Augmented Reality in Cardiovascular Education (HoloHeart): Assessment of Students’ and Lecturers’ Needs and Expectations at Heidelberg University Medical School
Abstract
1. Introduction
Background and Literature Review: Current Applications of AR in Medical and Cardiovascular Education
2. Materials and Methods
- What are students’ and lecturers’ prior experiences with AR/VR in medical education?
- How do they assess the potential utility of AR for cardiovascular teaching?
- What preferences exist regarding content, format, and timing for AR integration?
3. Results
3.1. Teaching
3.2. Interest in Augmented Reality
3.3. Optimal Semester for AR Implementation
3.4. Favored Teaching and Learning Content
3.5. Previously Used Learning and Teaching Methods
3.6. Prior Experience with AR in Medical Education
4. Discussion
4.1. What Are Students’ and Lecturers’ Prior Experiences with AR/VR in Medical Education?
4.2. How Do They Assess the Potential Utility of AR for Cardiovascular Teaching?
4.3. What Preferences Exist Regarding Content, Format, and Timing for AR Integration?
4.4. Limitations
5. Future Directions
Towards Implementation: A Proposed Protocol for AR Integration in Medical Education
- Phase 1: Conceptualization and Didactic Integration
- Phase 2: Technical and Logistical Preparation
- Phase 3: Pilot Implementation and Evaluation
- Phase 4: Curriculum Integration and Scaling
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AR | Augmented Reality |
VR | Virtual Reality |
HeiCuMed | Heidelberger Curriculum Medicinale |
FYI | Final Year Internship |
TAVR | Transcatheter Aortic Valve Replacement |
References
- Vishnevsky, G.; Cohen, T.; Elitzur, Y.; Reis, S. Competency and confidence in ECG interpretation among medical students. Int. J. Med. Educ. 2022, 13, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Barmaki, R.L.; Kim, K.; Guo, Z.; Wang, Q.; Yu, K.; Pearlman, R.; Navab, N. A Large-Scale Feasibility Study of Screen-based 3D Visualization and Augmented Reality Tools for Human Anatomy Education: Exploring Gender Perspectives in Learning Experience. arXiv 2023, arXiv:2307.14383. [Google Scholar]
- Cheung, C.C.; Bridges, S.M.; Tipoe, G.L. Why is Anatomy Difficult to Learn? The Implications for Undergraduate Medical Curricula. Anat. Sci. Educ. 2021, 14, 752–763. [Google Scholar] [CrossRef] [PubMed]
- de Albuquerque, F.B.; Neves, I.; Teixeira, R.; Mano, T.; Rito, T.; Costa, P.O.; Ferreira, R.; de Sousa, L.; Pinto, F. Knowledge and perception among adults of their congenital heart disease: A single center cross-sectional study. Rev. Port. Cardiol. 2025, 44, 95–103. [Google Scholar] [CrossRef]
- Barsom, E.Z.; Graafland, M.; Schijven, M.P. Systematic review on the effectiveness of augmented reality applications in medical training. Surg. Endosc. 2016, 30, 4174–4183. [Google Scholar] [CrossRef]
- Parekh, P.; Patel, S.; Patel, N.; Shah, M. Systematic review and meta-analysis of augmented reality in medicine, retail, and games. Vis. Comput. Ind. Biomed. Art. 2020, 3, 21. [Google Scholar] [CrossRef]
- Jung, C.; Wolff, G.; Wernly, B.; Bruno, R.R.; Franz, M.; Schulze, P.C.; Silva, J.N.A.; Silva, J.R.; Bhatt, D.L.; Kelm, M. Virtual and Augmented Reality in Cardiovascular Care: State-of-the-Art and Future Perspectives. JACC Cardiovasc. Imaging 2022, 15, 519–532. [Google Scholar] [CrossRef]
- Mages, C.; Steinfurt, J.; Rahm, A.-K.; Thomas, D.; Majidi, R.; Kehrle, F.; André, F.; Seidensaal, K.; Rhein, B.; Wengenmayer, T.; et al. Recurrent ventricular tachycardia originating from the “left ventricular summit” effectively eliminated by stereotactic irradiation—A case report. Heart Case Rep. 2023, 9, 802–807. [Google Scholar] [CrossRef]
