Shear Bond Strength and Finite Element Stress Analysis of Composite Repair Using Various Adhesive Strategies With and Without Silane Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Shear Bond Testing (SBT)
2.3. Finite Element Analysis
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
- The repair bond strength between aged and fresh composite resin was significantly influenced by the adhesive system used.
- Both silane-containing universal adhesives and separate silane pretreatment significantly improved repair bond strength, with no statistical difference between the two approaches.
- The incorporation of silane into the adhesive protocol significantly reduced interfacial stress concentrations, indicating improved mechanical stability at the repair interface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FEA | Finite Element Analysis |
SBS | Shear Bond Strength |
References
- Hickel, R.; Peschke, A.; Tyas, M.; Mjör, I.; Bayne, S.; Peters, M.; Hiller, K.A.; Randall, R.; Vanherle, G.; Heintze, S.D. FDI World Dental Federation: Clinical criteria for the evaluation of direct and indirect restorations-update and clinical examples. Clin. Oral Investig. 2010, 14, 349–366. [Google Scholar] [CrossRef] [PubMed]
- Altinci, P.; Mutluay, M.; Tezvergil-Mutluay, A. Repair bond strength of nanohybrid composite resins with a universal adhesive. Acta Biomater. Odontol. Scand. 2017, 4, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Kanzow, P.; Wiegand, A. Teaching composite restoration repair: Trends and quality of teaching over the past 20 years. J. Dent. 2020, 95, 103303. [Google Scholar] [CrossRef] [PubMed]
- Kiomarsi, N.; Saburian, P.; Chiniforush, N.; Karazifard, M.J.; Hashemikamangar, S.S. Effect of thermocycling and surface treatment on repair bond strength of composite. J. Clin. Exp. Dent. 2017, 9, e945. [Google Scholar] [CrossRef] [PubMed]
- Chuenweravanich, J.; Kuphasuk, W.; Saikaew, P.; Sattabanasuk, V. Bond durability of a repaired resin composite using universal adhesive and different surface treatments. J. Adhes. Dent. 2022, 24, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Michelotti, G.; Niedzwiecki, M.; Bidjan, D.; Dieckmann, P.; Deari, S.; Attin, T.; Tauböck, T.T. Silane effect of universal adhesive on the composite-composite repair bond strength after different surface pretreatments. Polymers 2020, 12, 950. [Google Scholar] [CrossRef] [PubMed]
- de Goes, M.F.; Shinohara, M.S.; Freitas, M.S. Performance of a new one-step multi-mode adhesive on etched vs non-etched enamel on bond strength and interfacial morphology. J. Adhes. Dent. 2014, 16, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Hanabusa, M.; Mine, A.; Kuboki, T.; Momoi, Y.; Van Ende, A.; Van Meerbeek, B.; De Munck, J. Bonding effectiveness of a new ‘multi-mode’ adhesive to enamel and dentine. J. Dent. 2012, 40, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.; Wendler, M.; Petschelt, A.; Belli, R.; Lohbauer, U. Bonding performance of universal adhesives in different etching modes. J. Dent. 2014, 42, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Carrilho, E.; Cardoso, M.; Marques Ferreira, M.; Marto, C.M.; Paula, A.; Coelho, A.S. 10-MDP based dental adhesives: Adhesive interface characterization and adhesive stability—A systematic review. Materials 2019, 12, 790. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Han, G.J.; Chang, J.; Son, H.H. Bonding of the silane containing multi-mode universal adhesive for lithium disilicate ceramics. Restor. Dent. Endod. 2017, 42, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Melo, L.A.; Moura, I.S.; Almeida, E.O.; Junior, A.C.F.; Dias, T.G.S.; Leite, F.P.P. Efficacy of prostheses bonding using silane incorporated to universal adhesives or applied separately: A systematic review. J. Indian Prosthodont. Soc. 2019, 19, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.M.; ElBanna, A.; Nassef, T.M.; Keilig, L.; Bourauel, C. Is simulation of glued contact sufficient to simulate nonlinear failure behaviour in dental shear bond strength tests? Int. Dent. J. 2025, 75, 1746–1758. [Google Scholar] [CrossRef] [PubMed]
