The Irrigation Water pH Has a Dominant Impact on the Growth and Stress Markers of Bigleaf Hydrangea
Abstract
1. Introduction
2. Materials and Methods
2.1. Pot Experimental Design
2.2. Irrigation Water Quality Treatment
2.3. Morphological and Biochemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Growing Conditions
3.2. Impact of pH and EC of Irrigation Water and Hydrangea Varieties on Morphologycal Characteristics
3.2.1. The Effect of Irrigation Water pH on the Morphological Characteristics of Hydrangea
3.2.2. The Effect of Irrigation Water EC on the Morphological Characteristics of Hydrangea
3.2.3. The Effect of Hydrangea Variety on Morphological Characteristics
3.2.4. Impact of pH and EC of Irrigation Water and Hydrangea Varieties on Biochemical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thakur, R.; Thakur, R.; Chandermohan, C.N.; Kanwar, B.; Sharma, S. Hydrangea Cultivation: Advances in Propagation, Soil Management, and Disease Control. J. Plant Biota 2024, 4, 11–15. [Google Scholar] [CrossRef]
- Xue, C.; Wen, Y.; Sheng, S.; Gao, Y.; Zhang, Y.; Chen, T.; Peng, J.; Cao, S. Hormonal Regulation and Transcriptomic Insights into Flower Development in Hydrangea paniculata ‘Vanilla Strawberry’. Plants 2024, 13, 486. [Google Scholar] [CrossRef]
- Croatian Bureau of Statistics. Flower Production. Available online: https://web.dzs.hr/PxWeb/pxweb/hr/Poljoprivreda,%20lov,%20%c5%a1umarstvo%20i%20ribarstvo/Poljoprivreda,%20lov,%20%c5%a1umarstvo%20i%20ribarstvo__Biljna%20proizvodnja/BP1_NUTS2021.px/ (accessed on 23 July 2025).
- Croatian Chamber of Economy. Cvijeće Uvezeno u Listopadu Vrijedi pet Milijuna Kuna. Available online: https://www.hgk.hr/cvijece-uvezeno-u-listopadu-vrijedi-pet-milijuna-kuna (accessed on 23 July 2025).
- Zuo, Y.; Zhang, J.; Zhao, R.; Dai, H.; Zhang, Z. Application of Vermicompost Improves Strawberry Growth and Quality through Increased Photosynthesis Rate, Free Radical Scavenging and Soil Enzymatic Activity. Sci. Hortic. 2018, 233, 132–140. [Google Scholar] [CrossRef]
- Yang, T.; Samarakoon, U.; Altland, J.; Ling, P. Influence of Electrical Conductivity on Plant Growth, Nutritional Quality, and Phytochemical Properties of Kale (Brassica napus) and Collard (Brassica oleracea) Grown Using Hydroponics. Agronomy 2024, 14, 2704. [Google Scholar] [CrossRef]
- Shreckhise, J.H.; Owen, J.S.; Niemiera, A.X. Growth Response of Hydrangea macrophylla and Ilex crenata Cultivars to Low-Phosphorus Controlled-Release Fertilizers. Sci. Hortic. 2019, 246, 578–588. [Google Scholar] [CrossRef]
- Lin, M.H.; Gresshoff, P.M.; Ferguson, B.J. Systemic Regulation of Soybean Nodulation by Acidic Growth Conditions. Plant Physiol. 2012, 160, 2028–2039. [Google Scholar] [CrossRef] [PubMed]
- Rathinapriya, P.; Maharajan, T.; Jothi, R.; Prabakaran, M.; Lee, I.B.; Yi, P.H.; Jeong, S.T. Unlocking Biochar Impacts on Abiotic Stress Dynamics: A Systematic Review of Soil Quality and Crop Improvement. Front. Plant Sci. 2024, 15, 1479925. [Google Scholar] [CrossRef] [PubMed]
- Cassaniti, C.; Romano, D.; Flowers, T.J. The Response of Ornamental Plants to Saline Irrigation Water. In Irrigation—Water Management, Pollution and Alternative Strategies; InTech: Naples, FL, USA, 2012. [Google Scholar]
