Machine Learning Prediction of Airfoil Aerodynamic Performance Using Neural Network Ensembles
Abstract
Featured Application
Abstract
1. Introduction
2. Methodology
2.1. General Structure
- Geometric branch: A CNN for geometry ().
- Scalar Input Branch: A DNN for scalar inputs ().
- Engineered Feature Branch: A second DNN for engineered features ().
- The CL Output Head, which includes CL Dense #1 and CL Dense #2, is responsible for computing the lift coefficient.
- The CD Output Head, which follows a parallel architecture with CD Dense #1 and CD Dense #2, predicts the drag coefficient :
2.2. General Architecture of a Model
- A total of 45,500 feedforward passes and 45,500 backpropagation steps for a single seed configuration.
- A total of 136,500 feedforward passes and 136,500 backpropagation steps for a model ensemble of three different seeds.
2.3. Seed Randomness
- Weights and bias initialization: Each layer weight tensor W is initialized using a pseudorandom number generator that is seeded with s.
- Data shuffling and splitting into train/test: The seed determines the permutation , used to shuffle and split the dataset into training and validation sets.
- Mini-batch shuffling: The order of mini-batch construction per epoch depends on s.
2.3.1. Seed Influence on Weights and Biases
2.3.2. Seed Influence on Data Shuffling
2.3.3. Seed Influence on Mini-Batch Shuffling
2.4. Model Configuration
- Group A: {42, 43, 44, 45, 46}, single seeds chosen to show performance consistency, linearity, and stability across nearby seeds.
- Group B: {0, 1, 123, 777, 999}, single seeds intentionally diverse so as to stress-test sensitivity and non-linearity under different initialization states.
- Group C: {(17, 89, 257), (610, 987, 75025), (, , )}, and the best/worst performing sets computed from Groups A and B—ensemble models constructed on three seeds—are chosen to evaluate the performance and stability of ensemble methods under significant seed variation.
3. Results
3.1. Group A—Consecutive Single Seeds
- -
- Lift coefficients are predicted to be relatively stable across seeds, with MAPE values ranging from 1.27% to 1.86% (band of ).
- -
- Drag coefficients fluctuate and are sensitive to the selected seeds, with MAPE values ranging from 0.84% to 2.02%
3.2. Group B—Diverse Single Seeds
3.3. Group C—Ensemble Models
- Ensemble C1 was composed of seeds (17, 89, 257), selected as prime numbers, under the hypothesis that their inherent numerical irregularity may induce diverse initialization.
- Ensemble C2 includes seeds (610, 987, 75025), which represent Fibonacci numbers—specifically, positions 5, 15, and 25 in the Fibonacci sequence. These seeds were selected to investigate whether growth-based sequence influences model convergence in an ensemble.
- Ensemble C3, defined as (, , ), is formed by powers of two up to the 32-bit unsigned integer limit. This group was constructed to test edge behavior within the seed space and examine potential instabilities.
- Ensemble C4 is defined as the ensemble constructed from the best-performing seeds identified in Groups A and B: (0, 123, 999).
- Ensemble C5 is formed from the worst-performing seeds, (43, 45, 777), in contrast with C4.
- Seed with a 712.02 s (11.87 min) run-time compiles a MAPE of 2.78% and a MAPE of 1.60%, confirming it as a black swan seed.
- Seed with a 506.60 s (8.44 min) run-time compiles a MAPE of 1.24% and a MAPE of 1.00%, placing this seed within expected error margins.
- Seed with a 433.43 s (7.22 min) run-time compiles a MAPE of 2.78%% and a MAPE of 1.60%, and is black swan seed with a similar convergence path as seed .
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
1D | One-Dimensional |
ADAM | Adaptive Moment Estimation |
AI | Artificial Intelligence |
AoA | Angle of Attack |
CFD | Computational Fluid Dynamics |
CNN | Convolutional Neural Network |
DNN | Deep Neural Network |
GNN | Graph Neural Network |
N | Mean Absolute Percentage Error |
ML | Machine Learning |
MLP | Multilayer Perceptron |
NACA | National Advisory Committee for Aeronautics |
NASA | National Aeronautics and Space Administration |
PRNG | Pseudo-Random Number Generator |
Coefficient of Determination | |
Re | Reynolds Number |
ReLU | Rectified Linear Unit |
TE | Trailing Edge |
UAV | Unmanned Aerial Vehicle |
Appendix A
Appendix A.1. NACA Four-Digit Generation
Appendix A.2. XFOIL Command Sequence
- LOAD <filename>
- PPAR → N → <number of panel nodes>
- OPER
- VISC <Reynolds number>
- ITER <maximum number of iterations per AoA>
- VPAR → N <number of Newton iterations for tuning>
- PACC → <save files>
- ASEQ <minimum AoA, maximum AoA, increment>
Appendix A.3. Computational Resources
- Hardware configuration: Processor—Intel64 Family 6 Model 170 Stepping 4 (Genuine Intel; Intel Corporation, Santa Clara, CA, USA), Machine Type—AMD64 Architecture, CPU Cores—22 (AMD, Santa Clara, CA, USA).