- Campos, R.E.; Santos Filho, P.C.F.; de O Júnior, O.B.; Ambrosano, G.M.B.; Pereira, C.A. Comparative evaluation of 3 microbond strength tests using 4 adhesive systems: Mechanical, finite element, and failure analysis. J. Prosthet. Dent. 2018, 119, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh Kashi, T.S.; Erfan, M.; Rakhshan, V.; Aghabaigi, N.; Tabatabaei, F.S. An in vitro assessment of the effects of three surface treatments on repair bond strength of aged composites. Oper. Dent. 2011, 36, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Loomans, B.A.C.; Cardoso, M.V.; Opdam, N.J.M.; Roeters, F.J.M.; De Munck, J.; Huysmans, M.C.D.; Van Meerbeek, B. Surface roughness of etched composite resin in light of composite repair. J. Dent. 2011, 39, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Moura, D.M.D.; Veríssimo, A.H.; Leite Vila-Nova, T.E.; Calderon, P.S.; Özcan, M.; Assunção Souza, R.O. Which surface treatment promotes higher bond strength for the repair of resin nanoceramics and polymer-infiltrated ceramics? A systematic review and meta-analyses. J. Prosthet. Dent. 2022, 128, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Hoseinifar, R.; Shadman, N.; Mirrashidi, F.; Gholami, S. The effect of silane-containing universal adhesives on the immediate and delayed bond strength of repaired composite restorations. Dent. Res. J. (Isfahan) 2021, 18, 87. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.K.; Chen, J.H.; Wu, J.H.; Du, J.K. Influence of commercial adhesive with/without silane on the bond strength of resin-based composite repaired within twenty-four hours. J. Dent. Sci. 2021, 16, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Akgül, S.; Kedici Alp, C.; Bala, O. Repair potential of a bulk-fill resin composite: Effect of different surface-treatment protocols. Eur. J. Oral Sci. 2021, 129, e12814. [Google Scholar] [CrossRef] [PubMed]
- Kiomarsi, N.; Espahbodi, M.; Chiniforush, N.; Karazifard, M.J.; Kamangar, S.S.H. In vitro evaluation of repair bond strength of composite: Effect of surface treatments with bur and laser and application of universal adhesive. Laser Ther. 2017, 26, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Fornazari, I.A.; Wille, I.; Meda, E.M.; Brum, R.T.; Souza, E.M. Effect of surface treatment, silane, and universal adhesive on microshear bond strength of nanofilled composite repairs. Oper. Dent. 2017, 42, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Martos, R.; Hegedüs, V.; Szalóki, M.; Blum, I.R.; Lynch, C.D.; Hegedüs, C. A randomized controlled study on the effects of different surface treatments and adhesive self-etch functional monomers on the immediate repair bond strength and integrity of the repaired resin composite interface. J. Dent. 2019, 85, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Alsadon, O.; Patrick, D.; Johnson, A.; Pollington, S.; Wood, D. Fracture resistance of zirconia-composite veneered crowns in comparison with zirconia-porcelain crowns. Dent Mater J. 2017, 36, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Mollica, F.; De Santis, R.; Ambrosio, L.; Nicolais, L.; Prisco, D.; Rengo, S. Mechanical and leakage behaviour of the dentin--adhesive interface. J. Mater. Sci. Mater. Med. 2004, 15, 485–492. [Google Scholar] [CrossRef] [PubMed]