- Xiao, J.; Guo, G.; Jeong, B.R. Iron Supplement-enhanced Growth and Development of Hydrangea macrophylla in Vitro under Normal and High Ph. Cells 2021, 10, 3151. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lyu, T.; Lyu, Y. The Molecular Biology Analysis for the Growing and Development of Hydrangea macrophylla ‘Endless Summer’ under Different Light and Temperature Conditions. Horticulturae 2024, 10, 586. [Google Scholar] [CrossRef]
- Wortman, S.E. Crop Physiological Response to Nutrient Solution Electrical Conductivity and PH in an Ebb-and-Flow Hydroponic System. Sci. Hortic. 2015, 194, 34–42. [Google Scholar] [CrossRef]
- Friedman, S.P. Soil Properties Influencing Apparent Electrical Conductivity: A Review. Comput. Electron. Agric. 2005, 46, 45–70. [Google Scholar] [CrossRef]
- Smith, J.L.; Doran, J.W. Measurement and Use of PH and Electrical Conductivity for Soil Quality Analysis. Methods Assess. Soil Qual. 2015, 49, 169–185. [Google Scholar] [CrossRef]
- Ahirwar, S.; Hasan, M. The Effect of Electrical Conductivity of Irrigation Water on Water Uptake by Capsicum in Soilless Media. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2307–2319. [Google Scholar] [CrossRef]
- Lam, V.P.; Kim, S.J.; Park, J.S. Optimizing the Electrical Conductivity of a Nutrient Solution for Plant Growth and Bioactive Compounds of Agastache rugosa in a Plant Factory. Agronomy 2020, 10, 76. [Google Scholar] [CrossRef]
- Ding, X.; Jiang, Y.; Zhao, H.; Guo, D.; He, L.; Liu, F.; Zhou, Q.; Nandwani, D.; Hui, D.; Yu, J. Electrical Conductivity of Nutrient Solution Influenced Photosynthesis, Quality, and Antioxidant Enzyme Activity of Pakchoi (Brassica campestris L. ssp. chinensis) in a Hydroponic System. PLoS ONE 2018, 13, e0202090. [Google Scholar] [CrossRef] [PubMed]
- Omar, M.M.; Shitindi, M.J.; Massawe, B.H.J.; Pedersen, O.; Meliyo, J.L.; Fue, K.G. Modeling the Electrical Conductivity Relationship between Saturated Paste Extract and 1:2.5 Dilution in Different Soil Textural Classes. Front. Soil Sci. 2024, 4, 1421661. [Google Scholar] [CrossRef]
- Bamsey, M.; Graham, T.; Thompson, C.; Berinstain, A.; Scott, A.; Dixon, M. Ion-Specific Nutrient Management in Closed Systems: The Necessity for Ion-Selective Sensors in Terrestrial and Space-Based Agriculture and Water Management Systems. Sensors 2012, 12, 13349–13392. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, H.; Song, C.; Zhu, J.K.; Shabala, S. Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation 2020, 1, 100017. [Google Scholar] [CrossRef]
- Nemali, K.S.; van Iersel, M.W. Light intensity and fertilizer concentration: I. Estimating optimal fertilizer concentrations from water-use efficiency of wax begonia. HortScience 2004, 39, 1287–1292. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, J.; Pan, Y.; Zhao, J.; Zou, X. Effects of Different pH Values on the Growth and Physiological Characteristics of Anoectochilus roxburghii. J. Plant Growth Regul. 2025. [Google Scholar] [CrossRef]
- Ramut, R.; Chohura, P.; Jama-Rodzeńska, A. Effect of nutrient solution pH on the quality of Lactuca sativa L. in a hydroponic system under struvite fertilization. J. Elem. 2024, 29, 863–880. [Google Scholar] [CrossRef]