- Software configuration: Operating System—Microsoft Windows 11, Python 3.11.9, TensorFlow Library 2.17.0.
References
- Galeazzo, F.C.C.; Garcia-Gasulla, M.; Boella, E.; Pocurull, J.; Lesnik, S.; Rusche, H.; Bnà, S.; Cerminara, M.; Brogi, F.; Marchetti, F.; et al. Performance Comparison of CFD Microbenchmarks on Diverse HPC Architectures. Computers 2024, 13, 115. [Google Scholar] [CrossRef]
- Cooper-Baldock, Z.; Vara Almirall, B.; Inthavong, K. Speed, Power and Cost Implications for GPU Acceleration of Computational Fluid Dynamics on HPC Systems. arXiv 2024. [Google Scholar] [CrossRef]
- Günel, M.; Koç, Z.; Yavuz, M. Comparison of CFD and XFOIL Airfoil Analyses for Low Reynolds Number. In Proceedings of the 3rd International Symposium on Innovative Technologies in Engineering and Science (ISITES2016), Pecs, Hungary, 1–3 September 2016; pp. 857–867. [Google Scholar]
- Le Clainche, S.; Ferrer, E.; Gibson, S.; Cross, E.; Parente, A.; Vinuesa, R. Improving aircraft performance using machine learning: A review. Aerosp. Sci. Technol. 2023, 138, 108354. [Google Scholar]
- Zehtabiyan-Rezaie, N.; Iosifidis, A.; Abkar, M. Data-driven fluid mechanics of wind farms: A review. J. Renew. Sustain. Energy 2022, 14, 032703. [Google Scholar]
- Kurunathan, H.; Huang, H.; Li, K.; Ni, W.; Hossain, E. Machine learning-aided operations and communications of unmanned aerial vehicles: A contemporary survey. IEEE Commun. Surv. Tutor. 2023, 26, 496–533. [Google Scholar]
- Haque, A.; Chowdhury, M.N.U.R.; Hassanalian, M. A Review of Classification and Application of Machine Learning in Drone Technology. AI Comput. Sci. Robot. Technol. 2025, 4, 1–32. [Google Scholar] [CrossRef]
- Malecha, Z.; Sobczwyk, A. Using Artificial Intelligence to Predict the Aerodynamic Properties of Wind Turbine Profiles. Computers 2024, 13, 167. [Google Scholar] [CrossRef]
- Bakar, A.; Li, K.; Liu, H.; Xu, Z.; Alessandrini, M.; Wen, D. Multi-Objective Optimization of Low Reynolds Number Airfoil Using Convolutional Neural Network and Non-Dominated Sorting Genetic Algorithm. Aerospace 2022, 9, 35. [Google Scholar] [CrossRef]
- Zuo, K.; Bu, S.; Zhang, W.; Hu, J.; Ye, Z.; Yuan, X. Fast sparse flow field prediction around airfoils via multi-head perceptron based deep learning architecture. Aerosp. Sci. Technol. 2022, 130, 107942. [Google Scholar] [CrossRef]
- Nelson, A.D.; Godfrey, A. Predicting Two-Dimensional Airfoil Performance Using Graph Neural Networks 2023 (NASA Technical Report No. NASA/TM–20220006290). NASA. Available online: https://ntrs.nasa.gov/api/citations/20220006290/downloads/TM-20220006290.pdf (accessed on 20 June 2025).
