A Practical Prognostics Method Based on Stepwise Linear Approximation of a Nonlinear Degradation Model
Abstract
:1. Introduction
2. Background
3. Proposed Method
3.1. Algorithm for Stepwise Linear Approximation
- Step 1.
- Dividing the stages
- Step 2.
- Predicting RUL
3.2. Example
4. Case Study for Comparison
4.1. Problem Definition
4.1.1. Data Generation
4.1.2. ANN Architecture
4.2. Results
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Notation | Description | Notation | Description |
model output | stage index | ||
time (or cycle) | crack size | ||
intercept | number of cycles | ||
slope | stress intensity factor | ||
stress condition | |||
design matrix | Paris model parameters | ||
vector of data | number of hidden nodes | ||
number of data | relative error | ||
initial value of | true | ||
data index | prediction |
References
- Gao, K.; Peng, R.; Qu, L.; Wu, S. Jointly optimizing lot sizing and maintenance policy for a production system with two failure modes. Reliab. Eng. Syst. Saf. 2020, 202, 106996. [Google Scholar] [CrossRef]
- Qu, L.; Liao, J.; Gao, K.; Yang, L. Joint optimization of production lot sizing and preventive maintenance threshold based on nonlinear degradation. Appl. Sci. 2022, 12, 8638. [Google Scholar] [CrossRef]
- Zonta, T.; Da Costa, C.A.; da Rosa Righi, R.; de Lima, M.J.; da Trindade, E.S.; Li, G.P. Predictive maintenance in the Industry 4.0: A systematic literature review. Comput. Ind. Eng. 2020, 150, 106889. [Google Scholar] [CrossRef]
- Khan, A.; Azad, M.M.; Sohail, M.; Kim, H.S. A review of physics-based models in prognostics and health management of laminated composite structures. Int. J. Precis. Eng. Manuf.-Green Technol. 2023, 10, 1615–1635. [Google Scholar] [CrossRef]
- Wen, Y.; Rahman, M.F.; Xu, H.; Tseng, T.L.B. Recent advances and trends of predictive maintenance from data-driven machine prognostics perspective. Measurement 2022, 187, 110276. [Google Scholar] [CrossRef]
- Paris, P.; Erdogan, F. A critical analysis of crack propagation laws. J. Basic Eng. 1963, 85, 528–533. [Google Scholar] [CrossRef]
- An, D.; Choi, J.H.; Kim, N.H. Prognostics 101: A tutorial for particle filter-based prognostics algorithm using Matlab. Reliab. Eng. Syst. Saf. 2013, 115, 161–169. [Google Scholar] [CrossRef]
- Zárate, B.A.; Caicedo, J.M.; Yu, J.; Ziehl, P. Bayesian model updating and prognosis of fatigue crack growth. Eng. Struct. 2012, 45, 53–61. [Google Scholar] [CrossRef]
- Orchard, M.E.; Vachtsevanos, G.J. A particle filtering approach for on-line failure prognosis in a planetary carrier plate. Int. J. Fuzzy Log. Intell. Syst. 2007, 7, 221–227. [Google Scholar] [CrossRef]
- An, D.; Choi, J.H.; Kim, N.H. Identification of correlated damage parameters under noise and bias using Bayesian inference. Struct. Health Monit. 2012, 11, 293–303. [Google Scholar] [CrossRef]
- Coppe, A.; Haftka, R.T.; Kim, N.H. Uncertainty identification of damage growth parameters using nonlinear regression. AIAA J. 2011, 49, 2818–2821. [Google Scholar] [CrossRef]
- Seeger, M. Gaussian processes for machine learning. Int. J. Neural Syst. 2004, 14, 69–106. [Google Scholar] [CrossRef] [PubMed]
- Saon, S.; Hiyama, T. Predicting remaining useful life of rotating machinery based artificial neural network. Comput. Math. Appl. 2010, 60, 1078–1087. [Google Scholar]
- Asif, O.; Haider, S.A.; Naqvi, S.R.; Zaki, J.F.; Kwak, K.S.; Islam, S.R. A deep learning model for remaining useful life prediction of aircraft turbofan engine on C-MAPSS dataset. IEEE Access 2022, 10, 95425–95440. [Google Scholar] [CrossRef]