- De Santis, R.; Mollica, F.; Esposito, R.; Ambrosio, L.; Nicolais, L. An experimental and theoretical composite model of the human mandible. J. Mater. Sci. Mater. Med. 2005, 16, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, E.D.; Zhao, Z.; Maslucan, R.A.; Frimpong, C.; Al Khalifah, S. Influence of core build-up designs on preventing early failure of composite resin core in molars under traction forces: A finite element analysis study. J. Calif. Dent. Assoc. 2024, 52, 1–10. [Google Scholar] [CrossRef]
- Masouras, K.; Silikas, N.; Watts, D.C. Correlation of filler content and elastic properties of resin-composites. Dent. Mater. 2008, 24, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Pirmoradian, M.; Jerri Al-Bakhakh, B.A.; Behroozibakhsh, M.; Pedram, P. Repairability of aged dimethacrylate-free ORMOCER-based dental composite resins with different surface roughening methods and intermediate materials. J. Prosthet. Dent. 2024, 131, 1238–1249. [Google Scholar] [CrossRef] [PubMed]
- Călinoiu, Ș.G.; Bîcleșanu, C.; Florescu, A.; Stoia, D.I.; Dumitru, C.; Miculescu, M. Comparative study on interface fracture of 4th generation 3-steps adhesive and 7th generation universal adhesive. Materials 2023, 16, 5834. [Google Scholar] [CrossRef] [PubMed]
- Anatavara, S.; Sitthiseripratip, K.; Senawongse, P. Stress relieving behaviour of flowable composite liners: A finite element analysis. Dent. Mater. J. 2016, 35, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Papadogiannis, D.; Tolidis, K.; Lakes, R.; Papadogiannis, Y. Viscoelastic properties of low-shrinking composite resins compared to packable composite resins. Dent. Mater. J. 2011, 30, 350–357. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Blum, I.R.; Lynch, C.D.; Wilson, N.H. Factors influencing repair of dental restorations with resin composite. Clin. Cosmet. Investig. Dent. 2014, 6, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Nagano, D.; Nakajima, M.; Takahashi, M.; Ikeda, M.; Hosaka, K.; Sato, K.; Prasansuttiporn, T.; Foxton, R.M.; Tagami, J. Effect of water aging of adherend composite on repair bond strength of nanofilled composites. J. Adhes. Dent. 2018, 20, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Blumer, L.; Schmidli, F.; Weiger, R.; Fischer, J. A systematic approach to standardize artificial aging of resin composite cements. Dent. Mater. 2015, 31, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.; Cura, C.; Brendeke, J. Effect of aging conditions on the repair bond strength of a microhybrid and a nanohybrid resin composite. J. Adhes. Dent. 2010, 12, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Dursun, M.N.; Ergin, E.; Ozgunaltay, G. The effect of different surface preparation methods and various aging periods on microtensile bond strength for composite resin repair. Niger. J. Clin. Pract. 2021, 24, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Alqarni, D.; Nakajima, M.; Hosaka, K.; Ide, K.; Nagano, D.; Wada, T.; Ikeda, M.; Mamanee, T.; Thanatvarakorn, O.; Prasansuttiporn, T.; et al. The repair bond strength to resin matrix in cured resin composites after water aging. Dent. Mater. J. 2019, 38, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Eliasson, S.T.; Dahl, J.E. Effect of thermal cycling on temperature changes and bond strength in different test specimens. Biomater. Investig. Dent. 2020, 7, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Morresi, A.L.; D’Amario, M.; Capogreco, M.; Gatto, R.; Marzo, G.; D’Arcangelo, C.; Monaco, A. Thermal cycling for restorative materials: Does a standardized protocol exist in laboratory testing? A literature review. J. Mech. Behav. Biomed. Mater. 