Exploring the Applications of Lemna minor in Animal Feed: A Review Assisted by Artificial Intelligence
Abstract
:1. Introduction
2. Methodology
3. Results of the Bibliographic Literature Analysis Assisted by Artificial Intelligence Tools
3.1. Text Processing and Visualization
3.2. Text Clustering
3.3. Text Analysis of Each Cluster
4. Lemna minor and Its Production
5. Nutritional Value and Composition of Lemna minor
6. Use of Lemna minor in Animal Feed
6.1. Lemna minor in Aquaculture
Country | Fish Species | Inclusion Levels of L. minor in the Diet | Feed Strategy | Results | Recommended Inclusion Level in the Diet | Ref. |
---|---|---|---|---|---|---|
India | Labeo rohita | 22.1% | Dried L. minor was combined with fishmeal at 1:1 ratio. | The level of inclusion did not affect the growth of the fish (p < 0.05) | up to 30% | [40] |
Indonesia | Oreochromis niloticus | 2.5%, 5% and 7.5% | Fermented L. minor as substitution of soybean meal | Greater level of biomass weight and feed utilization efficiency (p < 0.05). | 2.5% | [38] |
Indonesia | Lates calcarifer | 15%, 25%, 35% and 45% | Fermented L. minor as substitution of fishmeal proteins | Good results in weight gain and protein efficiency ratio (p < 0.05). | 35% | [39] |
Italia | Oncorhynchus mykiss | 10%, 20%, and 28% | Dried L. minor (flour) as substitution of traditional protein sources | No adverse effects in fish growth were observed (p > 0.05). | 20% | [3] |
Nigeria | Clarias gariepinus | 20%, 40%, 60% and 80% | Ground L. minor as substitution of fish meal | Optimal growth results (p < 0.05) were obtained. | 40% | [54] |
India | Cyprinus carpio | 5%, 10%, 15% and 20% | Part of the soybean meal, wheat flour, and sunflower oil was substituted by dry L. minor. | Increased levels of final weight, protein, essential amino acids, and lipid content (p < 0.05). | 15–20% | [52] |
Kenya | Oreochromis niloticus | 5%, 10%, 15% and 20% | Fishmeal and fish oil were substituted by dry ground L. minor. | Increased levels of n-3 long-chain polyunsaturated fatty acids (p < 0.05). | 15–20% | [45] |
Taiwan | Oreochromis spp. | 5% and 10% | Feed pellets were substituted by dry L.minor | Increased weight gain and protein efficiency ratio (p < 0.05). | 5% | [31] |
Nigeria | Colossoma macropomum | 25%, 50%, 75% and 100% | Substitution of soybean meal with dry L. minor (flour) and visceral fish meal. | 50% substitution of soybean meal with L. minor achieved greater weight gain (p < 0.05). | 50% of total soybean meal | [13] |
6.2. Lemna minor in Poultry Feed
6.3. Lemna minor in the Feeding of Other Terrestrial Animals
7. Other Uses of Lemna minor
8. Conclusions
9. Future Trends
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
NLP | Natural Language Processing |
PCA | Principal Component Analyss |
CP | Crude Protein |
LC-PUFA | Long Chain-Polyunsaturated Fatty Acids |
References
- United Nations Population. Available online: https://www.un.org/en/global-issues/population (accessed on 23 January 2025).
- Chakrabarti, R.; Clark, W.D.; Sharma, J.G.; Goswami, R.K.; Shrivastav, A.K.; Tocher, D.R. Mass Production of Lemna minor and Its Amino Acid and Fatty Acid Profiles. Front. Chem. 2018, 6, 479. [Google Scholar] [CrossRef] [PubMed]
- Fiordelmondo, E.; Ceschin, S.; Magi, G.E.; Mariotti, F.; Iaffaldano, N.; Galosi, L.; Roncarati, A. Effects of Partial Substitution of Conventional Protein Sources with Duckweed (Lemna minor) Meal in the Feeding of Rainbow Trout (Oncorhynchus mykiss) on Growth Performances and the Quality Product. Plants 2022, 11, 1220. [Google Scholar] [CrossRef] [PubMed]
- Minich, J.J.; Michael, T.P. A Review of Using Duckweed (Lemnaceae) in Fish Feeds. Rev. Aquac. 2024, 16, 1212–1228. [Google Scholar] [CrossRef]
- Crepin, L.; Nedoncelle, L. Foreign Demand, Soy Exports, and Deforestation. Evidence and Implications for Deforestation. Working Papers hal-04312450, HAL 2024. Handle: RePEc:hal:wpaper:hal-04312450. Available online: https://www.stata.com/meeting/france24/slides/France24_Crepin.pdf (accessed on 23 January 2025).
