Quantitative and Qualitative Determination of Polyphenolic Compounds in Castanea sativa Leaves and Evaluation of Their Biological Activities
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Preparation of Extract
2.3. Determination of Total Phenolic and Flavonoid Content
2.4. Determination of the Polyphenol Profile by UPLC-Q-TOF-MS
2.5. Determination of Antioxidant Activity
2.6. Antidiabetic and Antiobesity Activity
2.7. Cell Culture
2.8. Cell Viability Assay
2.9. Cell Scratch Assay
2.10. Colony Formation Assay
2.11. Bacterial Strains and Antimicrobial Potential
2.12. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of the Total Phenolic and Flavonoid Contents
3.2. Quantification of the Polyphenols with UPLC-Q-TOF-MS
3.3. Antioxidant Activity
3.4. Antidiabetic and Antiobesity Activity
3.5. Cell Viability
3.6. Wound Scratch
3.7. Clonogenic Test
3.8. Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calliste, C.-A.; Trouillas, P.; Allais, D.-P.; Duroux, J.-L. Castanea sativa Mill. Leaves as New Sources of Natural Antioxidant: An Electronic Spin Resonance Study. J. Agric. Food Chem. 2005, 53, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Ind. J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.S.; Mantas, A.; Chass, G.A.; Ferretti, F.H.; Estrada, M.; Zamarbide, G.; Csizmadia, I.G. Ab Initio and DFT Conformational Analysis of Selected Flavones: 5,7-Dihydroxyflavone (Chrysin) and 7,8-Dihydroxyflavone. Can. J. Chem. 2002, 80, 845–855. [Google Scholar] [CrossRef]
- Knight, J.A. Diseases Related to Oxygen-Derived Free Radicals. Ann. Clin. Lab. Sci 1995, 25, 111–121. [Google Scholar] [PubMed]
- Rainis, T.; Maor, I.; Lanir, A.; Shnizer, S.; Lavy, A. Enhanced Oxidative Stress and Leucocyte Activation in Neoplastic Tissues of the Colon. Dig. Dis. Sci. 2007, 52, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Renaud, S.; De Lorgeril, M. Wine, Alcohol, Platelets, and the French Paradox for Coronary Heart Disease. Lancet 1992, 339, 1523–1526. [Google Scholar] [CrossRef] [PubMed]
- Adamude, F.A.; Dingwoke, J.E.; Nwobodo, N.N.; Ubhenin, A.; Yusoff, N.; Igbeneghu, C.; Owoeye, Y.; Akanni, E.O.; Gondim, F.D.L.; Santos, G.R.D.; et al. Recent Advances in Biological Research; Borek, D.S., Ed.; Book Publisher International (a part of SCIENCEDOMAIN International): London, UK, 2019; Volume 4, ISBN 978-93-89246-06-3. [Google Scholar]
- Marnett, L.J. Oxyradicals and DNA Damage. Carcinogenesis 2000, 21, 361–370. [Google Scholar] [CrossRef] [PubMed]
- De Vasconcelos, M.D.C.B.M.; Bennett, R.N.; Quideau, S.; Jacquet, R.; Rosa, E.A.S.; Ferreira-Cardoso, J.V. Evaluating the Potential of Chestnut (Castanea Sativa Mill.) Fruit Pericarp and Integument as a Source of Tocopherols, Pigments and Polyphenols. Ind. Crops and Prod. 2010, 31, 301–311. [Google Scholar] [CrossRef]
- Cerulli, A.; Masullo, M.; Mari, A.; Balato, A.; Filosa, R.; Lembo, S.; Napolitano, A.; Piacente, S. Phenolics from Castanea Sativa Leaves and Their Effects on UVB-Induced Damage. Nat. Prod. Res. 2018, 32, 1170–1175. [Google Scholar] [CrossRef]
- Cerulli, A.; Napolitano, A.; Masullo, M.; Hošek, J.; Pizza, C.; Piacente, S. Chestnut Shells (Italian Cultivar “Marrone Di Roccadaspide” PGI): Antioxidant Activity and Chemical Investigation with in Depth LC-HRMS/MSn Rationalization of Tannins. Food Res. Int. 2020, 129, 108787. [Google Scholar] [CrossRef]