- Negoita, M.-F.; Hothazaie, M.-V. A Machine Learning-Based Approach for Predicting Aerodynamic Coefficients Using Deep Neural Networks and CFD Data. INCAS 2024, 16, 91–104. [Google Scholar] [CrossRef]
- Ahmed, S.; Kamal, K.; Ratlamwala, T.A.H.; Mathavan, S.; Hussain, G.; Alkahtani, M.; Alsultan, M.B.M. Aerodynamic Analyses of Airfoils Using Machine Learning as an Alternative to RANS Simulation. Appl. Sci. 2022, 12, 5194. [Google Scholar] [CrossRef]
- Du, B.; Shen, E.; Wu, J.; Guo, T.; Lu, Z.; Zhou, D. Aerodynamic Prediction and Design Optimization Using Multi-Fidelity Deep Neural Network. Aerospace 2025, 12, 292. [Google Scholar] [CrossRef]
- Murata, T.; Fukami, K.; Fukagata, K. Nonlinear mode decomposition with convolutional neural networks for fluid dynamics. J. Fluid Mech. 2020, 882, A13. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Xiao, H.; Luo, X.; He, G. Ensemble Kalman method for learning turbulence models from indirect observation data. J. Fluid Mech. 2022, 949, A26. [Google Scholar] [CrossRef]
- Zhou, H.; Savova, G.; Wang, L. Assessing the Macro and Micro Effects of Random Seeds on Fine-Tuning Large Language Models. arXiv 2025. [Google Scholar] [CrossRef]
- Dutta, S.; Arunachalam, A.; Misailovic, S. To Seed or Not to Seed? An Empirical Analysis of Usage of Seeds for Testing in Machine Learning Projects. University of Illinois at Urbana-Champaign. In Proceedings of the 2022 IEEE Conference on Software Testing, Verification and Validation (ICST), Valencia, Spain, 4–14 April 2022. [Google Scholar]
- Picard, D. torch.manual_seed (3407) Is All You Need: On the Influence of Random Seeds in Deep Learning Architectures for Computer Vision. arXiv 2023. [Google Scholar] [CrossRef]
- Andrés-Pérez, E.; Paulete-Periáñez, C. On the application of surrogate regression models for aerodynamic coefficient prediction. Complex Intell. Syst. 2021, 7, 1991–2021. [Google Scholar] [CrossRef]
- da Silva, A.F.C.; Colonius, T. Ensemble-based State Estimator for Aerodynamic Flows. AIAA J. 2018, 56, 2568–2578. [Google Scholar] [CrossRef]
- Kumar, A.; Ghosh, A.K. Ensemble Machine Learning Methods for Unsteady Aerodynamics Modeling from Flight Data. In Proceedings of the 2024 10th International Conference on Control, Automation and Robotics (ICCAR), Orchard District, Singapore, 27–29 April 2024; pp. 219–225. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, M.; Chen, H.; Li, Y. A stacking-based ensemble prediction method for multiobjective aerodynamic optimization of high-speed train nose shape. Adv. Eng. Softw. 2024, 228, 105580. [Google Scholar] [CrossRef]
- Li, J.; Du, X.; Martins, J.R.R.A. Machine learning in aerodynamic shape optimization. Prog. Aerosp. Sci. 2022, 134, 100849. [Google Scholar] [CrossRef]
- Saetta, E.; Tognaccini, R.; Iaccarino, G. Machine Learning to Predict Aerodynamic Stall. Int. J. Comput. Fluid Dyn. 2022, 36, 641–654. [Google Scholar] [CrossRef]