- Anjur, N.; Ali, J.; Shahadan, S.A. Effect of Different Fertilizers on the Growth of Duckweed (Lemna minor) as Aquatic Plant Resources Utilization in Sustaining Red Tilapia (Oreochromis niloticus) Culture. E3S Web Conf. 2024, 479, 03001. [Google Scholar] [CrossRef]
- Demann, J.; Petersen, F.; Dusel, G.; Bog, M.; Devlamynck, R.; Ulbrich, A.; Olfs, H.-W.; Westendarp, H. Nutritional Value of Duckweed as Protein Feed for Broiler Chickens—Digestibility of Crude Protein, Amino Acids and Phosphorus. Animals 2022, 13, 130. [Google Scholar] [CrossRef]
- Ullah, H.; Gul, B.; Khan, H.; Akhtar, N.; Rehman, K.U.; Zeb, U. Effect of Growth Medium Nitrogen and Phosphorus on Nutritional Composition of Lemna Minor (an Alternative Fish and Poultry Feed). BMC Plant Biol. 2022, 22, 214. [Google Scholar] [CrossRef]
- Mirón-Mérida, V.A.; Soria-Hernández, C.; Richards-Chávez, A.; Ochoa-García, J.C.; Rodríguez-López, J.L.; Chuck-Hernández, C. The Effect of Ultrasound on the Extraction and Functionality of Proteins from Duckweed (Lemna minor). Molecules 2024, 29, 1122. [Google Scholar] [CrossRef]
- Zhou, Y.; Stepanenko, A.; Kishchenko, O.; Xu, J.; Borisjuk, N. Duckweeds for Phytoremediation of Polluted Water. Plants 2023, 12, 589. [Google Scholar] [CrossRef]
- Krzywonos, M.; Romanowska-Duda, Z.; Seruga, P.; Messyasz, B.; Mec, S. The Use of Plants from the Lemnaceae Family for Biofuel Production—A Bibliometric and In-Depth Content Analysis. Energies 2023, 16, 2058. [Google Scholar] [CrossRef]
- Baghban-Kanani, P.; Oteri, M.; Hosseintabar-Ghasemabad, B.; Azimi-Youvalari, S.; Di Rosa, A.R.; Chiofalo, B.; Seidavi, A.; Phillips, C.J.C. The Effects of Replacing Wheat and Soyabean Meal with Duckweed (Lemna minor) and Including Enzymes in the Diet of Laying Hens on the Yield and Quality of Eggs, Biochemical Parameters, and Their Antioxidant Status. Anim. Sci. J. 2023, 94, e13888. [Google Scholar] [CrossRef] [PubMed]
- Irabor, A.E.; Onwuka, C.N.; Adagha, O.; Sanubi, J.O.; Pierre, H.A.J.; Onwuka, M.; Obieh, S. Performance of Pacu (Colossoma Macropomum) Fed Varying Dietary Inclusion Levels of Fish Visceral and Duckweed (Lemna minor) as Replacement for Fish and Soybean Meals. J. Agric. Rural. Dev. Trop. Subtrop. 2024, 125, 1–7. [Google Scholar]
- Zaffer, B.; Sheikh, I.U.; Banday, M.T.; Adil, S.; Ahmed, H.A.; Khan, A.S.; Nissa, S.S.; Mirza, U. Effect of Inclusion of Different Levels of Duckweed (Lemna minor) on the Performance of Broiler Chicken. Indian J. Anim. Res. 2020, 55, 1200–1205. [Google Scholar] [CrossRef]
- Liu, W.; Xu, J.; Li, Y.; Liu, X.; Zhou, X.; Peng, Y.; Jia, Y.; Gao, J.; Jiang, Q.; He, Y. Duckweed (Lemna minor L.) as a Natural-Based Solution Completely Offsets the Increase in Ammonia Volatilization Induced by Soil Drying and Wetting Cycles in Irrigated Paddies. Sci. Total Environ. 2024, 957, 177789. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Guo, B.; Liu, C.; Liu, J.; Qiu, G.; Fu, Q.; Li, H. Alleviation of Aqueous Nitrogen Loss from Paddy Fields by Growth and Decomposition of Duckweed (Lemna minor L.) after Fertilization. Chemosphere 2023, 311, 137073. [Google Scholar] [CrossRef]