- Ensarioğlu, K.; İnkaya, T.; Emel, E. Remaining useful life estimation of turbofan engines with deep learning using change-point detection based labeling and feature engineering. Appl. Sci. 2023, 13, 11893. [Google Scholar] [CrossRef]
- Long, B.; Wu, K.; Li, P.; Li, M. A novel remaining useful life prediction method for hydrogen fuel cells based on the gated recurrent unit neural network. Appl. Sci. 2022, 12, 432. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Li, T.; Si, X. A review on physics-informed data-driven remaining useful life prediction: Challenges and opportunities. Mech. Syst. Signal Process. 2024, 209, 111120. [Google Scholar] [CrossRef]
- Wang, F.; Zhai, Z.; Zhao, Z.; Di, Y.; Chen, X. Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis. Nat. Commun. 2024, 15, 4332. [Google Scholar] [CrossRef] [PubMed]
- Fassi, Y.; Heiries, V.; Boutet, J.; Boisseau, S. Physics-Informed Machine Learning for Robust Remaining Useful Life Estimation of Power MOSFETs. In Proceedings of the 2024 IEEE International Conference on Prognostics and Health Management (ICPHM), Spokane, WA, USA, 17–19 June 2024. [Google Scholar]
- Bretscher, O. Linear Algebra with Applications, 5th ed.; Pearson: Upper Saddle River, NJ, USA, 2012. [Google Scholar]
- Shi, J.; Yu, T.; Goebel, K.; Wu, D. Remaining useful life prediction of bearings using ensemble learning: The impact of diversity in base learners and features. J. Comput. Inf. Sci. Eng. 2021, 21, 021004. [Google Scholar] [CrossRef]
- Beale, M.H.; Hagan, M.T.; Demuth, H.B. Neural Network Toolbox. User’s Guide 2010, MathWorks. Available online: https://ge0mlib.com/papers/Books/04_Neural_Network_Toolbox_Reference.pdf (accessed on 25 October 2024).
Methods (Calculation Time) | Percentile | Error (%) | ||||
---|---|---|---|---|---|---|
2600 Cycles | 2700 Cycles | 2800 Cycles | 2900 Cycles | 3000 Cycles | ||
Proposed method (52 s) | 5 | 5.42 | 2.64 | 1.63 | 0.32 | 0.03 |
50 | 11.20 | 7.74 | 4.27 | 2.16 | 0.37 | |
95 | 20.86 | 13.66 | 7.98 | 4.70 | 1.33 | |
ANN (2815 s) | 5 | 14.55 | 7.57 | 2.55 | 1.80 | 0.59 |
50 | N/A | 17.50 | 7.76 | 3.71 | 1.39 | |
95 | N/A | N/A | 16.32 | 5.74 | 2.79 |
Methods (Calculation Time) | Percentile | Error (%) | ||||
---|---|---|---|---|---|---|
2600 Cycle | 2700 Cycle | 2800 Cycle | 2900 Cycle | 3000 Cycle | ||
Proposed method (34 s) | 5 | 0.61 | 2.60 | 0.25 | 0.09 | 0.11 |
50 | 12.20 | 11.05 | 4.34 | 1.55 | 0.81 | |
95 | 66.10 | 33.23 | 14.52 | 7.93 | 2.31 | |
ANN (2145 s) | 5 | 17.76 | 6.62 | 5.52 | 1.60 | 0.41 |
50 | N/A | N/A | 15.52 | 5.54 | 2.18 | |
95 | N/A | N/A | N/A | 13.20 | 3.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, D. A Practical Prognostics Method Based on Stepwise Linear Approximation of a Nonlinear Degradation Model. Appl. Sci. 2025, 15, 266. https://doi.org/10.3390/app15010266
An D. A Practical Prognostics Method Based on Stepwise Linear Approximation of a Nonlinear Degradation Model. Applied Sciences. 2025; 15(1):266. https://doi.org/10.3390/app15010266
Chicago/Turabian StyleAn, Dawn. 2025. "A Practical Prognostics Method Based on Stepwise Linear Approximation of a Nonlinear Degradation Model" Applied Sciences 15, no. 1: 266. https://doi.org/10.3390/app15010266
APA StyleAn, D. (2025). A Practical Prognostics Method Based on Stepwise Linear Approximation of a Nonlinear Degradation Model. Applied Sciences, 15(1), 266. https://doi.org/10.3390/app15010266