- Sabater, C.; Sturmer, P.; Bekemeyer, P. Fast Predictions of Aircraft Aerodynamics Using Deep-Learning Techniques. AIAA 2022, 60, 5249–5261. [Google Scholar] [CrossRef]
- Zhang, Z.-Q.; Li, P.-J.; Li, Q.-L.; Dong, X.; Lu, X.-G.; Zhang, Y.-F. Dynamic Machine Learning Global Optimization Algorithm and Its Application to Aerodynamics. AIAA 2023, 39, 524–539. [Google Scholar] [CrossRef]
- Petrov, D.; Golev, A.; Moskovtsev, A. The Application of Ensemble Machine Learning Methods for Construction of Surrogate Models in Problems of Preliminary Design of an Aircraft Wing Airfoil. In Proceedings of the 2024 17th International Conference on Management of Large-Scale System Development (MLSD), Moscow, Russia, 24–26 September 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Glorot, X.; Bengio, Y. Understanding the Difficulty of Training Deep Feedforward Neural Networks. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS), Sardinia, Italy, 13–15 May 2010; Volume 9, pp. 249–256. [Google Scholar]
- Cornelius, J.K.; Peters, N.; Ågren, T.; Nieves Lugo, D. PALMO: An OVERFLOW Machine Learning Airfoil Performance Database. In Proceedings of the AIAA SCITECH 2025 Forum, Orlando, FL, USA, 6–10 January 2025. [Google Scholar]
- Bonnet, F.; Mazari, J.A.; Cinnella, P.; Gallinari, P. AirfRANS: High Fidelity Computational Fluid Dynamics Dataset for Approximating Reynolds-Averaged Navier–Stokes Solutions. NeurIPS Track Datasets Benchmarks 2025, 35, 23463–23478. [Google Scholar]
Layer | Weights Shape | Bias Shape | Values Used |
---|---|---|---|
Conv 1D #1 | (3, 2, 32) Kernel width (3), input channels (2 x-y), output filters (32) | (32) One bias per output filter | 224 |
Conv 1D #2 | (3, 32, 32) Kernel width (3), input channels (32 from previous layer), output filters (32) | (32) One bias per output filter | 3104 |
Dense | (4192, 64) Flattened CNN features (131, 32) mapped to 64 neurons | (64) One bias per neuron | 268,352 |
Dense Scalar | (2, 16) AoA and Re mapped to 16 neurons | (16) One bias per neuron | 48 |
Dense Engineered | (2, 16) and camber mapped to 16 neurons | (16) One bias per neuron | 48 |
Fusion Dense | (96, 64) Concatenation of 64 CNN, 16 scalar, and 16 engineered mapped to 64 neurons | (64) One bias per neuron | 6208 |
CL Dense #1 | (64, 32) Learning intermediate non-linear representation | (32) One bias per neuron | 2080 |
CL Dense #2 | (32, 1) Producing a scalar, | (1) Single bias for output | 33 |
CD Dense #1 | (64, 32) Learning intermediate non-linear representation | (32) One bias per neuron | 2080 |
CD Dense #2 | (32, 1) Producing a scalar, | (1) Single bias for output | 33 |
Airfoil Set | NACA Codes | Number of Airfoils |
---|---|---|
Testing mixed dataset | 0314, 0415, 0412, 0612, 1313, 1512, 1615, 2315, 2412, 2613, 3512, 3613, 3412, 4314, 4512, 4615, 5312, 5412, 5615, 5615, 6614, 6415 | 21 |