- Van Hoeck, A.; Horemans, N.; Monsieurs, P.; Cao, H.X.; Vandenhove, H.; Blust, R. The First Draft Genome of the Aquatic Model Plant Lemna Minor Opens the Route for Future Stress Physiology Research and Biotechnological Applications. Biotechnol. Biofuels 2015, 8, 188. [Google Scholar] [CrossRef]
- Seferli, M.; Kotanidou, C.; Lefkaki, M.; Adamantidi, T.; Panoutsopoulou, E.; Finos, M.A.; Krey, G.; Kamidis, N.; Stamatis, N.; Anastasiadou, C.; et al. Bioactives of the Freshwater Aquatic Plants, Nelumbo Nucifera and Lemna Minor, for Functional Foods, Cosmetics and Pharmaceutical Applications, with Antioxidant, Anti-Inflammatory and Antithrombotic Health Promoting Properties. Appl. Sci. 2024, 14, 6634. [Google Scholar] [CrossRef]
- Fernández-López, J.; Borrás-Rocher, F.; Viuda-Martos, M.; Pérez-Álvarez, J.Á. Using Artificial Intelligence-Based Tools to Improve the Literature Review Process: Pilot Test with the Topic “Hybrid Meat Products”. Informatics 2024, 11, 72. [Google Scholar] [CrossRef]
- Cierco Jimenez, R.; Lee, T.; Rosillo, N.; Cordova, R.; Cree, I.A.; Gonzalez, A.; Indave Ruiz, B.I. Machine Learning Computational Tools to Assist the Performance of Systematic Reviews: A Mapping Review. BMC Med. Res. Methodol. 2022, 22, 322. [Google Scholar] [CrossRef]
- Wagner, G.; Lukyanenko, R.; Paré, G. Artificial Intelligence and the Conduct of Literature Reviews. J. Inf. Technol. 2022, 37, 209–226. [Google Scholar] [CrossRef]
- Álvarez-Martínez, F.J.; Borrás-Rocher, F.; Micol, V.; Barrajón-Catalán, E. Artificial Intelligence Applied to Improve Scientific Reviews: The Antibacterial Activity of Cistus Plants as Proof of Concept. Antibiotics 2023, 12, 327. [Google Scholar] [CrossRef]
- Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-Means Clustering Algorithms: A Comprehensive Review, Variants Analysis, and Advances in the Era of Big Data. Inf. Sci. 2023, 622, 178–210. [Google Scholar] [CrossRef]
- Syakur, M.A.; Khotimah, B.K.; Rochman, E.M.S.; Satoto, B.D. Integration K-Means Clustering Method and Elbow Method For Identification of The Best Customer Profile Cluster. IOP Conf. Ser. Mater. Sci. Eng. 2018, 336, 012017. [Google Scholar] [CrossRef]
- Punhani, A.; Faujdar, N.; Mishra, K.K.; Subramanian, M. Binning-Based Silhouette Approach to Find the Optimal Cluster Using K-Means. IEEE Access 2022, 10, 115025–115032. [Google Scholar] [CrossRef]
- Achoki, J.; Orina, P.; Kaingu, C.; Oduma, J.; Olale, K.; Chepkirui, M.; Getabu, A. Comparative Study on Fatty Acids Composition of Lemna minor (Duckweed) Cultured in Indoor Plastic Tanks and Outdoor Earthen Ponds. Aquac. Res. 2024, 5563513. [Google Scholar] [CrossRef]
- Petersen, F.; Demann, J.; Restemeyer, D.; Ulbrich, A.; Olfs, H.-W.; Westendarp, H.; Appenroth, K.-J. Influence of the Nitrate-N to Ammonium-N Ratio on Relative Growth Rate and Crude Protein Content in the Duckweeds Lemna minor and Wolffiella hyalina. Plants 2021, 10, 1741. [Google Scholar] [CrossRef]
- Stejskal, V.; Paolacci, S.; Toner, D.; Jansen, M.A.K. A Novel Multitrophic Concept for the Cultivation of Fish and Duckweed: A Technical Note. J. Clean Prod. 2022, 366, 132881. [Google Scholar] [CrossRef]
- Nesan, D.; Selvabala, K.; Chan Juinn Chieh, D. Nutrient Uptakes and Biochemical Composition of Lemna minor in Brackish Water. Aquac. Res. 2020, 51, 3563–3570. [Google Scholar] [CrossRef]