2014, 29, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Fabris, D.; Souza, J.C.M.; Silva, F.S.; Fredel, M.; Gasik, M.; Henriques, B. Influence of specimens’ geometry and materials on the thermal stresses in dental restorative materials during thermal cycling. J. Dent. 2018, 69, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, E.C.; Bayne, S.C.; Thompson, J.Y.; Ritter, A.V.; Swift, E.J. Shear bond strength of self-etching bonding systems in combination with various composites used for repairing aged composites. J. Adhes. Dent. 2005, 7, 159–164. [Google Scholar] [PubMed]
- Stape, T.H.S.; Tulkki, O.; Salim, I.A.; Jamal, K.N.; Mutluay, M.M.; Tezvergil-Mutluay, A. Composite repair: On the fatigue strength of universal adhesives. Dent. Mater. 2022, 38, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, N.C.; Moecke, S.E.; Caneppele, T.M.; Perote, L.C.; Batista, G.R.; Huhtalla, M.F.; Torres, C.R. Bond strength of composite resin restoration repair: Influence of silane and adhesive systems. J. Contemp. Dent. Pract. 2019, 20, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.L.D.; Scherer, M.M.; Mendes, L.T.; Casagrande, L.; Leitune, V.C.B.; Lenzi, T.L. Does use of silane-containing universal adhesive eliminate the need for silane application in direct composite repair? Braz. Oral Res. 2020, 34, e045. [Google Scholar] [CrossRef] [PubMed]
- Fehrenbach, J.; Isolan, C.P.; Münchow, E.A. Is the presence of 10-MDP associated with higher bonding performance for self-etching adhesive systems? A meta-analysis of in vitro studies. Dent. Mater. 2021, 37, 1463–1485. [Google Scholar] [CrossRef] [PubMed]
- Staxrud, F.; Dahl, J.E. Role of bonding agents in the repair of composite resin restorations. Eur. J. Oral Sci. 2011, 119, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Baur, V.; Ilie, N. Repair of dental resin-based composites. Clin. Oral Investig. 2013, 17, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Kerimova Köse, L.; Işık, H.; Eyüboğlu, T.F.; Özcan, M.; Çehreli, S.B.; Arhun, N. Is the repair bond strength affected when substrate and repair composite are not of the same kind? A systematic review and meta-analysis. J. Adhes. Sci. Technol. 2024, 38, 2923–2940. [Google Scholar] [CrossRef]
- Bourgi, R.; Etienne, O.; Holiel, A.A.; Cuevas-Suárez, C.E.; Hardan, L.; Roman, T.; Flores-Ledesma, A.; Qaddomi, M.; Haikel, Y.; Kharouf, N. Effectiveness of surface treatments on the bond strength to 3D-printed resins: A systematic review and meta-analysis. Prosthesis 2025, 7, 56. [Google Scholar] [CrossRef]
- Oh, H.K.; Shin, D.H. Effect of adhesive application method on repair bond strength of composite. Restor. Dent. Endod. 2021, 46, e32. [Google Scholar] [CrossRef] [PubMed]
- Abo-Alazm, E.A.E.; Abdou, A.; Hassouneh, L.; Safy, R.K. Reliability of an innovative slab shear versus microtensile bond strength test: Mechanical and finite element analysis. Eur. J. Dent. 2024, 18, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Saleh, S.A.; Hashem, D.; Salem, R.M. Effect of aging and different surface treatments on repair bond strength of hybrid resin composites. Open Dent. J. 2023, 17, e1874210626344. [Google Scholar] [CrossRef]
- Perdigão, J.; Sezinando, A.; Monteiro, P.C. Laboratory bonding ability of a multi-purpose dentin adhesive. Am. J. Dent. 2012, 25, 153–158. [Google Scholar] [PubMed]