Training with 0% max camber | 0312, 0313, 0315, 0413, 0414, 0512, 0513, 0514, 0515, 0613, 0614, 0615 | 12 |
Training with 1% max camber | 1312, 1314, 1315, 1412, 1413, 1414, 1415, 1513, 1514, 1515, 1612, 1613, 1614 | 13 |
Training with 2% max camber | 2312, 2313, 2314, 2413, 2414, 2415, 2512, 2513, 2514, 2515, 2612, 2614, 2615 | 13 |
Training with 3% max camber | 3312, 3313, 3314, 3315, 3413, 3414, 3415, 3513, 3514, 3515, 3612, 3614, 3615 | 13 |
Training with 4% max camber | 4312, 4313, 4315, 4412, 4413, 4414, 4415, 4513, 4514, 4515, 4612, 4613, 4614 | 13 |
Training with 5% max camber | 5313, 5314, 5315, 5413, 5414, 5415, 5512, 5513, 5514, 5515, 5612, 5613, 5614 | 13 |
Training with 6% max camber | 6312, 6313, 6314, 6315, 6412, 6413, 6414, 6512, 6513, 6514, 6515, 6612, 6613, 6615 | 14 |
Single Seeds | Training Time | ||||
---|---|---|---|---|---|
42 | 528.52 s (8.81 min) | 1.33% | 1.07% | 0.9998 | 0.9933 |
43 | 503.31 s (8.39 min) | 1.41% | 2.02% | 0.9996 | 0.98 |
44 | 492.29 s (8.20 min) | 1.67% | 0.84% | 0.9998 | 0.9909 |
45 | 471.30 s (7.86 min) | 1.86% | 1.92% | 0.9998 | 0.9784 |
46 | 920.17 s (15.34 min) | 1.27% | 1.19% | 0.9998 | 0.99 |
Nr.crt. | Airfoil | Seed | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | NACA 0314 | 42 | 0.86 | 0.69 | 8 | NACA 2315 | 42 | 1.67 | 0.92 | 15 | NACA 4512 | 42 | 0.92 | 1.04 |
43 | 0.82 | 0.98 | 43 | 1.90 | 1.57 | 43 | 1.49 | 2.74 | ||||||
44 | 1.33 | 0.82 | 44 | 0.84 | 0.80 | 44 | 2.82 | 0.64 | ||||||
45 | 1.17 | 2.14 | 45 | 1.81 | 1.33 | 45 | 1.56 | 1.54 | ||||||
46 | 1.64 | 1.18 | 46 | 1.03 | 1.26 | 46 | 1.61 | 1.16 | ||||||
2 | NACA 0412 | 42 | 1.18 | 0.88 | 9 | NACA 2412 | 42 | 1.17 | 1.01 | 16 | NACA 4615 | 42 | 1.47 | 0.80 |
43 | 0.77 | 1.10 | 43 | 1.25 | 1.91 | 43 | 1.06 | 3.53 | ||||||
44 | 1.19 | 0.53 | 44 | 2.54 | 0.91 | 44 | 1.46 | 0.59 | ||||||
45 | 1.30 | 2.59 | 45 | 2.21 | 2.03 | 45 | 1.64 | 1.67 | ||||||
46 | 1.51 | 0.99 | 46 | 1.31 | 1.23 | 46 | 0.90 | 1.14 | ||||||
3 | NACA 0415 | 42 | 0.98 | 0.79 | 10 | NACA 2613 | 42 | 2.13 | 1.12 | 17 | NACA 5312 | 42 | 2.62 | 2.06 |
43 | 0.86 | 0.82 | 43 | 1.45 | 1.65 | 43 | 1.50 | 2.54 | ||||||
44 | 1.38 | 1.11 | 44 | 1.55 | 0.83 | 44 | 3.67 | 1.14 | ||||||
45 | 1.28 | 1.77 | 45 | 3.13 | 2.43 | 45 | 0.83 | 1.71 | ||||||
46 | 1.58 | 1.34 | 46 | 1.31 | 1.42 | 46 | 1.21 | 1.45 | ||||||
4 | NACA 0612 | 42 | 1.18 | 0.88 | 11 | NACA 3412 | 42 | 1.05 | 1.09 | 18 | NACA 5412 | 42 | 1.54 | 1.38 |
43 | 0.77 | 1.10 | 43 | 1.57 | 2.28 | 43 | 1.49 | 2.12 | ||||||
44 | 1.19 | 0.53 | 44 | 2.58 | 0.92 | 44 | 2.26 | 1.17 | ||||||
45 | 1.30 | 2.59 | 45 | 1.08 | 1.59 | 45 | 0.98 | 1.55 | ||||||
46 | 1.51 | 0.99 | 46 | 0.84 | 1.13 | 46 | 0.82 | 0.99 | ||||||
5 | NACA 1313 | 42 | 1.01 | 0.82 | 12 | NACA 3512 | 42 | 1.01 | 1.03 | 19 | NACA 5615 | 42 | 0.97 | 1.14 |