- Ullah, H.; Gul, B.; Khan, H.; Zeb, U. Effect of Salt Stress on Proximate Composition of Duckweed (Lemna minor L.). Heliyon 2021, 7, e07399. [Google Scholar] [CrossRef]
- Luo, J.; Chien, Y.H.; Taparhudee, W.; Kitikiew, S.; Kantha, P. The Effect of Light-Emitting Diodes (LDEs) on the Development of Duckweed (Lemna minor) in Co-Culture with Red Tilapia (Oreochromis spp.). J. Fish Environ. 2023, 47, 99–115. [Google Scholar]
- Devlamynck, R.; de Souza, M.F.; Leenknegt, J.; Jacxsens, L.; Eeckhout, M.; Meers, E. Lemna minor Cultivation for Treating Swine Manure and Providing Micronutrients for Animal Feed. Plants 2021, 10, 1124. [Google Scholar] [CrossRef] [PubMed]
- Stadtlander, T.; Schmidtke, A.; Baki, C.; Leiber, F. Duckweed Production on Diluted Chicken Manure. J. Anim. Feed Sci. 2023, 33, 128–138. [Google Scholar] [CrossRef]
- Xue, Y.; Peijnenburg, W.J.G.M.; Huang, J.; Wang, D.; Jin, Y. Trophic Transfer of Cd from Duckweed (Lemna minor L.) to Tilapia (Oreochromis mossambicus). Environ. Toxicol. Chem. 2018, 37, 1367–1377. [Google Scholar] [CrossRef] [PubMed]
- Devlamynck, R.; de Souza, M.F.; Michels, E.; Sigurnjak, I.; Donoso, N.; Coudron, C.; Leenknegt, J.; Vermeir, P.; Eeckhout, M.; Meers, E. Agronomic and Environmental Performance of Lemnaminor Cultivated on Agricultural Wastewater Streams—A Practical Approach. Sustainability 2021, 13, 1570. [Google Scholar] [CrossRef]
- Ullah, H.; Gul, B.; Khan, H.; ur Rehman, K.; Hameed, I.; Zeb, U.; Roomi, S.; Zill-E-Huma. Impact of PH on the Growth and Nutritional Profile of Lemna minor L. as a Sustainable Alternative for Pakistan’s Feed Sector. Aquac. Int. 2023, 31, 1879–1891. [Google Scholar] [CrossRef]
- Putra, A.; Ritonga, M.Z. Effectiveness Duckweed (Lemna minor) as an Alternative Native Chicken Feed Native Chicken (Gallus domesticus). IOP Conf. Ser. Earth Environ. Sci. 2018, 122, 012124. [Google Scholar] [CrossRef]
- Herawati, V.E.; Pinandoyo, P.; Darmanto, Y.S.; Rismaningsih, N.; Windarto, S.; Radjasa, O.K. The Effect of Fermented Duckweed (Lemna minor) in Feed on Growth and Nutritional Quality of Tilapia (Oreochromis niloticus). Biodiversitas 2020, 21, 3350–3358. [Google Scholar] [CrossRef]
- Mustofa, A.G.; Ali, A.; Wahidah, S.; Mulyati, H.; Indrayani, I. Use of Duckweed (Lemna minor) Harvested from IRAS as a Partial Replacement for Fishmeal Proteins in Barramundi (Lates calcarifer) Diets. AACL Bioflux 2022, 15, 1663–1674. [Google Scholar]
- Goswami, R.K.; Shrivastav, A.K.; Sharma, J.G.; Tocher, D.R.; Chakrabarti, R. Growth and Digestive Enzyme Activities of Rohu Labeo Rohita Fed Diets Containing Macrophytes and Almond Oil-Cake. Anim. Feed Sci. Technol. 2020, 263, 114456. [Google Scholar] [CrossRef]
- Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of Lemna minor and Lemna gibba Whole Plant Material as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2022, 20, e07598. [Google Scholar] [CrossRef]
- Irabor, A.E.; Adeleke, L.M.; Pierre, H.J.; Nwachi, F.O. Performance of Nile Tilapia (Oreochromis niloticus) with Giant Freshwater Prawns (Macrobrachium rosenbergii) Fed Diets with Duckweed (Lemna minor) and Fish Waste Meal as Replacement for Conventional Protein Sources. Livest. Res. Rural. Dev. 2022, 34. Available online: http://www.lrrd.org/lrrd34/8/3473irab.html (accessed on 23 January 2025).