- Ferrarezi, R.S.; Lin, X.; Gonzalez Neira, A.C.; Tabay Zambon, F.; Hu, H.; Wang, X.; Huang, J.H.; Fan, G. Substrate pH Influences the Nutrient Absorption and Rhizosphere Microbiome of Huanglongbing-Affected Grapefruit Plants. Front. Plant Sci. 2022, 13, 856937. [Google Scholar] [CrossRef]
- Penn, C.J.; Camberato, J.J. A Critical Review on Soil Chemical Processes that Control How Soil pH Affects Phosphorus Availability to Plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef]
- Valdez-Aguilar, L.A.; Grieve, C.M.; Poss, J.; Mellano, M.A. Hypersensitivity of Ranunculus asiaticus to Salinity and Alkaline pH in Irrigation Water in Sand Cultures. HortScience 2009, 44, 138–144. [Google Scholar] [CrossRef]
- Valdez-Aguilar, L.A.; Grieve, C.M.; Poss, J. Salinity and Alkaline pH in Irrigation Water Affect Marigold Plants: I. Growth and Shoot Dry Weight Partitioning. HortScience 2009, 44, 1719–1725. [Google Scholar] [CrossRef]
- Valdez-Aguilar, L.A.; Grieve, C.M.; Poss, J.; Layfield, D.A. Salinity and Alkaline pH in Irrigation Water Affect Marigold Plants: II. Mineral Ion Relations. HortScience 2009, 44, 1726–1735. [Google Scholar] [CrossRef]
- Loganathachetti, D.S.; Mundra, S. Water pH, not soil pH, alters bacterial community structural pattern and nitrogen cycling pathways in date palm (Phoenix dactylifera L.) roots and bulk soil under freshwater irrigation regime. Front. Ecol. Evol. 2023, 11, 1142073. [Google Scholar] [CrossRef]
- Conolly, N.B.; Bassuk, N.L.; MacRae, P.F., Jr. Response of five hydrangea species to foliar salt spray. J. Environ. Hort. 2010, 28, 125–128. [Google Scholar] [CrossRef]
- Miralles, J.; Valdés, R.; Franco, J.A.; Bañón, S.; Sánchez-Blanco, M.J. Irrigation of Hydrangea with Saline Reclaimed Wastewater: Effects of Fresh Water Flushing. Acta Hortic. 2013, 1000, 229–236. [Google Scholar] [CrossRef]
- Cerrato, M.D.; Mir-Rosselló, P.M.; Cortés-Fernández, I.; Ribas-Serra, A.; Douthe, C.; Cardona, C.; Sureda, A.; Flexas, J.; Gil Vives, L. Insights on Physiological, Antioxidant and Flowering Response to Salinity Stress of Two Candidate Ornamental Species: The Native Coastal Geophytes Pancratium maritimum L. and Eryngium maritimum L. Physiol. Mol. Biol. Plants 2024, 30, 1533–1549. [Google Scholar] [CrossRef]
- Pintó-Marijuan, M.; Munné-Bosch, S. Photo-Oxidative Stress Markers as a Measure of Abiotic Stress-Induced Leaf Senescence: Advantages and Limitations. J. Exp. Bot. 2014, 65, 3845–3857. [Google Scholar] [CrossRef]
- Lamers, J.; Van Der Meer, T.; Testerink, C. How Plants Sense and Respond to Stressful Environments. Plant Physiol. 2020, 182, 1624–1635. [Google Scholar] [CrossRef]
- Teklić, T.; Parađiković, N.; Špoljarević, M.; Zeljković, S.; Lončarić, Z.; Lisjak, M. Linking Abiotic Stress, Plant Metabolites, Biostimulants and Functional Food. Ann. Appl. Biol. 2021, 178, 169–191. [Google Scholar] [CrossRef]
- Esfandiari, E.O.; Shakiba, M.R.; Mahboob, S.A.; Alyari, H.; Toorchi, M. Water Stress, Antioxidant Enzyme Activity and Lipid Peroxidation in Wheat Seedling. J. Food Agric. Environ. 2007, 5, 149–153. [Google Scholar]