- Frankenberger, R.; Reinelt, C.; Petschelt, A.; Krämer, N. Operator vs. material influence on clinical outcome of bonded ceramic inlays. Dent. Mater. 2009, 25, 960–968. [Google Scholar] [CrossRef] [PubMed]
Materials and Manufacturer Details | Composition | Directions for Use |
---|---|---|
Control | No treatment | |
Single Bond Universal Adhesive (3M ESPE, St. Paul, MN, USA) | 10-MDP, HEMA, silane, dimethacrylate resins, Vitrebond copolymer, filler, ethanol, water, initiators |
|
Composite Primer (GC Corporation, Tokyo, Japan) | Monofunctional methacrylate, urethane dimethacrylate (UDMA), camphorquinone |
|
PQ1 (Ultradent Products Inc., South Jordan, UT, USA) | Mineral 2-hydroxyethyl methacrylate, camphorquinone, ethyl alcohol |
|
Silane + PQ1 (Ultradent Products Inc., South Jordan, UT, USA) | Silane: Methacryloxypropyl Trimethoxysilane PQ1: Mineral 2-hydroxyethyl methacrylate, camphorquinone, ethyl alcohol |
|
Clearfil Universal Bond (Kuraray Noritake Dental Inc., Okayama, Japan) | Bis-GMA, HEMA, ethanol, 10-MDP, hydrophilic aliphatic dimethacrylate, colloidal silica, DL-camphorquinone, silane coupling agent, accelerators |
|
All Bond Universal (Bisco Inc., Schaumburg, IL, USA) | Bis-GMA, 10-MDP, HEMA, ethanol, initiators, water |
|
Materials | Poisson’s Ratio | Young’s Moduli (GPa) | Tensile Strength (MPa) | Source |
---|---|---|---|---|
Silane (Monobond) * | 0.31 | 18.6 | 40.14 | Alsadon et al., 2017 [24] |
PQ1 * | 0.33 | 1.00 | 29.45 | Mollica et al., 2004 [25] De Santis et al., 2005 [26] |
All-Bond Universal * | 0.30 | 1.59 | 33.81 | Bonilla et al., 2024 * [27] |
GC Composite Primer | 0.35 | 2.19 | 35.90 | Masouras et al., 2008 [28] Pirmoradian et al., 2024 [29] |
Clearfil Universal Bond | 0.24 | 7.70 | 18.40 | Calinoiu et al., 2023 [30] |
3M Single Bond Universal | 0.46 | 11.76 | 28.00 | Anatavara et al., 2016 [31] |
Clearfil Majesty | 0.22 | 21.71 | 117.00 | Papadogianis et al., 2011 [32] |
Surface Treatments | Mean Bond Strength (MPa) | von Mises Stress Value (MPa) | Displacement (mm) | r |
---|---|---|---|---|
Control | 8.86 | 9.91 | 1.044 | 0.276 |
PQ1 | 12.90 | 14.075 a | 1.521 | 0.152 |
All-Bond Universal | 15.92 a | 17.671 b | 0.071 a | 0.835 |
GC Composite Primer | 17.15 ab | 14.991 a | 0.691 | −0.694 |
Silane + PQ1 | 20.43 ab | 18.312 b | 0.055 a | −0.461 |
Clearfil Universal Bond | 21.17 b | 22.455 | 0.093 b | 0.066 |
3M Single Bond Universal | 21.54 b | 26.963 | 0.097 b | 0.724 |
p | 0.001 | 0.001 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devrimci, E.E.; Kemaloglu, H.; Peskersoy, C.; Pamir, T.; Turkun, M. Shear Bond Strength and Finite Element Stress Analysis of Composite Repair Using Various Adhesive Strategies With and Without Silane Application. Appl. Sci. 2025, 15, 8159. https://doi.org/10.3390/app15158159
Devrimci EE, Kemaloglu H, Peskersoy C, Pamir T, Turkun M. Shear Bond Strength and Finite Element Stress Analysis of Composite Repair Using Various Adhesive Strategies With and Without Silane Application. Applied Sciences. 2025; 15(15):8159. https://doi.org/10.3390/app15158159
Chicago/Turabian StyleDevrimci, Elif Ercan, Hande Kemaloglu, Cem Peskersoy, Tijen Pamir, and Murat Turkun. 2025. "Shear Bond Strength and Finite Element Stress Analysis of Composite Repair Using Various Adhesive Strategies With and Without Silane Application" Applied Sciences 15, no. 15: 8159. https://doi.org/10.3390/app15158159
APA StyleDevrimci, E. E., Kemaloglu, H., Peskersoy, C., Pamir, T., & Turkun, M. (2025). Shear Bond Strength and Finite Element Stress Analysis of Composite Repair Using Various Adhesive Strategies With and Without Silane Application. Applied Sciences, 15(15), 8159. https://doi.org/10.3390/app15158159