- Ifie, I.; Olatunde, S.; Ogbon, O.; Umukoro, J. Processing Techniques on Phytochemical Content, Proximate Composition, and Toxic Components in Duckweed. Int. J. Veg. Sci. 2020, 27, 1–9. [Google Scholar] [CrossRef]
- Xu, J.; Shen, Y.; Zheng, Y.; Smith, G. Duckweed (Lemnaceae) for Potentially Nutritious Human Food: A Review. Food Rev. Int. 2021, 39, 3620–3634. [Google Scholar] [CrossRef]
- Opiyo, M.A.; Muendo, P.; Mbogo, K.; Ngugi, C.C.; Charo-Karisa, H.; Orina, P.; Leschen, W.; Glencross, B.D.; Tocher, D.R. Inclusion of Duckweed (Lemna minor) in the Diet Improves Flesh Omega-3 Long-Chain Polyunsaturated Fatty Acid Profiles but Not the Growth of Farmed Nile Tilapia (Oreochromis niloticus). Anim. Feed Sci. Technol. 2022, 292, 115442. [Google Scholar] [CrossRef]
- Jaimes, O.; Lora, O.; Tache, K.; Jaimes, O.; Lora, O.; Tache, K. Lenteja de agua (Lemna minor): Potencial alimentario y ambiental. Revisión. Rev. Mex. Cienc. Pecu. 2024, 15, 404–424. [Google Scholar] [CrossRef]
- Sosa, D.; Alves, F.M.; Prieto, M.A.; Pedrosa, M.C.; Heleno, S.A.; Barros, L.; Feliciano, M.; Carocho, M. Lemna Minor: Unlocking the Value of This Duckweed for the Food and Feed Industry. Foods 2024, 13, 1435. [Google Scholar] [CrossRef]
- Witkowska, Z.; Saeid, A.; Chojnacka, K.; Dobrzanski, Z.; Gorecki, H.; Michalak, I.; Korczynski, M.; Opalinski, S. New Biological Dietary Feed Supplement for Laying Hens with Microelements Based on Duckweed (Lemna minor). Am. J. Agric. Biol. Sci. 2013, 7, 482–493. [Google Scholar] [CrossRef]
- Thongthung, H.; Chungopast, S.; Petchpoung, K.; Kaewtapee, C. Chemical Composition and In Vitro Protein Digestibility of Duckweed and Feed Ingredients. Trends Sci. 2024, 21, 8324. [Google Scholar] [CrossRef]
- Miltko, R.; Majewska, M.; Wotjak, W.; Bialek, M. Comparing the Chemical Composition of Lesser Duckweed (Lemna minor L.) Grown in Natural and Laboratory Settings. J. Anim. Feed Sci. 2024, 33, 357–367. [Google Scholar] [CrossRef]
- Basnet, R.; Du, A.; Tan, L.; Guo, L. Duckweed (Lemna minor D0158): A Promising Protein Source for Food Security. Banko Janakari 2024, 34, 3–14. [Google Scholar] [CrossRef]
- Goswami, R.K.; Sharma, J.; Shrivastav, A.K.; Kumar, G.; Glencross, B.D.; Tocher, D.R.; Chakrabarti, R. Effect of Lemna Minor Supplemented Diets on Growth, Digestive Physiology and Expression of Fatty Acids Biosynthesis Genes of Cyprinus Carpio. Sci. Rep. 2022, 12, 3711. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, L.A.; Ha, N.; de Oliveira, N.S.; Fabregat, T.E.H.P. Does Ingestion of Duckweed (Lemna minor) Improve the Growth and Productive Performance of Juvenile Nile Tilapia (Oreochromis niloticus) given Formulated Feeds in a Recirculation System? Aquac. Int. 2021, 29, 2197–2205. [Google Scholar] [CrossRef]
- Irabor, A.E.; Obakanurhie, O.; Nwachi, F.O.; Ekokotu, P.A.; Ekelemu, J.K.; Awhefeada, O.K.; Adeleke, L.M.; Pierre Jrn, H.; Adagha, O. Duckweed (Lemna minor) Meal as Partial Replacement for Fish Meal in Catfish (Clarias gariepinus) Juvenile Diets. Livest. Res. Rural. Dev. 2022, 34. Available online: http://www.lrrd.org/lrrd34/1/3406irabo.html (accessed on 23 January 2025).