- Pál, M.; Horváth, E.; Janda, T.; Páldi, E.; Szalai, G. Physiological Changes and Defense Mechanisms Induced by Cadmium Stress in Maize. J. Plant Nutr. Soil Sci. 2006, 169, 239–246. [Google Scholar] [CrossRef]
- Alshammari, W.B.; Alshammery, K.; Lotfi, S.; Altamimi, H.; Alshammari, A.; Al-Harbi, N.A.; Jakovljević, D.; Alharbi, M.H.; Moustapha, M.E.; Abd El-Moneim, D.; et al. Improvement of Morphophysiological and Anatomical Attributes of Plants under Abiotic Stress Conditions Using Plant Growth-Promoting Bacteria and Safety Treatments. PeerJ 2024, 12, e17286. [Google Scholar] [CrossRef]
- Rédei, G.P. Proline Biosynthesis. In Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 3rd ed.; Springer: New York, NY, USA, 2008; pp. 1563–1564. [Google Scholar]
- Lopez-Delacalle, M.; Silva, C.J.; Mestre, T.C.; Martinez, V.; Blanco-Ulate, B.; Rivero, R.M. Synchronization and Interaction of Proline, Ascorbate and Oxidative Stress Pathways under Abiotic Stress Combination in Tomato Plants. Environ. Exp. Bot. 2021, 183, 104351. [Google Scholar] [CrossRef]
- Mansour, M.M.F.; Ali, E.F. Evaluation of Proline Functions in Saline Conditions. Phytochemistry 2017, 140, 52–68. [Google Scholar] [CrossRef]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of Proline under Changing Environments: A Review. Plant Signal Behav. 2012, 7, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985. [Google Scholar]
- Kos, Z. Kriteriji Kvalitete Vode Za Natapanje. Priručnik za Hidrotehničke Melioracije, Kvaliteta i Raspoloživost Vode Za Natapanje; Građevinski Fakultet Sveučilišta u Rijeci: Rijeka, Croatia, 1997; pp. 5–68. [Google Scholar]
- FAO. Standard Operating Procedure for Soil Moisture Content by Gravimetric Method; FAO: Rome, Italy, 2023. [Google Scholar]
- Liu, Q.; Sun, Y.; Niu, G.; Altland, J.; Chen, L.; Jiang, L. Morphological and physiological responses of ten ornamental taxa to saline water irrigation. HortScience 2017, 52, 1816–1822. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, Y.; Zhao, B. Lead, Zinc Tolerance Mechanism and Phytoremediation Potential of Alcea rosea (Linn.) Cavan. and Hydrangea macrophylla (Thunb.) Ser. and Ethylenediaminetetraacetic Acid Effect. Environ. Sci. Pollut. Res. Int. 2022, 29, 41329–41343. [Google Scholar] [CrossRef]
- O’Meara, L.; Chappell, M.R.; van Iersel, M.W. Water Use of Hydrangea macrophylla and Gardenia jasminoides in Response to a Gradually Drying Substrate. HortScience 2014, 49, 493–498. [Google Scholar] [CrossRef]
- Basiri Jahromi, N.; Fulcher, A.; Walker, F.; Altland, J. Photosynthesis, Growth, and Water Use of Hydrangea paniculata ‘Silver Dollar’ Using a Physiological-Based or a Substrate Physical Properties-Based Irrigation Schedule and a Biochar Substrate Amendment. Irrig. Sci. 2020, 38, 263–274. [Google Scholar] [CrossRef]
- Li, T.; Bi, G.; Harkess, R.L.; Denny, G.C.; Scagel, C. Nitrogen Fertilization and Irrigation Frequency Affect Hydrangea Growth and Nutrient Uptake in Two Container Types. HortScience. 2019, 54, 167–174. [Google Scholar] [CrossRef]
- Codarin, S.; Galopin, G.; Chasseriaux, G. Effect of air humidity on the growth and morphology of Hydrangea macrophylla L. Sci. Hortic. 2006, 108, 303–309. [Google Scholar] [CrossRef]