- Reinoso, B.D.; Couto, D.; Moure, A.; Fernandes, E.; Domínguez, H.; Parajó, J.C. Optimization of Antioxidants—Extraction from Castanea Sativa Leaves. J. Chem. Eng. 2012, 203, 101–109. [Google Scholar] [CrossRef]
- Díaz-Reinoso, B.; Moure, A.; Domínguez, H.; Parajó, J.C. Membrane Concentration of Antioxidants from Castanea Sativa Leaves Aqueous Extracts. J. Chem. Eng. 2011, 175, 95–102. [Google Scholar] [CrossRef]
- Basile, A.; Sorbo, S.; Giordano, S.; Ricciardi, L.; Ferrara, S.; Montesano, D.; Castaldo Cobianchi, R.; Vuotto, M.L.; Ferrara, L. Antibacterial and Allelopathic Activity of Extract from Castanea Sativa Leaves. Fitoterapia 2000, 71, S110–S116. [Google Scholar] [CrossRef] [PubMed]
- Żurek, N.; Kapusta, I.; Cebulak, T. Impact of Extraction Conditions on Antioxidant Potential of Extracts of Flowers, Leaves and Fruits of Hawthorn (Crataegus × macrocarpa L.). Food Sci. Technol. Qual. 2020, 27, 130–141. [Google Scholar] [CrossRef]
- Żurek, N.; Pawłowska, A.; Pycia, K.; Grabek-Lejko, D.; Kapusta, I.T. Phenolic Profile and Antioxidant, Antibacterial, and Antiproliferative Activity of Juglans regia L. Male Flowers. Molecules 2022, 27, 2762. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in Antioxidant Effects and Their Relationship to Phytonutrients in Fruits of Sea Buckthorn (Hippophae rhamnoides L.) during Maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. JFDA 2020, 10, 3. [Google Scholar] [CrossRef]
- Żurek, N.; Pycia, K.; Pawłowska, A.; Kapusta, I.T. Phytochemical Screening and Bioactive Properties of Juglans regia L. Pollen. Antioxidants 2022, 11, 2046. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Esin Karademir, S.; Erçağ, E. The Cupric Ion Reducing Antioxidant Capacity and Polyphenolic Content of Some Herbal Teas. Int. J. Food Sci. Nutr. 2006, 57, 292–304. [Google Scholar] [CrossRef]
- Robak, J.; Gryglewski, R.J. Flavonoids Are Scavengers of Superoxide Anions. Bioch. Pharmacol. 1988, 37, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Żurek, N.; Pawłowska, A.; Kapusta, I. Obtaining Preparations with Increased Content of Bioactive Compounds from Eight Types of Berries. JBR 2023, 13, 307–323. [Google Scholar] [CrossRef]
- Żurek, N.; Karatsai, O.; Rędowicz, M.J.; Kapusta, I.T. Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Extracts Affect Viability and Invasive Potential of Human Glioblastoma Cells. Molecules 2021, 26, 2656. [Google Scholar] [CrossRef] [PubMed]
- Pawłowska, A.M.; Żurek, N.; Kapusta, I.; De Leo, M.; Braca, A. Antioxidant and Antiproliferative Activities of Phenolic Extracts of Eriobotrya Japonica (Thunb.) Lindl. Fruits and Leaves. Plants 2023, 12, 3221. [Google Scholar] [CrossRef] [PubMed]
- Vella, F.M.; Laratta, B.; La Cara, F.; Morana, A. Recovery of Bioactive Molecules from Chestnut (Castanea sativa Mill.) by-Products through Extraction by Different Solvents. Nat. Prod. Res. 2018, 32, 1022–1032. [Google Scholar] [CrossRef]
- Barreira, J.; Ferreira, I.; Oliveira, M.; Pereira, J. Antioxidant Activities of the Extracts from Chestnut Flower, Leaf, Skins and Fruit. Food Chem. 2008, 107, 1106–1113. [Google Scholar] [CrossRef]