- Goyal, S.; Ott, D.; Liebscher, J.; Höfling, D.; Müller, A.; Dautz, J.; Gutzeit, H.O.; Schmidt, D.; Reuss, R. Sustainability Analysis of Fish Feed Derived from Aquatic Plant and Insect. Sustainability 2021, 13, 7371. [Google Scholar] [CrossRef]
- Hang, D.T. Effect of Offering Fresh Duckweed (Lemna minor) to Chickens Fed Restricted Levels of Maize Meal and Protein Concentrate in Confinement. Livest. Res. Rural. Dev. 2013, 25, 101. [Google Scholar]
- Ghosh, M.; Sharma, N.; Gera, M.; Kim, N.; Huynh, D.; Zhang, J.; Min, T.; Sodhi, S.S.; Kim, M.B.; Rekha, V.P.B.; et al. Insights into Phytase-Containing Transgenic Lemna minor (L.) as a Novel Feed Additive. Transgenic. Res. 2018, 27, 211–224. [Google Scholar] [CrossRef]
- Sońta, M.; Rekiel, A.; Batorska, M. Use of Duckweed (Lemna L.) in Sustainable Livestock Production and Aquaculture—A Review. Ann. Anim. Sci. 2019, 19, 257–271. [Google Scholar] [CrossRef]
- Rojas, O.J.; Liu, Y.; Stein, H.H. Concentration of Metabolizable Energy and Digestibility of Energy, Phosphorus, and Amino Acids in Lemna Protein Concentrate Fed to Growing Pigs. J. Anim. Sci. 2014, 92, 5222–5229. [Google Scholar] [CrossRef]
- Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of Water Lentil Protein Concentrate from a Mixture of Lemna Gibba and Lemna Minor as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2023, 21, e07903. [Google Scholar] [CrossRef]
- Kozlov, O.N.; Mitiouchkina, T.Y.; Tarasenko, I.V.; Shaloiko, L.A.; Firsov, A.P.; Dolgov, S.V. Agrobacterium-Mediated Transformation of Lemna minor L. with Hirudin and β-Glucuronidase Genes. Appl. Biochem. Microbiol. 2019, 55, 805–815. [Google Scholar] [CrossRef]
- Tan, X.; Chen, S.; Fang, Y.; Liu, P.; Hu, Z.; Jin, Y.; Yi, Z.; He, K.; Li, X.; Zhao, L.; et al. Rapid and Highly Efficient Genetic Transformation and Application of Interleukin-17B Expressed in Duckweed as Mucosal Vaccine Adjuvant. Biomolecules 2022, 12, 1881. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, M.; Huynh, L.; Singh, S.; Sharma, N. Impact of a Novel Phytase Derived from Aspergillus Nidulans and Expressed in Transgenic Lemna Minor on the Performance, Mineralization in Bone and Phosphorous Excretion in Laying Hens. Pak. Vet. J. 2015, 35, 360–364. [Google Scholar]
- Camargo-Castellanos, J.C.; Flores-García, L.; Herrera-Díaz, I.E.; Álvarez-González, C.A.; Albertos-Alpuche, P.J.; Martínez-Yáñez, R. System Management of Lemna minor in Aquaponics. Aquac. Res. 2022, 53, 974–988. [Google Scholar] [CrossRef]
- Heitzman, B.S.; Bueno, G.W.; Camargo, T.R.; Proença, D.C.; Yaekashi, C.T.O.; da Silva, R.M.G.; Machado, L.P. Duckweed Application in Nature-Based System for Water Phytoremediation and High-Value Coproducts at Family Agrisystem from a Circular Economy Perspective. Sci. Total Environ. 2024, 919, 170714. [Google Scholar] [CrossRef]