- Nordli, E.F.; Strøm, M.; Torre, S. Temperature and photoperiod control of morphology and flowering time in two greenhouse grown Hydrangea macrophylla cultivars. Sci. Hortic. 2011, 127, 372–377. [Google Scholar] [CrossRef]
- Zaman, M.; Shahid, S.A.; Heng, L. Irrigation Water Quality. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Rahmati, R.; Hamid, R.; Ghorbanzadeh, Z.; Jacob, F.; Azadi, P.; Zeinalabedini, M.; Farsad, L.K.; Kazemi, M.; Ebrahimi, M.A.; Shahinnia, F.; et al. Comparative transcriptome analysis unveils the molecular mechanism underlying sepal colour changes under acidic pH substratum in Hydrangea macrophylla. Int. J. Mol. Sci. 2022, 23, 15428. [Google Scholar] [CrossRef] [PubMed]
- Anaya-Covarrubias, J.Y.; Larranaga, N.; Almaráz-Abarca, N.; Escoto-Delgadillo, M.; Rodríguez-Macías, R.; Torres-Morán, M.I. Hydrangea DNA Methylation Caused by pH Substrate Changes to Modify Sepal Colour is Detected by MSAP and ISSR Markers. Agronomy 2019, 9, 871. [Google Scholar] [CrossRef]
- Midcap, J.T.; Bilderback, T.E. Evaluating Hydrangea Production with Improved Substrates; Center Applied Nursery Research: Athens, GA, USA, 2002; p. 3. [Google Scholar]
- Pietsch, G.M.; Brindley, J.C.; Owen, J.S., Jr.; Fulcher, A. A Fine Line between Phytotoxicity and Blue When Producing Hydrangea macrophylla in a Nursery at a Low Substrate pH. Horticulturae 2022, 8, 690. [Google Scholar] [CrossRef]
- Moore, G.M. Mechanisms of hormone action in plants. Proc. Plant Propagators’ Soc. 1984, 34, 79–90. [Google Scholar]
- Morrissey, J.; Guerinot, M.L. Iron uptake and transport in plants: The good, the bad, and the ionome. Chem Rev. 2009, 109, 4553–4567. [Google Scholar] [CrossRef] [PubMed]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of nutrients: Micronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Elsevier: Oxford, UK, 2012. [Google Scholar] [CrossRef]
- Khoshru, B.; Mitra, D.; Nosratabad, A.F.; Reyhanitabar, A.; Mandal, L.; Farda, B.; Djebaili, R.; Pellegrini, M.; Guerra-Sierra, B.E.; Senapati, A.; et al. Enhancing Manganese Availability for Plants through Microbial Potential: A Sustainable Approach for Improving Soil Health and Food Security. Bacteria 2023, 2, 129–141. [Google Scholar] [CrossRef]
- Barrow, N.J.; Hartemink, A.E. The effects of pH on nutrient availability depend on both soils and plants. Plant Soil 2023, 487, 21–37. [Google Scholar] [CrossRef]
- Saharan, B.S.; Brar, B.; Duhan, J.S.; Kumar, R.; Marwaha, S.; Rajput, V.D.; Minkina, T. Molecular and Physiological Mechanisms to Mitigate Abiotic Stress Conditions in Plants. Life 2022, 12, 1634. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z.; Chen, S. Response Mechanism of Plants to Drought Stress. Horticulturae 2021, 7, 50. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Bian, M.; Zhou, M.; Sun, D.; Li, C. Molecular approaches unravel the mechanism of acid soil tolerance in plants. Crop J. 2013, 1, 91–104. [Google Scholar] [CrossRef]
- Toscano, S.; Romano, D.; Ferrante, A. Molecular Responses of Vegetable, Ornamental Crops, and Model Plants to Salinity Stress. Int. J. Mol. Sci. 2023, 24, 3190. [Google Scholar] [CrossRef]