43 | 1.25 | 1.41 | 43 | 1.39 | 2.30 | 43 | 0.98 | 3.61 | ||||||
44 | 0.68 | 0.62 | 44 | 2.21 | 0.93 | 44 | 1.31 | 0.61 | ||||||
45 | 2.27 | 1.93 | 45 | 1.90 | 1.87 | 45 | 1.14 | 1.85 | ||||||
46 | 1.32 | 1.13 | 46 | 0.92 | 1.29 | 46 | 0.92 | 1.18 | ||||||
6 | NACA 1512 | 42 | 1.19 | 1.03 | 13 | NACA 3613 | 42 | 2.37 | 1.14 | 20 | NACA 6415 | 42 | 1.01 | 1.31 |
43 | 0.90 | 1.53 | 43 | 1.04 | 2.33 | 43 | 1.71 | 1.89 | ||||||
44 | 1.04 | 0.61 | 44 | 1.91 | 0.72 | 44 | 0.75 | 1.58 | ||||||
45 | 3.03 | 2.25 | 45 | 2.84 | 2.22 | 45 | 0.81 | 2.08 | ||||||
46 | 1.70 | 1.28 | 46 | 0.77 | 1.30 | 46 | 0.76 | 1.22 | ||||||
7 | NACA 1615 | 42 | 1.81 | 0.90 | 14 | NACA 4314 | 42 | 1.07 | 1.21 | 21 | NACA 6614 | 42 | 0.66 | 1.17 |
43 | 2.53 | 1.39 | 43 | 3.34 | 1.82 | 43 | 1.43 | 3.80 | ||||||
44 | 1.28 | 0.76 | 44 | 1.93 | 1.08 | 44 | 1.02 | 0.73 | ||||||
45 | 5.09 | 1.69 | 45 | 2.78 | 1.25 | 45 | 0.85 | 2.17 | ||||||
46 | 2.81 | 1.01 | 46 | 1.59 | 1.31 | 46 | 0.52 | 0.83 |
Single Seeds | Training Time | ||||
---|---|---|---|---|---|
0 | 564.94 s (9.42 min) | 1.10% | 0.57% | 0.9998 | 0.9954 |
1 | 710.68 s (11.84 min) | 1.97% | 0.99% | 0.9998 | 0.9938 |
123 | 567.39 s (9.46 min) | 1.08% | 1.54% | 0.9999 | 0.9855 |
777 | 361.83 s (6.03 min) | 1.78% | 1.70% | 0.9998 | 0.9861 |
999 | 681.81 s (11.36 min) | 1.65% | 0.58% | 0.9998 | 0.9974 |
Nr.crt. | Airfoil | Seed | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | NACA 0314 | 0 | 0.58 | 0.48 | 8 | NACA 2315 | 0 | 1.23 | 0.29 | 15 | NACA 4512 | 0 | 0.99 | 0.53 |
1 | 1.62 | 0.53 | 1 | 1.73 | 0.64 | 1 | 1.97 | 0.67 | ||||||
123 | 1.09 | 0.49 | 123 | 0.96 | 1.26 | 123 | 1.00 | 2.15 | ||||||
777 | 1.28 | 1.03 | 777 | 1.65 | 1.57 | 777 | 1.22 | 1.88 | ||||||
999 | 1.57 | 0.42 | 999 | 1.54 | 0.31 | 999 | 1.57 | 0.70 | ||||||
2 | NACA 0412 | 0 | 0.65 | 0.39 | 9 | NACA 2412 | 0 | 0.83 | 0.54 | 16 | NACA 4615 | 0 | 1.22 | 0.86 |
1 | 1.97 | 0.84 | 1 | 2.94 | 1.16 | 1 | 0.80 | 1.32 | ||||||
123 | 1.04 | 1.14 | 123 | 1.07 | 1.24 | 123 | 0.94 | 1.87 | ||||||
777 | 1.18 | 1.27 | 777 | 2.88 | 1.54 | 777 | 1.39 | 2.61 | ||||||
999 | 1.41 | 0.33 | 999 | 2.01 | 0.37 | 999 | 1.54 | 0.55 | ||||||
3 | NACA 0415 | 0 | 0.72 | 0.27 | 10 | NACA 2613 | 0 | 1.79 | 0.50 | 17 | NACA 5312 | 0 | 1.29 | 0.84 |
1 | 1.73 | 0.64 | 1 | 1.85 | 0.89 | 1 | 3.58 | 1.24 | ||||||
123 | 1.09 | 0.36 | 123 | 1.15 | 1.20 | 123 | 2.00 | 2.08 | ||||||
777 | 1.02 | 1.12 | 777 | 1.40 | 2.00 | 777 | 4.69 | 2.03 | ||||||
999 | 1.53 | 0.47 | 999 | 1.93 | 0.82 | 999 | 2.30 | 1.05 | ||||||
4 | NACA 0612 | 0 | 0.65 | 0.39 | 11 | NACA 3412 | 0 | 1.11 | 0.43 | 18 | NACA 5412 | 0 | 0.93 | 0.74 |
1 | 1.97 | 0.84 | 1 | 3.10 | 0.86 | 1 | 2.36 | 1.25 | ||||||
123 | 1.04 | 1.14 | 123 | 0.94 | 1.62 | 123 | 1.06 | 1.96 | ||||||
777 | 1.18 | 1.27 | 777 | 3.21 | 1.72 | 777 | 2.58 | 1.80 | ||||||