- Irhayyim, T.; Beliczky, G.; Bercsényi, M. Nutrient Bioremediation Efficiency of Bacterial Biofilms and Plant Based Biofilters in a Recirculating Common Carp (Cyprinus carpio L.) Culture System. Iran. J. Fish Sci. 2021, 20, 828–845. [Google Scholar]
- Velichkova, K.N.; Sirakov, I.N. The Usage of Aquatic Floating Macrophytes (Lemna and Wolffia) as Biofilter in Recirculation Aquaculture System (RAS). Turk. J. Fish Aquat. Sci. 2013, 13, 101–110. [Google Scholar] [CrossRef]
- Shinde, S.V.; Sukhdhane, K.S.; Krishnani, K.K.; Rani, B.A.M.; Pathak, M.S.; Chanu, T.I.; Munilkumar, S. Inclusion of Organic and Inorganic Extractive Species Improves Growth, Survival and Physiological Responses of GIFT Fish Reared in Freshwater Integrated Multi-Trophic Aquaculture System. Aquaculture 2024, 580, 740346. [Google Scholar] [CrossRef]
- Murrieta-Morey, G.A.; Satalaya-Arellano, H.; Ramírez-Chirinoz, C.S.; Rodríguez-Chu, L.A. Mortality of Black-Band Myleus Myloplus Schomburgkii Due to Poor Water Quality Associated with Overpopulation of Duckweeds in a Culture Pond in the Peruvian Amazonia. Folia Amaz. 2021, 30, 107–112. [Google Scholar] [CrossRef]
Country | Crude Protein (%) | Crude Fiber (%) | Ether Extract (%) | Ash | NFE 1 | Ca (mg/kg) | P (mg/kg) | Mg (mg/kg) | Ref |
---|---|---|---|---|---|---|---|---|---|
Indonesia | 23.24 | 11.53 | 3.43 | 13.23 | - | 1.3 | 1.3 | - | [37] |
India | 36.07 | - | 8.45 | 21.41 | - | - | - | - | [2] |
Indonesia | 23.47 | 29.92 | 3.99 | 23.60 | 19.02 | - | - | - | [38] |
Indonesia | 29.86 | 13.22 | 3.80 | 14.00 | 41.24 | - | - | - | [39] |
India | 36.47 | - | 7.39 | 21.72 | - | - | - | - | [40] |
India | 20.33 | 18.06 | 3.10 | 30.35 | - | 2.80 | 1.10 | - | [14] |
Pakistan | 32.66 | - | 7.33 | - | 0.015 | - | 0.034 | [30] | |
Italy 1 | 25.38 | 10.80 | 2.79 | 8.26 | - | - | - | - | [41] |
Italy | 28.13 | 15.20 | 5.10 | 16.40 | - | - | - | - | [3] |
Nigeria | 41.08 | 1.25 | 2.18 | 8.63 | - | - | - | - | [42] |
Nigeria | 29.96 | 27.10 | 2.83 | 14.63 | - | 0.12 | 0.68 | - | [43] |
Saint Lucia | 41.10 | 29.20 | 1.15 | 8.64 | - | - | - | - | [42] |
Pakistan | 30.30 | - | 7.34 | - | - | 0.032 | - | 0.29 | [8] |
Iran | 22.55 | 8.31 | 2.85 | 19.58 | 46.76 | 1.42 | 0.55 | 0.48 | [12] |
China | 17.5 | 29.7 | 3.4 | 16.6 | - | - | - | - | [44] |
Bangladesh | 28.90 | - | - | - | - | 0.029 | - | 0.029 | [36] |
Kenia | 35.34 | 5.35 | 8.36 | 13.67 | - | - | - | - | [45] |
Cu | I | Mn | Z | Fe | Mo | Co | F | Cr |
---|---|---|---|---|---|---|---|---|
<2.5–5.82 | 0.4–53 | 230–333 | 20–106 | 53–543 | <0.5 | 1.68 | 543 | 1–26.5 |
Amino Acids | Miltko et al. [50] | Basnet et al. [51] | Jaimes et al. [46] | Chakrabarti et al. [2] |
---|---|---|---|---|
histidine | 1.18 | 2.06 | 1.50 | 0.89 |
serine | 3.84 | 4.76 | 4.10 | 2.35 |