- Valverde, I.; Gomez-Ciriza, G.; Hussain, T.; Suarez-Mejias, C.; Velasco-Forte, M.N.; Byrne, N.; Ordoñez, A.; Gonzalez-Calle, A.; Anderson, D.; Hazekamp, M.G.; et al. Three-dimensional printed models for surgical planning of complex congenital heart defects: An international multicentre study. Eur. J. Cardiothorac. Surg. 2017, 52, 1139–1148. [Google Scholar] [CrossRef]
- Chamberland, C.; Bransi, M.; Boivin, A.; Jacques, S.; Gagnon, J.; Tremblay, S. The effect of augmented reality on preoperative anxiety in children and adolescents: A randomized controlled trial. Paediatr. Anaesth. 2024, 34, 153–159. [Google Scholar] [CrossRef]
- Hermans, A.N.L.; Betz, K.; Verhaert, D.V.M.; den Uijl, D.W.; Clerx, K.; Debie, L.; Lahaije, M.; Vernooy, K.; Linz, D.; Weijs, B. 360° Virtual reality to improve patient education and reduce anxiety towards atrial fibrillation ablation. Europace 2023, 25, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Oudkerk Pool, M.D.; Hooglugt, J.-L.Q.; Kraaijeveld, A.J.; Mulder, B.J.M.; de Winter, R.J.; Schijven, M.P.; Robbers-Visser, D.; Boekholdt, S.M.; Bouma, B.J.; Winter, M.M. Pre-procedural virtual reality education reduces anxiety in patients undergoing atrial septal closure—Results from a randomized trial. Int. J. Cardiol. Congenit. Heart Dis. 2022, 7, 100332. [Google Scholar] [CrossRef]
- Grieshaber, P.; Schneller, A.; Fonseca-Escalante, E.; Farag, M.; Krey, R.; Czundel, A.; Jaschinski, C.; Karck, M.; Gorenflo, M.; Loukanov, T. A Low-Cost Workflow to Generate Virtual and Physical Three-Dimensional Models of Cardiac Structures. World J. Pediatr. Congenit. Heart Surg. 2025, 16, 107–113. [Google Scholar] [CrossRef]
- Dhar, P.; Rocks, T.; Samarasinghe, R.M.; Stephenson, G.; Smith, C. Augmented reality in medical education: Students’ experiences and learning outcomes. Med. Educ. Online 2021, 26, 1953953. [Google Scholar] [CrossRef]
- Nicholson, D.T.; Chalk, C.; Funnell, W.R.J.; Daniel, S.J. Can virtual reality improve anatomy education? A randomised controlled study of a computer-generated three-dimensional anatomical ear model. Med. Educ. 2006, 40, 1081–1087. [Google Scholar] [CrossRef]
- Vasan, N.S.; DeFouw, D.O.; Holland, B.K. Modified use of team-based learning for effective delivery of medical gross anatomy and embryology. Anat. Sci. Educ. 2008, 1, 3–9. [Google Scholar] [CrossRef]
- Yammine, K.; Violato, C. A meta-analysis of the educational effectiveness of three-dimensional visualization technologies in teaching anatomy. Anat. Sci. Educ. 2015, 8, 525–538. [Google Scholar] [CrossRef]
- Jang, S.; Vitale, J.M.; Jyung, R.W.; Black, J.B. Direct manipulation is better than passive viewing for learning anatomy in a three-dimensional virtual reality environment. Comput. Educ. 2017, 106, 150–165. [Google Scholar] [CrossRef]
- Aslani, N.; Behmanesh, A.; Garavand, A.; Maleki, M.; Davoodi, F.; Shams, R. The Virtual Reality Technology Effects and Features in Cardiology Interventions Training: A Scoping Review. Med. J. Islam. Repub. Iran. 2022, 36, 77. [Google Scholar] [CrossRef] [PubMed]
- Kovacevic, A.; Wacker-Gussmann, A.; Bär, S.; Elsässer, M.; Mohammadi Motlagh, A.; Ostermayer, E.; Oberhoffer-Fritz, R.; Ewert, P.; Gorenflo, M.; Starystach, S. Parents’ Perspectives on Counseling for Fetal Heart Disease: What Matters Most? J. Clin. Med. 2022, 11, 278. [Google Scholar] [CrossRef] [PubMed]
- Biglino, G.; Capelli, C.; Wray, J.; Schievano, S.; Leaver, L.-K.; Khambadkone, S.; Giardini, A.; Derrick, G.; Jones, A.; Taylor, A.M. 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: Feasibility and acceptability. BMJ Open 2015, 5, e007165. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.S.; Cheng, D.L.; Mi, E.; Greenberg, P.B. Augmented reality in medical education: A systematic review. Can. Med. Educ. J. 2020, 11, e81–e96. [Google Scholar] [CrossRef] [PubMed]