999 | 1.41 | 0.33 | 999 | 1.91 | 0.55 | 999 | 1.70 | 0.87 | ||||||
5 | NACA 1313 | 0 | 0.99 | 0.36 | 12 | NACA 3512 | 0 | 1.03 | 0.46 | 19 | NACA 5615 | 0 | 1.11 | 0.96 |
1 | 1.67 | 0.53 | 1 | 2.21 | 0.93 | 1 | 0.72 | 1.28 | ||||||
123 | 0.69 | 0.99 | 123 | 1.18 | 1.71 | 123 | 0.82 | 2.09 | ||||||
777 | 1.06 | 1.45 | 777 | 1.43 | 1.86 | 777 | 0.90 | 2.06 | ||||||
999 | 1.34 | 0.29 | 999 | 1.67 | 0.67 | 999 | 1.13 | 0.70 | ||||||
6 | NACA 1512 | 0 | 0.87 | 0.43 | 13 | NACA 3613 | 0 | 1.69 | 0.62 | 20 | NACA 6415 | 0 | 1.17 | 0.86 |
1 | 3.49 | 0.85 | 1 | 1.60 | 1.00 | 1 | 0.87 | 2.07 | ||||||
123 | 0.90 | 1.26 | 123 | 1.91 | 1.89 | 123 | 0.81 | 2.51 | ||||||
777 | 2.14 | 1.32 | 777 | 1.26 | 2.31 | 777 | 1.25 | 1.35 | ||||||
999 | 1.97 | 0.34 | 999 | 1.64 | 0.80 | 999 | 0.98 | 0.78 | ||||||
7 | NACA 1615 | 0 | 1.84 | 0.36 | 14 | NACA 4314 | 0 | 1.27 | 0.70 | 21 | NACA 6614 | 0 | 1.01 | 0.86 |
1 | 2.03 | 0.71 | 1 | 2.54 | 0.89 | 1 | 0.56 | 1.51 | ||||||
123 | 1.00 | 0.88 | 123 | 1.17 | 1.65 | 123 | 0.63 | 2.71 | ||||||
777 | 1.75 | 1.37 | 777 | 3.19 | 1.74 | 777 | 0.66 | 2.32 | ||||||
999 | 2.27 | 0.54 | 999 | 2.44 | 0.50 | 999 | 0.73 | 0.67 |
Ensembles | Training Time | ||||
---|---|---|---|---|---|
C1 = (17, 89, 257) | 366.41 s (6.11 min) | 1.78% | 2.62% | 0.9998 | 0.9887 |
C2 = (610, 987, 75025) | 811.98 s (13.53 min) | 1.43% | 1.19% | 0.9999 | 0.9968 |
C3 = | 440.43 s (7.34 min) | 2.72% | 1.08% | 0.9998 | 0.997 |
C4 = (0, 123, 999) | 934.12 s (15.57 min) | 1.82% | 1.46% | 0.9999 | 0.9936 |
C5 = (43, 45, 777) | 1386.45 s (23.11 min) | 1.55% | 2.01% | 0.9999 | 0.9893 |
Nr.crt. | Airfoil | Ensemble | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | NACA 0314 | C1 | 1.62 | 2.40 | 8 | NACA 2315 | C1 | 2.26 | 2.16 | 15 | NACA 4512 | C1 | 1.82 | 2.16 |
C2 | 1.77 | 1.12 | C2 | 2.65 | 0.95 | C2 | 0.88 | 0.98 | ||||||
C3 | 4.81 | 0.93 | C3 | 4.56 | 0.96 | C3 | 0.73 | 1.12 | ||||||
C4 | 2.97 | 0.81 | C4 | 4.23 | 1.19 | C4 | 0.73 | 1.34 | ||||||
C5 | 1.57 | 1.52 | C5 | 2.26 | 1.61 | C5 | 0.71 | 2.17 | ||||||
2 | NACA 0412 | C1 | 0.96 | 2.78 | 9 | NACA 2412 | C1 | 1.83 | 2.18 | 16 | NACA 4615 | C1 | 1.63 | 2.90 |
C2 | 0.85 | 1.61 | C2 | 1.63 | 1.24 | C2 | 2.32 | 1.06 | ||||||
C3 | 5.67 | 1.33 | C3 | 1.21 | 1.15 | C3 | 2.67 | 0.70 | ||||||
C4 | 2.42 | 1.17 | C4 | 1.52 | 1.27 | C4 | 2.06 | 1.72 | ||||||
C5 | 0.91 | 2.76 | C5 | 1.34 | 2.78 | C5 | 3.07 | 1.59 | ||||||
3 | NACA 0415 | C1 | 2.12 | 2.85 | 10 | NACA 2613 | C1 | 1.01 | 2.32 | 17 | NACA 5312 | C1 | 3.37 | 2.65 |
C2 | 1.47 | 1.31 | C2 | 1.98 | 1.24 | C2 | 0.68 | 1.09 | ||||||
C3 | 4.26 | 0.94 | C3 | 3.11 | 1.09 | C3 | 1.73 | 1.36 | ||||||
C4 | 2.72 | 1.19 | C4 | 1.84 | 1.02 | C4 | 1.00 | 2.14 | ||||||
C5 | 2.09 | 1.83 | C5 | 1.21 | 1.37 | C5 | 1.41 | 2.25 | ||||||
4 | NACA 0612 | C1 | 0.96 | 2.78 | 11 | NACA 3412 | C1 | 2.72 | 2.24 | 18 | NACA 5412 | C1 | 2.42 | 2.47 |