- Wang, Z.; Nepal, P.; Kelly, M.; Porter, A.; Sun, Y.; Zhang, Y. Morphological and Physiological Responses of Three Ornamental Species to Saline Water Irrigation. HortScience 2025, 60, 940–952. [Google Scholar] [CrossRef]
- Rius-García, X.; Videgain-Marco, M.; Casanova-Gascón, J.; Acuña-Rello, L.; Zufiaurre-Galarza, R.; Martín-Ramos, P. Evaluation of Salt Tolerance in Four Self-Rooted Almond Genotypes for Super-High-Density Orchards Under Varying Salinity Levels. Agriculture 2025, 15, 254. [Google Scholar] [CrossRef]
- Niu, G.; Sun, Y.; Hooks, T.; Altland, J.; Dou, H.; Perez, C. Salt Tolerance of Hydrangea Plants Varied among Species and Cultivar within a Species. Horticulturae 2020, 6, 54. [Google Scholar] [CrossRef]
- Wang, F.; Wu, H.; Yang, M.; Xu, W.; Zhao, W.; Qiu, R.; Kang, N.; Cui, G. Unveiling Salt Tolerance Mechanisms and Hub Genes in Alfalfa (Medicago sativa L.) Through Transcriptomic and WGCNA Analysis. Plants 2024, 13, 3141. [Google Scholar] [CrossRef]
- Naumann, A.; Horst, W.J. Effect of aluminium supply on aluminium uptake, translocation and blueing of Hydrangea macrophylla (Thunb.) Ser. cultivars in a peat-clay substrate. J. Hortic. Sci. Biotechnol. 2003, 78, 463–469. [Google Scholar] [CrossRef]
- Rashid, M.; Noreen, S.; Shah, K.H.; Gaafar, A.R.Z.; Waqar, R. Morphological and biochemical variations caused by salinity stress in some varieties of Pennisetum glaucum L. J. King Saud Univ. Sci. 2024, 36, 102994. [Google Scholar] [CrossRef]
- Bissiwu, P.; Kulkarni, K.P.; Melmaiee, K.; Elavarthi, S. Physiological and Molecular Responses of Red Maple (Acer rubrum L.) Cultivars to Drought Stress. Plant Breed. Biotech. 2022, 10, 62–74. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, X.; Wang, Z.; Liang, Z.; Wang, M.; Liu, M.; Suarez, D.L. Interactive Effects of PH, EC and Nitrogen on Yields and Nutrient Absorption of Rice (Oryza sativa L.). Agric. Water Manag. 2017, 194, 48–57. [Google Scholar] [CrossRef]
- Soufi, H.R.; Roosta, H.R.; Hamidpour, M. The Plant Growth, Water and Electricity Consumption, and Nutrients Uptake Are Influenced by Different Light Spectra and Nutrition of Lettuce. Sci. Rep. 2023, 13, 20766. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; He, L.; Li, T. Response of Seedling Growth and Physiology of Sorghum bicolor (L.) Moench to Saline-Alkali Stress. PLoS ONE 2019, 14, e0220340. [Google Scholar] [CrossRef]
- Altaf, M.A.; Shahid, R.; Ren, M.X.; Altaf, M.M.; Khan, L.U.; Shahid, S.; Jahan, M.S. Melatonin Alleviates Salt Damage in Tomato Seedling: A Root Architecture System, Photosynthetic Capacity, Ion Homeostasis, and Antioxidant Enzymes Analysis. Sci. Hortic. 2021, 285, 110145. [Google Scholar] [CrossRef]
- Wu, L.; Dodge, L. Landscape Plant Salt Tolerance Selection Guide for Recycled Water Irrigation. Available online: https://slosson.ucdavis.edu/Landscape_Plant_Selection_Guide_for_Recycled_Water_Irrigation/ (accessed on 23 July 2025).
Tested Parameter | Unit | Method | Reference Range | Result |
---|---|---|---|---|
pH | HR EN ISO 10523:2012 | 6.5–8.4 | 7 | |
EC | dS m−1 | HRN EN 27888:2008 | <1 | 1 |
Turbidity | NTU | HRN EN ISO 7027-1:2016 | <0.20 | |
Ca | mg L−1 Ca2+ | HRN EN ISO 14911:2001 | 0–20 | 104.7 |