- Mujić, A.; Grdović, N.; Mujić, I.; Mihailović, M.; Živković, J.; Poznanović, G.; Vidaković, M. Antioxidative Effects of Phenolic Extracts from Chestnut Leaves, Catkins and Spiny Burs in Streptozotocin-Treated Rat Pancreatic β-Cells. Food Chem. 2011, 125, 841–849. [Google Scholar] [CrossRef]
- Živković, J.; Zeković, Z.; Mujić, I.; Vidović, S.; Cvetkovic, D.; LepoJević, Z.; Nikolić, D.; Trutić, N. Scavenging Capacity of Superoxide Radical and Screening of Antimicrobial Activity of Castanea sativa Mill. Extracts. Czech J. Food Sci. 2010, 28, 61–68. [Google Scholar] [CrossRef]
- Almeida, I.F.; Costa, P.C.; Bahia, M.F. Evaluation of Functional Stability and Batch-to-Batch Reproducibility of a Castanea Sativa Leaf Extract with Antioxidant Activity. AAPS PharmSciTech 2010, 11, 120–125. [Google Scholar] [CrossRef]
- Formato, M.; Vastolo, A.; Piccolella, S.; Calabrò, S.; Cutrignelli, M.I.; Zidorn, C.; Pacifico, S. Castanea Sativa Mill. Leaf: UHPLC-HR MS/MS Analysis and Effects on In Vitro Rumen Fermentation and Methanogenesis. Molecules 2022, 27, 8662. [Google Scholar] [CrossRef]
- Galiñanes, C.; Freire, M.S.; González-Álvarez, J. Antioxidant Activity of Phenolic Extracts from Chestnut Fruit and Forest Industries Residues. Eur. J. Wood Prod. 2015, 73, 651–659. [Google Scholar] [CrossRef]
- Squillaci, G.; Apone, F.; Sena, L.M.; Carola, A.; Tito, A.; Bimonte, M.; Lucia, A.D.; Colucci, G.; Cara, F.L.; Morana, A. Chestnut (Castanea sativa Mill.) Industrial Wastes as a Valued Bioresource for the Production of Active Ingredients. Process Biochem. 2018, 64, 228–236. [Google Scholar] [CrossRef]
- Amarowicz, R.; Janiak, M. Hydrolysable Tannins. In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 337–343. ISBN 978-0-12-814045-1. [Google Scholar]
- Liang, X.; Jiang, Y.; Guo, Z.; Fang, S. Separation, UPLC-QTOF-MS/MS Analysis, and Antioxidant Activity of Hydrolyzable Tannins from Water Caltrop (Trapa quadrispinosa) Pericarps. LWT 2020, 133, 110010. [Google Scholar] [CrossRef]
- Cerulli, A.; Napolitano, A.; Hošek, J.; Masullo, M.; Pizza, C.; Piacente, S. Antioxidant and In Vitro Preliminary Anti-Inflammatory Activity of Castanea Sativa (Italian Cultivar “Marrone Di Roccadaspide” PGI) Burs, Leaves, and Chestnuts Extracts and Their Metabolite Profiles by LC-ESI/LTQOrbitrap/MS/MS. Antioxidants 2021, 10, 278. [Google Scholar] [CrossRef]
- Silva, V.; Falco, V.; Dias, M.I.; Barros, L.; Silva, A.; Capita, R.; Alonso-Calleja, C.; Amaral, J.S.; Igrejas, G.; Ferreira, I.C.F.R.; et al. Evaluation of the Phenolic Profile of Castanea sativa Mill. By-Products and Their Antioxidant and Antimicrobial Activity against Multiresistant Bacteria. Antioxidants 2020, 9, 87. [Google Scholar] [CrossRef]
- Quave, C.L.; Lyles, J.T.; Kavanaugh, J.S.; Nelson, K.; Parlet, C.P.; Crosby, H.A.; Heilmann, K.P.; Horswill, A.R. Castanea sativa (European Chestnut) Leaf Extracts Rich in Ursene and Oleanene Derivatives Block Staphylococcus Aureus Virulence and Pathogenesis without Detectable Resistance. PLoS ONE 2015, 10, e0136486. [Google Scholar] [CrossRef]
- Almeida, I.F.; Fernandes, E.; Lima, J.L.F.C.; Costa, P.C.; Bahia, M.F. Protective Effect of Castanea sativa and Quercus Robur Leaf Extracts against Oxygen and Nitrogen Reactive Species. J. Photochem. Photobiol. B Biol. 2008, 91, 87–95. [Google Scholar] [CrossRef]
- Vazquez, G.; Gonzalez-Alvarez, J.; Freire, M.S.; Fernandez-Agullo, A.; Santos, J.; Antorrena, G. Chestnut Burs as a Source of Natural Antioxidants. Chem. Eng. Trans. 2009, 17, 855–860. [Google Scholar] [CrossRef]
