Fluid Dynamics–Discrete Phase Method Simulations in Process Engineering: A Review of Recent Progress" Applied Sciences 14, no. 9: 3856. https://doi.org/10.3390/app14093856