K | mg L−1 K+ | HRN EN ISO 14911:2001 | 0–2 | 4.6 |
Na | mg L−1 Na+ | HRN EN ISO 14911:2001 | 0–40 | 14.7 |
Mg | mg L−1 Mg2+ | HRN EN ISO 14911:2001 | 0–5 | 19.3 |
Total dissolved salts | mg L−1 CaCO3 | HRN ISO 6059:1998 | <700 | 342 |
Tank A | Tank B | ||||||
---|---|---|---|---|---|---|---|
EC2 | EC 3 | EC4 | EC 2 | EC 3 | EC 4 | ||
Ca(NO3)2 (kg) | - | 1.1 | 3.1 | HNO3 (53%) (L) | 4.1 | 4.1 | 4.1 |
NH4NO3 (34%) (L) | 0.6 | 0.7 | 0.9 | KH2PO4 (kg) | 0.7 | 1.1 | 1.5 |
KNO3 (kg) | 1.2 | 2.4 | 3.7 | MgSO4 (kg) | - | - | 0.7 |
HNO3 (53%) (L) | 0.5 | 0.5 | 0.5 | K2SO4 (kg) | 2.2 | 2.8 | 3.4 |
DTPA/EDDHA 6% | 135 g | ||||||
Ca(NO3)2 (%) | - | 8 | 16 | ||||
Mg(SO4) (%) | - | 0 | 4 | ||||
K2SO4 (%) | 21 | 20 | 18 |
Plant Height | Stem Number | Flower Number | Leaf Number | Flower Diameter | Flower Weight | Leaf Weight | Growth Index | |
---|---|---|---|---|---|---|---|---|
pH | ||||||||
F | 6.65 | 4.313 | 3.872 | 29.872 | 0.767 | 209 | 209 | 0.654 |
p | 0.000 | 0.007 | 0.013 | 0.000 | 0.516 | 0.000 | 0.00 | 0.000 |
LSD0.05 | 1.434 | 0.758 | 0.735 | 5.324 | 0.939 | 0.773 | 0.155 | 4.657 |
LSD0.01 | 1.905 | 1.007 | 0.976 | 7.072 | 1.248 | 1.027 | 0.206 | 6.205 |
EC | ||||||||
F | 3.36 | 0.361 | 0.179 | 1.245 | 2.007 | 70 | 422 | 0.956 |
p | 0.023 | 0.781 | 0.909 | 0.300 | 0.121 | 0.000 | 0.00 | 0.031 |
LSD0.05 | 1.434 | 0.758 | 0.735 | 5.324 | 0.664 | 0.733 | 0.155 | 3.665 |
LSD0.01 | 1.905 | 1.007 | 0.976 | 7.072 | 0.882 | 1.027 | 0.206 | 5.421 |
Variety | ||||||||
F | 55.76 | 9.639 | 13.564 | 0.841 | 9.467 | 21 | 1166 | 1.223 |
p | 0.000 | 0.002 | 0.000 | 0.362 | 0.003 | 0.000 | 0.00 | 0.062 |
LSD0.05 | 1.014 | 0.536 | 0.52 | 3.765 | 0.664 | 0.546 | 0.11 | 4.422 |
LSD0.01 | 1.347 | 0.712 | 0.69 | 5 | 0.882 | 0.726 | 0.146 | 6.231 |
MDA | Proline | |||||
---|---|---|---|---|---|---|
pH | EC | Variety | pH | EC | Variety | |
F | 176.328 | 3.875 | 2.452 | 28.35 | 11.01 | 1.181 |
p | 0.000 | 0.013 | 0.066 | 0.000 | 0.000 | 0.281 |
LSD0.05 | 0.094 | 0.094 | 0.066 | 303.430 | 303.430 | 214.557 |
LSD0.01 | 0.125 | 0.125 | 0.088 | 403.045 | 403.045 | 284.996 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marković, M.; Galić, V.; Težak, V.; Ravlić, M.; Barač, Ž.; Jug, I.; Galić, L. The Irrigation Water pH Has a Dominant Impact on the Growth and Stress Markers of Bigleaf Hydrangea. Appl. Sci. 2025, 15, 8773. https://doi.org/10.3390/app15168773
Marković M, Galić V, Težak V, Ravlić M, Barač Ž, Jug I, Galić L. The Irrigation Water pH Has a Dominant Impact on the Growth and Stress Markers of Bigleaf Hydrangea. Applied Sciences. 2025; 15(16):8773. https://doi.org/10.3390/app15168773
Chicago/Turabian StyleMarković, Monika, Vlatko Galić, Veronika Težak, Marija Ravlić, Željko Barač, Irena Jug, and Lucija Galić. 2025. "The Irrigation Water pH Has a Dominant Impact on the Growth and Stress Markers of Bigleaf Hydrangea" Applied Sciences 15, no. 16: 8773. https://doi.org/10.3390/app15168773
APA StyleMarković, M., Galić, V., Težak, V., Ravlić, M., Barač, Ž., Jug, I., & Galić, L. (2025). The Irrigation Water pH Has a Dominant Impact on the Growth and Stress Markers of Bigleaf Hydrangea. Applied Sciences, 15(16), 8773. https://doi.org/10.3390/app15168773