- Fernández-Agulló, A.; Castro-Iglesias, A.; Freire, M.S.; González-Álvarez, J. Optimization of the Extraction of Bioactive Compounds from Walnut (Juglans major 209 x Juglans regia) Leaves: Antioxidant Capacity and Phenolic Profile. Antioxidants 2019, 9, 18. [Google Scholar] [CrossRef]
- Pinto, D.; Silva, A.M.; Freitas, V.; Vallverdú-Queralt, A.; Delerue-Matos, C.; Rodrigues, F. Microwave-Assisted Extraction as a Green Technology Approach to Recover Polyphenols from Castanea sativa Shells. ACS Food Sci. Technol. 2021, 1, 229–241. [Google Scholar] [CrossRef]
- Jung, B.S.; Lee, N.-K.; Na, D.S.; Yu, H.H.; Paik, H.-D. Comparative Analysis of the Antioxidant and Anticancer Activities of Chestnut Inner Shell Extracts Prepared with Various Solvents: Chestnut Inner Shell Extracts for Functional Foods. J. Sci. Food Agric. 2016, 96, 2097–2102. [Google Scholar] [CrossRef]
- Cacciola, N.A.; Squillaci, G.; D’Apolito, M.; Petillo, O.; Veraldi, F.; La Cara, F.; Peluso, G.; Margarucci, S.; Morana, A. Castanea sativa Mill. Shells Aqueous Extract Exhibits Anticancer Properties Inducing Cytotoxic and Pro-Apoptotic Effects. Molecules 2019, 24, 3401. [Google Scholar] [CrossRef]
- Sorice, A.; Siano, F.; Capone, F.; Guerriero, E.; Picariello, G.; Budillon, A.; Ciliberto, G.; Paolucci, M.; Costantini, S.; Volpe, M. Potential Anticancer Effects of Polyphenols from Chestnut Shell Extracts: Modulation of Cell Growth, and Cytokinomic and Metabolomic Profiles. Molecules 2016, 21, 1411. [Google Scholar] [CrossRef]
- Rajendran, V.; Jain, M.V. In Vitro Tumorigenic Assay: Colony Forming Assay for Cancer Stem Cells. In Cancer Stem Cells; Papaccio, G., Desiderio, V., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2018; Volume 1692, pp. 89–95. ISBN 978-1-4939-7400-9. [Google Scholar]
- Ekşi, S.; Üreyen Esertaş, Ü.Z.; Kiliç, A.O.; Ejder, N.; Uzunok, B. Determination of the Antimicrobial and Antibiofilm Effects and ‘Quorum Sensing’ Inhibition Potentials of Castanea Sativa Mill. Extracts. Not. Bot. Horti Agrobot. 2020, 48, 66–78. [Google Scholar] [CrossRef]
- Kędzia, R.; Lis, M. Assessment of the Antibacterial Activity of Chestnut (Castanea sativa) and Cloves (Syzygium aromaticum) Herbal Extracts as an Alternative to Antibiotics Use during Post-Hatching Period of Chicks. Sci. Technol. Innov. 2021, 11, 48–54. [Google Scholar] [CrossRef]
- Li, C.-F.; Zhu, Y.; Yu, Y.; Zhao, Q.-Y.; Wang, S.-J.; Wang, X.-C.; Yao, M.-Z.; Luo, D.; Li, X.; Chen, L.; et al. Global Transcriptome and Gene Regulation Network for Secondary Metabolite Biosynthesis of Tea Plant (Camellia sinensis). BMC Genom. 2015, 16, 560. [Google Scholar] [CrossRef]
- Avşar, C.; Özler, H.; Berber, I.; Civek, S. Phenolic Composition, Antimicrobial and Antioxidant Activity of Castanea Sativa Mill. Pollen Grains from Black Sea Region of Turkey. Int. Food Res. J. 2016, 23, 1711–1716. [Google Scholar]
- Warrier, A.; Satyamoorthy, K.; Murali, T.S. Quorum-Sensing Regulation of Virulence Factors in Bacterial Biofilm. Future Microbiol. 2021, 16, 1003–1021. [Google Scholar] [CrossRef]
TPC mg GAE/g | TFC mg QE/g | |
---|---|---|
C. sativa leaf methanolic extract | 458.22 ± 1.02 | 24.55 ± 0.08 |
Compound | Rt | λmax | [M-H] m/z | Concentration mg/100 g d.w. | ||