arginine | 3.94 | 8.14 | 4.80 | 3.06 |
glycine | 3.90 | 5.46 | 4.60 | 2.86 |
aspartic acid | 7.90 | 18.97 | 8.20 | 3.71 |
glutamic acid | 9.41 | 11.08 | 9.80 | 6.43 |
threonine | 3.42 | 4.46 | 4.00 | 1.92 |
alanine | 4.88 | 5.34 | 5.10 | 2.88 |
proline | 3.47 | 4.06 | 3.80 | 1.25 |
lysine | 3.99 | 5.90 | 5.00 | 2.68 |
tyrosine | 2.09 | - | 3.10 | 1.91 |
valine | 4.40 | 5.46 | 4.60 | 2.66 |
isoleucine | 3.33 | 4.29 | 3.70 | 2.04 |
leucine | 5.78 | 8.42 | 7.30 | 4.13 |
phenylalanine | 3.34 | - | 4.40 | 2.57 |
cysteine | 1.12 | - | 0.90 | 0.38 |
methionine | 1.37 | - | 1.60 | 0.86 |
tryptophan | 1.35 | - | - | 0.37 |
Country | Type of Poultry | Level of Inclusion of L. minor in the Diet | Feed Strategy | Results | Recommended Level of Inclusion in the Diet | Ref. |
---|---|---|---|---|---|---|
Iran | Laying hens | 7.5% and 15% | Substitution of wheat gluten and soybean meal by dry L. minor | Improvement in the color of egg yolk and a hematoprotective effect (p < 0.05) in hens. | 15% | [12] |
India | Broiler chicken | 5 and 10% with and without enzyme | Inclusion of L. minor (flour) plus enzyme | A final weight in chicken similar to the control group (p > 0.05) | 5% plus enzyme | [14] |
Indonesia | Native hens | 10%, 20% and 30% | Conventional diets including L. minor were prepared | No differences (p > 0.05) with the control group in weight gain nor feed conversion. | 20% | [37] |
Vietnam | Broiler chicken | Ad libitum | Fresh L. minor offered ad libitum restricting de base diet of corn and soybean | Fresh L. minor showed no advantage (p > 0.05) when conventional feed was restricted. | - | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bethancourt-Dalmasí, H.; Viuda-Martos, M.; Lucas-González, R.; Borrás, F.; Fernández-López, J. Exploring the Applications of Lemna minor in Animal Feed: A Review Assisted by Artificial Intelligence. Appl. Sci. 2025, 15, 6732. https://doi.org/10.3390/app15126732
Bethancourt-Dalmasí H, Viuda-Martos M, Lucas-González R, Borrás F, Fernández-López J. Exploring the Applications of Lemna minor in Animal Feed: A Review Assisted by Artificial Intelligence. Applied Sciences. 2025; 15(12):6732. https://doi.org/10.3390/app15126732
Chicago/Turabian StyleBethancourt-Dalmasí, Helmut, Manuel Viuda-Martos, Raquel Lucas-González, Fernando Borrás, and Juana Fernández-López. 2025. "Exploring the Applications of Lemna minor in Animal Feed: A Review Assisted by Artificial Intelligence" Applied Sciences 15, no. 12: 6732. https://doi.org/10.3390/app15126732
APA StyleBethancourt-Dalmasí, H., Viuda-Martos, M., Lucas-González, R., Borrás, F., & Fernández-López, J. (2025). Exploring the Applications of Lemna minor in Animal Feed: A Review Assisted by Artificial Intelligence. Applied Sciences, 15(12), 6732. https://doi.org/10.3390/app15126732