C2 | 0.85 | 1.61 | C2 | 0.99 | 1.07 | C2 | 0.46 | 0.87 | ||||||
C3 | 5.67 | 1.33 | C3 | 1.18 | 1.01 | C3 | 1.57 | 1.38 | ||||||
C4 | 2.42 | 1.17 | C4 | 1.25 | 1.18 | C4 | 0.86 | 2.25 | ||||||
C5 | 0.91 | 2.76 | C5 | 0.77 | 2.14 | C5 | 1.12 | 1.96 | ||||||
5 | NACA 1313 | C1 | 2.62 | 2.47 | 12 | NACA 3512 | C1 | 2.21 | 2.13 | 19 | NACA 5615 | C1 | 0.91 | 3.13 |
C2 | 3.36 | 0.94 | C2 | 0.90 | 1.18 | C2 | 1.04 | 1.36 | ||||||
C3 | 3.90 | 0.93 | C3 | 0.96 | 1.12 | C3 | 1.01 | 0.86 | ||||||
C4 | 3.08 | 0.88 | C4 | 0.69 | 1.16 | C4 | 1.00 | 1.85 | ||||||
C5 | 2.80 | 1.77 | C5 | 1.03 | 1.99 | C5 | 1.03 | 2.00 | ||||||
6 | NACA 1512 | C1 | 1.58 | 2.42 | 13 | NACA 3613 | C1 | 1.05 | 2.77 | 20 | NACA 6415 | C1 | 1.45 | 2.64 |
C2 | 1.64 | 1.35 | C2 | 2.45 | 1.19 | C2 | 0.71 | 1.12 | ||||||
C3 | 1.95 | 1.22 | C3 | 2.17 | 0.98 | C3 | 1.74 | 1.53 | ||||||
C4 | 1.83 | 1.18 | C4 | 2.10 | 1.27 | C4 | 1.27 | 3.40 | ||||||
C5 | 1.79 | 2.50 | C5 | 2.43 | 1.37 | C5 | 0.72 | 1.58 | ||||||
7 | NACA 1615 | C1 | 0.78 | 2.74 | 14 | NACA 4314 | C1 | 3.25 | 1.92 | 21 | NACA 6614 | C1 | 0.62 | 4.79 |
C2 | 1.19 | 1.36 | C2 | 1.69 | 1.24 | C2 | 0.51 | 1.06 | ||||||
C3 | 3.70 | 0.68 | C3 | 3.41 | 1.13 | C3 | 1.01 | 0.90 | ||||||
C4 | 2.32 | 0.91 | C4 | 1.35 | 1.84 | C4 | 0.53 | 1.63 | ||||||
C5 | 3.41 | 2.37 | C5 | 1.40 | 2.06 | C5 | 0.55 | 1.79 |
Category | Seed/Ensemble | Overall MAPE | |||||
---|---|---|---|---|---|---|---|
Best performing single seed | Seed 0 | 1.1% | 0.57% | 0.9998 | 0.9954 | 0.83% | 0.9976 |
Worst performing single seed | Seed 45 | 1.86% | 1.92% | 0.9998 | 0.9784 | 1.89% | 0.9891 |
Best performing ensemble | C2 (610, 987, 75025) | 1.43% | 1.19% | 0.9999 | 0.9968 | 1.31% | 0.9983 |
Worst performing ensemble | C1 (17, 89, 257) | 1.78% | 2.62% | 0.9998 | 0.9887 | 2.2% | 0.9942 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sterpu, D.-A.; Măriuța, D.; Cican, G.; Larco, C.-M.; Grigorie, L.-T. Machine Learning Prediction of Airfoil Aerodynamic Performance Using Neural Network Ensembles. Appl. Sci. 2025, 15, 7720. https://doi.org/10.3390/app15147720
Sterpu D-A, Măriuța D, Cican G, Larco C-M, Grigorie L-T. Machine Learning Prediction of Airfoil Aerodynamic Performance Using Neural Network Ensembles. Applied Sciences. 2025; 15(14):7720. https://doi.org/10.3390/app15147720
Chicago/Turabian StyleSterpu, Diana-Andreea, Daniel Măriuța, Grigore Cican, Ciprian-Marius Larco, and Lucian-Teodor Grigorie. 2025. "Machine Learning Prediction of Airfoil Aerodynamic Performance Using Neural Network Ensembles" Applied Sciences 15, no. 14: 7720. https://doi.org/10.3390/app15147720
APA StyleSterpu, D.-A., Măriuța, D., Cican, G., Larco, C.-M., & Grigorie, L.-T. (2025). Machine Learning Prediction of Airfoil Aerodynamic Performance Using Neural Network Ensembles. Applied Sciences, 15(14), 7720. https://doi.org/10.3390/app15147720