- Amores-Valencia, A.; Burgos, D.; Branch-Bedoya, J.W. Influence of motivation and academic performance in the use of Augmented Reality in education. A systematic review. Front. Psychol. 2022, 13, 1011409. [Google Scholar] [CrossRef] [PubMed]
- Freeman, S.; Eddy, S.L.; McDonough, M.; Smith, M.K.; Okoroafor, N.; Jordt, H.; Wenderoth, M.P. Active learning increases student performance in science, engineering, and mathematics. Proc. Natl. Acad. Sci. USA 2014, 111, 8410–8415. [Google Scholar] [CrossRef]
- Bruno, R.R.; Wolff, G.; Wernly, B.; Masyuk, M.; Piayda, K.; Leaver, S.; Erkens, R.; Oehler, D.; Afzal, S.; Heidari, H.; et al. Virtual and augmented reality in critical care medicine: The patient’s, clinician’s, and researcher’s perspective. Crit. Care 2022, 26, 326. [Google Scholar] [CrossRef]
- Kovoor, J.G.; Gupta, A.K.; Gladman, M.A. Validity and effectiveness of augmented reality in surgical education: A systematic review. Surgery 2021, 170, 88–98. [Google Scholar] [CrossRef]
Characteristics | Category | Frequency | Percentage |
---|---|---|---|
Sex | Female | 57 | 56.4 |
Male | 44 | 43.6 | |
Age | <20 | 6 | 5.9 |
[in years] | 20–30 | 91 | 90.1 |
>30 | 4 | 4.0 | |
Semester | Block 1 | 35 | 34.7 |
Preclinical years | 15 | 14.9 | |
Practical year (PY) | 12 | 11.9 | |
Propaedeutic block | 10 | 9.9 | |
Block 4 | 7 | 6.9 | |
Block 2 | 6 | 5.9 | |
Block 3 | 6 | 5.9 | |
Course-free semester | 6 | 5.9 | |
Others | 4 | 4.0 |
Characteristics | Category | Frequency | Percentage |
---|---|---|---|
Sex | Female | 7 | 25.9 |
Male | 20 | 74.1 | |
Age | 35 | 7 | 25.9 |
[in years] | 35–45 | 13 | 48.2 |
>45 | 7 | 25.9 | |
Field | Cardiology | 9 | 33.3 |
Anesthesiology | 4 | 14.8 | |
General internal medicine | 2 | 7.4 | |
Cardiac surgery | 2 | 7.4 | |
Pediatric cardiology | 1 | 3.7 | |
Anatomy | 1 | 3.7 | |
Physiology | 1 | 3.7 | |
Others | 7 | 25.9 |
BENEFITS | CHALLENGES |
---|---|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlegel, P.P.; Kehrle, F.; Bugaj, T.J.; Scholz, E.; Kovacevic, A.; Grieshaber, P.; Nawrotzki, R.; Kirsch, J.; Hecker, M.; Meyer, A.L.; et al. Augmented Reality in Cardiovascular Education (HoloHeart): Assessment of Students’ and Lecturers’ Needs and Expectations at Heidelberg University Medical School. Appl. Sci. 2025, 15, 8595. https://doi.org/10.3390/app15158595
Schlegel PP, Kehrle F, Bugaj TJ, Scholz E, Kovacevic A, Grieshaber P, Nawrotzki R, Kirsch J, Hecker M, Meyer AL, et al. Augmented Reality in Cardiovascular Education (HoloHeart): Assessment of Students’ and Lecturers’ Needs and Expectations at Heidelberg University Medical School. Applied Sciences. 2025; 15(15):8595. https://doi.org/10.3390/app15158595
Chicago/Turabian StyleSchlegel, Pascal Philipp, Florian Kehrle, Till J. Bugaj, Eberhard Scholz, Alexander Kovacevic, Philippe Grieshaber, Ralph Nawrotzki, Joachim Kirsch, Markus Hecker, Anna L. Meyer, and et al. 2025. "Augmented Reality in Cardiovascular Education (HoloHeart): Assessment of Students’ and Lecturers’ Needs and Expectations at Heidelberg University Medical School" Applied Sciences 15, no. 15: 8595. https://doi.org/10.3390/app15158595
APA StyleSchlegel, P. P., Kehrle, F., Bugaj, T. J., Scholz, E., Kovacevic, A., Grieshaber, P., Nawrotzki, R., Kirsch, J., Hecker, M., Meyer, A. L., Seidensaal, K., Do, T. D., Schultz, J.-H., Frey, N., & Rahm, A.-K. (2025). Augmented Reality in Cardiovascular Education (HoloHeart): Assessment of Students’ and Lecturers’ Needs and Expectations at Heidelberg University Medical School. Applied Sciences, 15(15), 8595. https://doi.org/10.3390/app15158595