---|---|---|---|---|---|---|
HYDROLYSABLE TANNINS | ||||||
Ellagitannis | ||||||
2 | Galloyl-bis-HHDP-glucose I | 2.78 | 276 | 935 | 637, 467 | 138.28 ± 9.98 |
3 | Galloyl-chebuloyl-HHDP-glucose (chebulagic acid) | 2.88 | 276 | 953 | 785, 301 | 77.41 ± 7.04 |
4 | Galloyl-bis-HHDP-glucose II | 2.92 | 276 | 935 | 637, 467 | 132.47 ± 7.08 |
5 | Galloyl-bis-HHDP-glucose III | 2.99 | 276 | 935 | 767, 467 | 59.29 ± 2.40 |
10 | Galloyl-bis-HHDP-glucose IV | 3.73 | 276 | 935 | 637, 467 | 29.48 ± 1.12 |
Gallotannins | ||||||
9 | Trigalloyl-glucose | 3.68 | 269 | 635 | 465 | 13.51 ± 0.19 |
FLAVONOIDS | ||||||
14 | Quercetin 3-O-glucuronide | 4.65 | 255, 353 | 477 | 301 | 137.73 ± 4.19 |
15 | Quercetin 3-O-glucoside | 4.74 | 255, 353 | 463 | 301 | 184.30 ± 4.02 |
17 | Kaempferol 3-O-glucoside | 5.30 | 264, 347 | 447 | 285 | 61.60 ± 1.39 |
18 | Isorhamnetin 3-O-glucoside | 5.49 | 253, 352 | 477 | 315 | 22.33 ± 0.64 |
PHENOL GLUCOSIDE DERIVATIVES | ||||||
6 | Digalloyl phenol glucoside (chesnatin) | 3.17 | 272 | 637 | 467, 305 | 90.38 ± 2.68 |
8 | Digalloyl phenol glucoside (isochesnatin) | 3.59 | 271 | 637 | 467 | 42.18 ± 1.43 |
11 | Galloyl phenol glucoside (cretanin) | 4.01 | 274 | 469 | 169 | 15.04 ± 1.16 |
13 | Galloyl phenol glucoside dimer (chestanin) | 4.37 | 274 | 937 | 467, 301 | 266.81 ± 8.36 |
16 | Galloyl phenol glucoside dimer (isochestanin) | 5.04 | 269 | 937 | 637, 467 | 39.54 ± 1.29 |
PHENOLIC ACID DERIVATIVES | ||||||
1 | Gallic acid | 2.35 | 270 | 169 | 125 | 81.52 ± 0.99 |
7 | Methyl-gallate | 3.53 | 269 | 183 | 168 | 19.07 ± 0.17 |
12 | Ellagic acid pentoside | 4.12 | 274 | 433 | 301 | 15.59 ± 2.49 |
TOTAL | 1426.55 ± 54.99 |
Antioxidant Activities | |||||
---|---|---|---|---|---|
ABTS | CUPRAC | ChA | O2•− | OH− | |
mmol TE/g | IC50 (mg/mL) | ||||
C. sativa leaf methanolic extract | 11.52 ± 0.16 | 1.96 ± 0.01 | 0.31 ± 0.08 | 0.067 ± 0.09 | 0.207 ± 0.02 |
Anti-Diabetic and Anti-Obesity Activities | |||
---|---|---|---|
α-amylase | α-glucosidase | lipase | |
IC50 (mg/mL) | |||
C. sativa leaf methanolic extract | 1.62 ± 0.24 | 2.20 ± 0.22 | 0.72 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żurek, N.; Pawłowska, A.M.; Pycia, K.; Potocki, L.; Kapusta, I.T. Quantitative and Qualitative Determination of Polyphenolic Compounds in Castanea sativa Leaves and Evaluation of Their Biological Activities. Appl. Sci. 2024, 14, 3859. https://doi.org/10.3390/app14093859
Żurek N, Pawłowska AM, Pycia K, Potocki L, Kapusta IT. Quantitative and Qualitative Determination of Polyphenolic Compounds in Castanea sativa Leaves and Evaluation of Their Biological Activities. Applied Sciences. 2024; 14(9):3859. https://doi.org/10.3390/app14093859
Chicago/Turabian StyleŻurek, Natalia, Agata Maria Pawłowska, Karolina Pycia, Leszek Potocki, and Ireneusz Tomasz Kapusta. 2024. "Quantitative and Qualitative Determination of Polyphenolic Compounds in Castanea sativa Leaves and Evaluation of Their Biological Activities" Applied Sciences 14, no. 9: 3859. https://doi.org/10.3390/app14093859
APA StyleŻurek, N., Pawłowska, A. M., Pycia, K., Potocki, L., & Kapusta, I. T. (2024). Quantitative and Qualitative Determination of Polyphenolic Compounds in Castanea sativa Leaves and Evaluation of Their Biological Activities. Applied Sciences, 14(9), 3859. https://doi.org/10.3390/app14093859